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5.1 Variability of spike trains 
       - experiments 
5.2 Sources of Variability?   

      - Is variability equal to noise? 
5.3 Three definitions of Rate code 
         - Poisson Model 
5.4 Stochastic spike arrival 
        - Membrane potential fluctuations 
5.5. Stochastic spike firing  
         - subthreshold and superthreshold 
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Neuronal Dynamics – 5.3. Three definitions of Rate Codes 

3 definitions 
- Temporal averaging 
      
-  Averaging across repetitions 
 
-  Population averaging (‘spatial’ averaging) 
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Neuronal Dynamics – 5.3. Rate codes: spike count 
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Neuronal Dynamics – 5.3. Rate codes: spike count 
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Neuronal Dynamics – 5.3. Spike count: FANO factor 
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Neuronal Dynamics – 5.3. Three definitions of Rate Codes 

3 definitions 
- Temporal averaging (spike count) 
     ISI distribution (regularity of spike train) 
      Fano factor     (repeatability across repetitions) 
 
-  Averaging across repetitions 

-  Population averaging (‘spatial’ averaging) 

Problem: slow!!! 
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Neuronal Dynamics – 5.3. Rate codes: PSTH 
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Averaging across repetitions 
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Neuronal Dynamics – 5.3. Rate codes: PSTH 

single neuron/many trials: 
    average across trials 



Neuronal Dynamics – 5.3. Three definitions of Rate Codes 

3 definitions 
- Temporal averaging 
 
      
-  Averaging across repetitions 

-  Population averaging  

Problem: not useful 
for animal!!! 
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Neuronal Dynamics – 5.3. Rate codes: population activity 

Brain  



 population activity - rate defined by population average 
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Neuronal Dynamics – 5.3. Rate codes: population activity 

‘natural’ 



Neuronal Dynamics – 5.3. Three definitions of Rate codes 

Three averaging methods 
 
- over time 

-  over repetitions 

-  over population (space) 

Not possible  
for animal!!! 

Too slow  
for animal!!! 

‘natural’ 



Neuronal Dynamics –  Quiz 5.2. 
Rate codes. Suppose that in some brain area we have a group of 500 neurons. All neurons 
have identical parameters and they all receive the same input. Input is given by sensory 
stimulation and passes through 2 preliminary neuronal processing steps before it arrives at 
our group of 500 neurons. Within the group, neurons are not connected to each other.  
Imagine the brain as a  model network containing 100 000 nonlinear integrate-and-fire 
neurons, so that we know exactly how each neuron functions. 
 
Experimentalist A makes a measurement in a single trial on all 500 neurons using a multi-
electrode array, during a period of sensory stimulation.  
 
Experimentalist B picks an arbitrary single neuron and repeats the same sensory 
stimulation 500 times (with long pauses in between, say one per day). 
 
Experimentalist C repeats the same sensory stimulation 500 times (1 per day), but every 
day he picks a random neuron (amongst the 500 neurons). 
 
All three determine the time-dependent firing rate. 
[ ] A and B and C are expected to find the same result. 
[ ] A and B are expected to find the same result, but that of C is expected to be  different. 
[ ] B and C are expected to find the same result, but that of A is expected to be  different. 
[ ] None of the above three options is correct. 
 
 
 
 
 
  

  



5.1 Variability of spike trains 
       - experiments 
5.2 Sources of Variability?   

      - Is variability equal to noise? 
5.3 Three definitions of Rate code 
         - Poisson Model 
5.4 Stochastic spike arrival 
        - Membrane potential fluctuations 
5.5. Stochastic spike firing