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Abstract- In this paper the Electric Vehicle (EV) charging 

demand on quick charge replenishment (QCR), by Fast 
Charging and Battery Switching, based on Dutch travel pattern 
is modeled and compared.  A comparison between the QCR 
methods based on number of visits to these facilities and the time 
of service is obtained. The extra number of batteries to be 
introduced into the battery switching network is calculated. 
Using queuing theory the required number of charging points/ 
switching lanes per quick charge replenishment station is 
estimated. Based on this the potential peak power requirements 
of the two methods are obtained. 

Keywords- Electric Mobility, Fast Charging, Battery 

Switching, Queuing theory 

 

I. INTRODUCTION 

Electric vehicles are considered the future of transportation 
and the deployment of EVs is strongly affected by the 
infrastructure in place. EVs suffer from range limitation 
compared to the fossil fuel powered vehicles of today due to 
expensive and heavy batteries and hence charging 
infrastructure has to be provided to increase the possible utility 
of them. 

Various studies on electric vehicles based on realistic 
travel behavior have shown the necessity to have quick charge 
replenishment systems along with slow chargers [1]. The 
quick charge replenishment (QCR) systems will help solve 
range anxiety among the EV owners as well as enable long 
distance travel by quick transfer of energy. 

Obvious technology options is fast charging technology, 
where the battery is charged with high power in short time 
(50-100 kW DC output power). The high power has 
significant effects on grid and also can decrease the lifetime of 
the battery [2]. Another possible technology for QCR station 
is battery switching technology (also known as battery  
swapping), where during the serving process the whole battery 
is replaced by a similar type full battery [3]. To implement the 
process, standardized batteries and different ownership model 
of batteries are required. 

 However a comparison of the grid impacts of the 
mentioned QCR technologies as well as the cost aspects for 
the utility and EV owners have not been investigated 
thoroughly [4]. For instance a single EV plugging into to a fast 
charge station demands approximately 54 kW of power from 
the grid. During peak traffic hours if the infrastructure, i.e. the 
number of serving units, is not planned properly, the demand 
on the grid and the waiting time to get served would be 
unreasonably high [5]. 

The aim of this paper is to investigate and compare the 
QCR technologies. The number of serving units, peak power 
requirements and in case of battery switching, the extra 
number of batteries required would be calculated. The 
methodology described in Fig.1 is used to model the EV 
behavior and to compare infrastructure requirements and peak 
power demand of a QCR station 

The mobility survey results for Netherlands (MON, 2009) 
[6] are provided by the Dutch Ministry of Infrastructure and 
Environment for every year. The data for the year 2009 is used 
as the reference, since there have been only marginal changes 
in the mobility of Dutch population since 2003. The results are 
published as a database with key results for the year and as an 
online database [7] with data of higher resolution. 

The mobility results are used to model the travel patterns 
of EVs to obtain the demand for QCR. The following 
information is obtained from the model for QCR – average 
number of visits to QCR stations per car per year, average 
time to serve per car, energy share from QCR for mobility and 
the extra batteries required for battery switching if chosen as 
the mode of QCR.  

QCR stations, like refueling stations of today also would 
have limited capacity. Queuing theory as a stochastic 
mathematical method is used to scale QCR stations. Using 
different charging strategies the minimum number of serving 
is obtained. This number of serving units is optimized to 
handle the peak traffic hours. A peak power comparison is 
made based on this number of serving units between the QCR 
technologies. 

II. MOBILITY SURVEY RESULTS 

This section describes the mobility patterns analyzed for 
estimating the grid impacts of Electric Vehicles. The MON, 
2009 is the basis for the EV mobility model developed during 
this work.  

The MON survey provides information for researchers and 
policy makers in the field of transport and mobility of Dutch 
population. The MON survey analyzes the mobility of the 

 
 

 

Fig. 1.  QCR usage pattern estimation 



Dutch population based on responses from a representative set 
of the population. The major results from MON 2009 are 
summarized as follows. 

TABLE I 
MAJOR RESULTS OF MON 2009 

Data Value 

Total Dutch Population 16,319,000 

Total number of Personal 

Cars 

7,588,000 

Total number of households 7,300,000 

Average number of Car trips 

per person per day 

0.97 

Average distance travelled in 

car per person per day 

16.59 km 

 

The MON results are provided in the form of ‘per person 
per day’. The reason for the same is explained in the database 
is that the mobility patterns are affected by the level of 
development of the whole population. For EV simulation we 
would need the data for each EV. From the above data set the 
following important parameters can be derived for EVs. 

TABLE II 
DERIVED RESULTS FOR CARS  

Parameter Value 

Persons per Vehicle  2.15 

Average number of trips per vehicle per day 2.09 

Average distance travelled per vehicle per 

day 

35.67 km 

Average Vehicle Trip 17.07 km 

Vehicles per Household 1 

 
The parameter persons per vehicle only signify the ratio of 

number of people in Netherlands to number of personal 
vehicles in Netherlands. The average number of trips per 
vehicle and the trip distance per vehicle per day is the most 
crucial data as unlike any other modeling, the vehicle fleet 
needs to be modeled using individual vehicles and not as a 
whole fleet. Without individual vehicle modeling and using 
the representative trip data for an year the requirement of 
charging and QCR will follow the average profile we impose 
on it and will not bring out the many side effects of random 
trip occurrences. 

The trips have been categorized into seven categories by 
the survey – Commute (Going/Returning from Office), Work 
Related Trips, Visits/Overnight Stay Trips, Shopping, 
Education related trips, Recreation Trips and Others. The trip 
profile for an average data is shown here from the yearly data 
provided. 

This data is quite useful in formulating policy for charging 
infrastructure development. Policymakers will be able to 
deploy chargers at the points where the EV users would 
require them the most resulting in better utilization and more 
insight about the load distribution for the utilities. 

The distribution of trips over time of day data shows 
clearly that there is a lot of trips during day time and the trips 
are mostly peaking during 7-9 am in the morning and between 

in 4-6 pm in the evening. This data correlates well with the 
traffic profile shown by NHTS of USA [8]. 

The average trip distance for each category can also be 
estimated from the MON results. The average trip distance for 
different purposes is estimated using the number of trips and 
distance covered in each category. 

The MON also shows that 93% of the trips are of duration 
one hour or less. Since a car performs two trips or one return 
trip a day, the average parked time of the car is 22 hours every 
day. This shows the potential to shift the charging time of the 
EVs to benefit the renewable power integration and for 
maximizing grid capacity. From the distribution of trip time 
for a particular trip duration we can estimate the trip speed if 
the distance is known. This data is used in the model to 
estimate the travel time of trips. 

All the trips are classified according to the trip length and 
this data provides an insight into the daily usage of vehicles 
and the corresponding power requirements as well as fast 
charging needs.  

 

 
Fig. 2. Average Trip Profile Over a Day by Trip Start Time 

  

 
 

Fig. 3. Average Trip Distance per Purpose. 

 



One of the major data points to be looked at is the distance 
covered in the ‘50km or more’ category. Even though the 
number of trips covered is quite small in that category, the 
distance covered in that category is quite high and 
consequently the need for fast charging can be quite high with 
this data set. This data set is corrected using the 2008 MON 
data analyzed in [9].  

 

This distribution is used to calculate the average trip length 
in each category. The calculated trip distance in each distance 
range is given by the probability of number of trips in that 
category and that distribution is maintained for all the trips in 
a year. To avoid complicated modeling, the distances are 
assigned the exact values and tolerance is not introduced. The 
distance profile maintained is shown here. 

It should be noted that the total trip distance of the entire 
fleet will be equal to that of the total distance covered by 
vehicles in Netherlands with this distribution. These distances 
are further scaled with the average trip distance for each of the 
trip purposes mentioned above to get a distance distribution 
for each purpose while maintaining the overall distance 
travelled the same.  

The seasonal variations in travel patterns has been 
modeled implicitly in the model as the model uses the 
percentage distribution of trips for a whole year as provided 
by the online database of the MON survey.  

III. EV FLEET MODELING  

Based on the survey results presented in chapter 2, the 
potential Dutch EV fleet behavior is modeled. In the model 
100 cars are used to keep simulation time down and have the 
results in percentage. In this case the results of the simulation 
can be extended easily for any number of cars. 

The trip scheduling assigns a distance for the trip and 
based on the availability of the EV selects one vehicle and 
deducts the energy required from the vehicle and locks it till 
the return trip is scheduled. Return trip is scheduled along with 
the original trip based on the estimated activity duration. 

The distance is assigned randomly from the distribution 
calculated using the mobility survey result for that particular 
purpose and based on the distance assigned the speed is 
looked up from the look up table. This approach makes sure 
that the randomness in the trip pattern is maintained for the 
fleet. The reason the model does not assign fixed patterns to 
each vehicle is that such an assignment will only bring out an 
ideal scenario and user parameters are modeled as fixed 
throughout the year.  

The following efficiency values are assumed in the model 
[9]. The charging efficiency of the battery is modeled based on 
the results from [10]. The graph showing the efficiency 
variation is shown in Fig.6. 

TABLE III 
EFFICIENCY OF VARIOUS EV BLOCKS 

Parameter Value 

Energy required to cover one km(at the wheel) 0.15 kWh 

Average home charger power consumption 3.6 kW 

Average home charger efficiency 95% 

Average battery charging efficiency Based on 

Fig.6 

Drive Train(PE Converters, Motors and 

Transmission) Efficiency 

86.7% 

State of charge possible with fast charging 80% 

Fast charger power consumption 52.63 kW 

Average fast charger efficiency 95% 

 
During the modeling process low voltage charging is 

enabled at home and work (trips for commute) places. So if 

 
 

Fig. 4. Percentage of Trips and Total Distance of different ranges. 

 

 
 

Fig. 5. Percentage of Trips and Total Distance of different ranges. 

 

 

 
Fig. 6. Energy and Coulombic Efficiency of Li ion Batteries and C rate 

relation. 
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the vehicle stops at one of these locations its battery is charged 
with 3.6 kW. When a vehicle does not have enough energy to 
cover the next scheduled trip, or if the range is not sufficient to 
cover the whole journey, QCR is needed to complete the trip. 
There are two options considered in the model: the fast 
charging and the battery switching, but only one of them is 
enabled in a certain simulation. According to the fast charging 
algorithm if the scheduled destination has a low voltage 
charging opportunity, only that amount of energy is charged to 
reach the destination to have cheaper and probably better 
charging facility for the battery. 

There are 19 different scenarios that are defined in the 
model according to the different range of vehicles. The lowest 
range is 80 km, while the highest 170 km, and the ranges 
increasing by 5 km. The important results to be used in 
queuing theory to estimate the peak power demand and 
number of serving units are given below.  

The average number of visits per vehicle per year is shown 
for both the QCR methods in the figure below. The average 
number of visits is always lower for battery switching 
compared to fast charging since more energy is transferred per 
switching compared to fast charging. 

The average charging time for fast charging is also 
obtained and provided later when it is used for estimating the 
power demand. 

Another key result to be considered in the battery 
switching mode of QCR is the extra number of batteries 
required for satisfying the travel profile. Each simulation with 
battery switching was started with 80 percent extra batteries, 
which equals 80 batteries extra since the simulation includes 
100 cars. The following graph shows the amount of batteries 
that are always full and gives an indication to the extra number 
of batteries that are never used. At the switch station the 
batteries are charged at 10.8kW power to obtain the results 
shown here. 

In the case of cars of range 160km we can see that only 33 
batteries need to be introduces as 47 batteries are always 
remaining full at the swap stations. With a safety margin of 
50% we can recommend to have 50 percent extra batteries for 
a fleet of range 160 km. 

Queuing theory is used to estimate the required number of 
serving units per QCR station. The results from EV fleet 
modeling – average number of visits and in case of fast 
charging average charging time, is used by queuing theory 
which is described in the following chapter. 

IV. QUEUING THEORY 

Just as the petrol stations, an electrical charging station has 
also limited capacity. The charging behavior and load need for 
a certain vehicle cannot be defined, however taking a large 
number of vehicles into consideration approximation can be 
made for the usage of a certain charging station. For the 
scaling process a stochastic mathematical method, the queuing 
theory was used [11]. Queuing theory has already been used as 
a traffic model for the arrival process of telephone calls at a 
telephone exchange; nowadays it is often used to model 
generation of internet traffic flows for example [12], [13], 
[14], or at traffic management [15]. Some papers have already 
dealt with modeling electric car charging stations with 
queuing theory ([16], [17], [18], [19], [20], [21], [22]). The 
paper would like to extend this scope to the investigation of 
electric car charging station parameters. 

[12], [24], [25] and [26] give very good introduction to 
queuing theory, the most needed parts are cited from them in 
the following. Among others, a queuing model is 
characterized by: 

1. The arrival process of customers   
Usually it can be assumed that the inter-arrival times are 

independent and have a common distribution. In many 
practical situations customers arrive according to a Poisson 
stream [24]. Poisson processes are very important in queuing 
theory so hereby some of its characteristics are presented 
briefly. The Poisson process is a continuous-time process, it 
applies to many cases where a certain event occurs at different 
points in time. The Poisson process has several important 
properties, such as [12]: 

 Time-homogeneity: every point in time has the same 
chance of having an occurrence, therefore occurrences are 
equally likely to happen at all times. 

 Inter-arrival times of occurrences are exponentially 
distributed with parameter λ 

 By the memoryless property of the exponential distribution 
the Poisson process is also memoryless. 

 If one would like to model a process as Poisson process 
they have to determine the scope of this method. Poisson 
processes can be used if [11]: 

 the number of entities is great, 

 a single entity has a negligible effect on the system 

 entities are independent from each other (time-
homogeneity). 

 
Fig. 8. Extra number of batteries required  

 

 
Fig. 7.  Number of visits according different QCR technologies and vehicle 

ranges  

 



The power consumption of one vehicle compared to 
overall grid consumption is low and the charging of each car is 
independent from the others, so the charging behavior and the 
arrival of electric vehicles can be modeled as a Poisson 
process.  

2. The behavior of customers 
Are customers willing to wait or leave after a short time? 

Although this option is not considered here, it is worth 
mentioning that it is possible with means of queuing theory 
[24]. 

3. The service times 
It can usually be assumed that the service times are 

independent and identically distributed and that they are 
independent from the inter-arrival times [24].  

4. The service discipline 
There are many possibilities, e.g. first come-first served, 

random order, last come first served, priorities, etc. [24]. 

5. The service capacity 
The number of serving units is in our case the number of 

charging points/ switching lanes. 

6. The waiting room 
There can be limitations with respect to the number of 

customers in the system [24]. In the case of electric cars this is 
the number of parking spaces. 

 
After having outlined the characteristics of queuing theory, 

a simple figure, that would help in understanding the 
mathematics of the process, is presented. The main 
characteristics of queuing theory can be summarized using this 
figure 9. 

The arrival process is usually described by the 
probabilistic distribution of the intervals between the arriving 
needs. The reciprocal of the arrival interval is the arrival rate 
(λ [1/min]), which is usually used in calculations and shows 
the frequency of arrivals. However, λ can be considered as a 
function of time: this means that the value of λ can change in 
every instant, within the certain period it is constant. This can 
be seen in figure 13. where the daily traffic pattern is 
presented.  

The charging station has a limited capacity (which means 
that there is a finite number of charging points/switching lanes 
and even a finite number of parking spaces in a station), so it 
is more than likely that some customers will have to wait. The 
aim of paper is to scale a charging station that has an optimal 
number of charging points/switching lanes and can serve the 

incoming charging requests. Figure 9. presents that if the 
number of charging points/switching lanes is not enough, 
some customers have to wait: they form the queue. Others can 
have their cars charged. It is obvious that cars are charged in 
batches, which means that a number of c cars are charged 
simultaneously, where c denotes the number of charging 
points/switching lanes (more formally serving units). Just as 
the arrival rate, the serving of cars also has a rate. The 
reciprocal of the service time (μ [1/min]) is the service rate, 
which is usually used in calculations. It shows the number of 
needs that can be served by the service unit in a certain time. 

After the cars have fully charged their batteries, they leave 
the station, and the next waiting customer can start charging.  

A. Description of the stochastic process 

 
The M/M/c/N queuing model was chosen for modeling EV 

charging. M/M/c/N is a shorthand notation introduced by 
Kendall that characterizes queuing models [23]. The meaning 
of each letter is the following [11], [17]: 

 The first M: arrival time with exponential distribution 

 The second M: serving time with exponential distribution 

 c: number of serving units 

 N: the capacity of the system, the maximum number of 
vehicle that can stay at a certain charging station 
(including the charging vehicles) 

The rule of service can also be determined. It defines the 
way the needs will be served, the order in which they are 
served, and the way in which resources are divided among 
them. During the calculation the mostly used FIFO principle 
(first come first served) was used. 

 

It was seen in the introduction of this section that electric 
car charging can be modeled as follows: car interarrival times 
can be taken as exponentially distributed, so can the service 
times be characterized and the charging process can be 
modeled as a Poisson-process.  

A Poisson-process is an example of a continous-time 
Markov chain, so properties of Markov chains are used in the 
following in order to conduct numerical computations. Due to 
the special structure of the continuous-time Markov chain 
together with a certain property of the Poisson process PASTA 
(Poisson Arrivals See Time Averages), simulations of 
continuous-time Markov-chain models can be simplified [12].  

B. Setting up equations for numerical computations 

 
The model used is based on the theory of continuous-time 

Markov chains and so works as follows: each time the process 
enters state i, it stays at that state for an amount of time which 
is exponentially distributed before making a transition into a 
different state. When the process leaves state i, it enters state j 
with probability denoted Pij. This walk can be graphed in the 
state space on the so-called flow diagram [24]: 

 

 
Fig. 9. Main data of queuing theory  



 
Fig.10. Flow diagram of the M/M/c/N model 

 
The flow diagram shows the transitions from a certain 

state to another. A fixed inter-arrival time intensity was 
assumed for a certain time interval, so we write λ on every 
forward transition, but as more and more cars arrive, they have 
to be served, so more and more serving units are operated until  
c (the number of charging points/switching lane) is reached. 
After this there are no more free serving unit, so the rest of the 
cars cannot be charged. The serving process is characterized 
by the backward transitions and it can also be seen that if there 
are for example (c+2) cars at the station and only one has been 
served (so we transition to the (c+1)th state), but still only c 
chargers can be operated, so the charging intensity is still cμ . 

From the flow diagram of the model the transition rate 
matrix A can be constructed (named also as infinitesimal 
generator of the continuous-time Markov chain [12]). The 
"From where" states are written in the rows and the "To 
where" states in the columns, and then the transitioning 
intensity are written to every corresponding element of the 
matrix. 𝐀𝐢𝐢 = − ∑ 𝐀𝐢𝐣𝐣≠𝐢  must also be satisfied. 

 
 

Let us illustrate this with an example. From the second 
state the system can transition forward to the third state with λ 
intensity, so λ is written in [2,3] (the first number is the row 
index, the second is the column index of the matrix). The 
system can also transit backwards to the first state with μ 
intensity, so μ is written in [2,1]. The sum of the elements in 
one row of the matrix must equal to 0, so -( λ +μ) has to be 
written in [2,2]. The matrix can be filled in continuing this 
method. 

 

In the following few paragraphs the mathematical 
formalism of calculating the stationary distributions are given 
[12], [24]. These parameters are needed to determine the 
indicators of queuing theory. An expressive meaning of the 𝛑𝟎 
stationary distribution can be given though, namely that the 
system is idle; there is no car that has to be charged. From the 
transition rate matrix the stationary distributions' row vector π 
can be obtained by solving the following set of equations:  

𝐴𝑇 ∙ 𝜋𝑇 = 0𝑇
 (1) 

so the nth stationary distribution can be obtained as 
follows: 

𝜋𝑛 = 𝜋0

𝜆

𝑛! ∙ 𝜇𝑛
 

and the (n+c)th stationary distribution is  

(2) 

𝜋𝑛+𝑐 = 𝜋𝑐

𝜆𝑛

𝑐𝑛 ∙ 𝜇𝑛
=

𝜆𝑛

𝑐𝑛 ∙ 𝜇𝑛
∙

(
𝜆
𝜇

)
𝑐

𝑐!
∙ 𝜋0 

(3) 

 
 

By considering ∑ 𝛑𝐤 = 𝟏∞
𝐤=𝟎  the stationary distribution 𝛑𝟎 

can be obtained from the above equations [11], [24]: 

𝜋0 =
1

∑
1
𝑖!

∙ (
𝜆
𝜇

)
𝑖

+ ∑
1

𝑐𝑗−𝑐 ∙
1
𝑐!

∙ (
𝜆
𝜇

)
𝑗

𝑁
𝑗=𝑐+1

𝑐
𝑖=0

 
(4) 

 
With the stationary distributions the mean queue length, 

mean waiting times, the number of required charging sockets, 
etc. can be calculated as depicted in subsection C.). 

C. Indicators of the queuing theory 

 
The efficiency and performance of a queuing system can 

be measured by the following indicators [25], [26] (we have 
already introduced some of them in subsection A): 

1) Utilization efficiency [Ue]: Utilization efficiency, also 

known as traffic intensity, describes whether the service units 

are able to handle the arrival needs or not. The utilization 

efficiency can be defined as following:  

Ue =  λ / (c ∗  μ) (5) 

  
If Ue >1, the incoming needs are arriving faster than the 

service process could serve them. The aim is to determine 
utilization efficiency to calculate the minimum number of 
service units which is capable to serve the certain arrival rate. 
In the case when the number of serving units (c) is contained 
in the following formulas, the utilization efficiency is going to 
be denoted as ‘a’ and used in the calculations as follows 

a =  λ / μ (6) 

2) Average queue length [N(s)]: The average queue length 

defines the average number of needs waiting in the queue: 

𝑁(𝑠) =
𝜋0 × 𝑎𝑐+1

𝑐! × 𝑐
× [

1

(1 −
𝑎
𝑐

)
2] (7) 

, where 𝛑𝟎 is the probability that there is no need in the 
system, which was described in (4). 

In the following figure the average queue length can be 
seen as a function of serving unit number for 125km range 
scenario in aim to illustrate the c dependence of this indicator. 
There are 3 different cases within the scenario according to the 
charging technology and strategy, which are going to be 
defined in Section V.  
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It is clear from the figure that after a certain point there is 
no reason to further increase the number serving units, 
because it has no beneficial effect on the queue length. Queue 
length 40 is the supremum of the average queue lenght 
because the capacity of the charging station is set to 40. 

3) Average number of vehicles in the system [N(r)]: The 

average number of vehicles in the system metric defines the 

sum of charging and waiting needs in the system. 

N(r)  =  a +  N(s)  (9) 

4) Average time spent in the system [T(v)]: The sum of 

serving time and waiting time. 

T(v)  =  N(r) / λ (10) 

5) Average waiting time in the queue [T(vs)]: The average 

time waited to start charging for those needs that has already 

arrived in the system but cannot be served immediately.  

T(vs)  =  T(v)  −  (1 / μ)  (11) 

In the following figure the Average waiting time can be seen 

as a function of serving unit number also for 125km range. 

During the calculation the goal was to decrease the average 

waiting below than 10 minutes.  

V. INITIAL DATA OF THE SCALING PROCESS 

A. Used number of EVs and QCR stations 

 
In 2009, the Dutch government announced its ambition for 

the Netherlands to become a guiding country and international 
learning environment for electric mobility. A prognosis and 
action plan was drawn up by transport minister, who expects 
1,000,000 electric cars on the Dutch roads until 2025 [27].  

In 2012, estimation was made by a Dutch company (The 
New Motion) that the Netherlands can be covered by 100 fast 
charging points to aim to extend the range of electric vehicles. 
The key idea is to have fast charging replenishment in every 
50 km radius next to highways [28]. 

These EV and QCR station numbers are used during the 
calculation. 

TABLE IV 
USED NUMBER OF EVS AND QCR STATIONS 

The estimated number of BEVs in the 

Netherlands until 2025 
1,000,000 

Number of QCR station 100 

 
Using the results of the mobility analysis (the number of 

QCR station visits per car per year and the average fast 
charging time data) the two main indicators of queuing theory 
were estimated as follows.  

B. Arrival rate 

 
The arrival rate estimation is based on the number of QCR 

station results per car per year as shown in Fig: 7. 

Vehicles with higher range can cover more distance with a 
single charge and need less number of visits by a charging 
station. It can be seen from the figure that the number of visits 
belongs to fast charging technology remains higher during the 
whole pattern. This is because lower energy (until SOC 85%) 
can be charged by a single visit by fast charging technology 
and these vehicles need to go more often to recharge during a 
trip. 

The distribution of these visits is determined by the 
charging behavior of car owners during the day, which cannot 
be considered as steady. This distribution of the arrivals, 
according to the daily traffic pattern, for a certain charging 
station (e.g.: next to the highway) can be modeled as follows: 

 

It can be seen from the figure that the usage of a charging 
station is concentrated on two certain interval (shown as A and 
B). 80 % of the visits are realized in these two intervals, in a 
share of 1/3 and 2/3 respectively. By the scaling process of a 
QCR station, the number of serving points is usually scaled to 
be able the handle maximum number of incoming cars. 
According to this in the model the arrival rate is determined 
from the evening peak (B). 

 
 

Fig. 13.  Daily charging pattern of a certain QCR station based on daily 

traffic pattern 

  

 

 
Fig. 11. Average queue length as a function of serving unit number  

 

 
Fig. 12. Average waiting time as a function of serving unit number  



The investigation of the localization of the charging station 
is not part of this paper, so the distribution of the vehicles is 
steady, which means every QCR station needs to serve 10,000 
cars. 

C. Service rate 

 
There were three different charging strategy cases defined 

during the investigation depending on the technology itself 
and used charging strategy as follows: 

1) Fast charging-Absolute Worst Case: the aim is to model 

the maximum usage and energy need, which could ever occur 

in a fast charging station by charging full energy for each 

incoming car in the evening peak. It means that the maximum 

energy (using the highest amount of charging time) is charged 

from the minimum driving reserved range (10 km) SOC to 

SOC 80%.  

2) Fast charging-Average Peak Case: the aim is to model 

the average energy consumption for a certain fast charging 

station in the evening peak. The average charging times are 

based on the mobility analysis. In the following figure the 

charging time difference between the two Fast Charging cases 

can be seen. 

3) Battery Switching Case: the serving time is steady, 
which only depends on the technological process of changing 
the battery (5 min). The changed battery is always full. 

The time spent for recharging (charging time or service 
time) is significantly different for each case, and has 
fundamental effects on the queuing theory. The service rate, 
which indicates how many cars can be served in a certain 
time, is reciprocal of the charging time and this indicator is 
used in the queuing theory. 

VI. DETERMINING THE REQUIRED NUMBER OF SERVING 

UNITS PER STATION 

The serving unit can be defined as plug-in point at fast 
charging technology, and battery switching unit for battery 
switching technology. The minimum number of charging 
points is calculated by iteration, determining the utilization 
efficiency, so the minimum c is required to solve the following 
inequality. 

Ue = λ / ( c × μ ) < 1 

 
(12) 

Considering the consumers behavior optimization process 
was needed to optimize the permeability of these charging 
stations. 10 minutes was considered as an acceptable average 
waiting in a queue. This is the time that the driver is probably 
willing to wait before charging. During this optimization 
process the goal is to decrease the average waiting time by 
increasing the number of serving units per station. 

Although decreasing process can be seen for all three 
cases, the way of reducing is significantly different by 
charging technologies and strategies. Vehicles with higher 
range need less number of visits per year and it decreases the 
incoming car density per station (arrival rate), so lower 
number of serving units can handle the fast charging needs by 
higher vehicle ranges.  

In Absolute Worst Case the battery is charged fully during 
every visit in the peak hours, which means the serving units, 
are used for longer time per one car and the incoming car 
density is high. To handle this situation the highest number of 
serving units is required in Absolute Worst Case. As the 
number of visits pattern fell at Sc125, the same drop can be 
recognized at the number of serving units trend too.  

Significantly lower required number of serving units can 
be seen in Average Peak Case. Arrival rates for this case are 
the same as for Absolute Worst Case, but the time spent with 
recharging is considerably lower. It means that one serving 
unit can serve more cars in a certain time, and the whole 
station can handle the same traffic behavior with lower 
number of serving units. The difference between the two fast 
charging cases could be more than 10 serving units. In contrast 
the previous trend there is no drop of fall, the pattern decreases 
steadily. This caused by the average charging time trend has a 
big step at the same scenario (Sc125) as where the arrival rate 
pattern has a drop. It balances the number of serving units 
trend. The trend follows the expected behavior.  

Almost third of the number of serving units is needed in 
Battery Switching Case. The incoming car density is slightly 
the same as for fast charging technology, but the serving time 
is significantly lower (5 min), which can result that same 
traffic behavior can be handled with less number of serving 
units. 

During optimization process maximum 3 extra serving 
units were added for the charging station to keep the queuing 
time less than 10 minutes. 

 

 
Fig. 14.  Charging time according the different fast charging strategies and 

vehicle ranges 

  

 
 

Fig. 15.  The optimum number of serving units for all cases 

  



VII.  ESTIMATING THE POWER REQUIREMENTS 

These numbers are presenting the power requirements per 
fast charging station at the same time in evening peak for both 
charging strategies (see the figure below), and power 
requirement for battery switching station if the changed 
batteries are needed as soon as possible and starting be 
recharged immediately (uncontrolled and high power 
charging) to be ready deployed in the next hour. The power 
numbers are from the grid side, including the charger 
efficiency of 52.63kW (50 kW output) fast chargers for each 
case, calculating with the optimum number of serving units. 

While the power requirement of a certain charging station 
only depends on the number of serving units used at the same 
time, the power requirement trends follows the previously 
presented Number of serving units trends.  

As it can be seen the maximum power of Absolute Worst 
Case by fast charging technology can exceed the 2.9 MW per 
a single station at lowest vehicle range, and still remains over 
1.5MW. The power requirements are lower in the Average 
Peak Case, but are still between 1-2.6 MW range. The peak 
power demand for Fast Charging stations requires a 
connection to the medium voltage grid instead of low voltage 
grid. 

The result of Battery Switching Case shows the worst case 
scenario, which can ever happen at a battery switching station. 
All batteries need to be recharged as soon as possible so full 
power (50kW DC output fast charger) charging strategy is 
used. Even if the absolute worst scenario is used by the battery 
switching technology the all power results are third of the 
average power number of fast charging technology.  

It should be noted that the big advantage of the battery 
switching station is that the charging processes can be shifted 
in time and can be controlled, even more overnight or green 
(charging when more energy is available and it is needed) 
charging strategies or just simply storing more battery at the 
station, can significantly optimize the power requirement of a 
battery switching station. 

In the future the charging power at fast charging stations is 
poised to increase. In the following figure we can see the 
number of serving units as a function of charging power. 
While the charging power increases the time spent for 
charging and the number of serving units significantly 
decreases, the peak power requirements of the charging station 

only slightly increases. Hence if the batteries can be charged at 
higher powers the cost of Fast charging stations will reduce 
without having any additional impact on the grid. It has to be 
noted that with higher power charging process the battery 
charging efficiency slightly decreases.   

 

VIII. CONCLUSIONS 

The Quick Charge Replenishment Infrastructure 
requirements and grid impacts are the main focus of the study. 

Depending on the range of the EV fleet, the required 
number of charging points/ switching lanes can be 
significantly different. The power requirements of these public 
charging stations hardly depend on the required number of 
serving units and the used charging strategy, as it was 
described. DC fast charging technology can represent huge 
charging loads in rush hours, but with suitable grid installation 
conditions they could be handled. If the EV batteries of the 
future can handle higher charging powers, the number of 
serving units and time of charging can decrease while not 
causing additional stress on the grid. 

Battery switching technology, with the possibility to 
change the charging strategy (time of charging, rate of 
charging), means it is more beneficial to the grid. The battery 
switching method requires lesser number of serving units and 
does not put as much stress on the grid as fast charging. 
Another benefit of using battery switching is that the capacity 
of concentrated EV batteries could be used for grid regulation. 
The extra number of batteries required is directly dependent 
on the range of the fleet and for a fleet of range 160 km we 
only need to introduce 50 percent extra batteries into the 
system. 
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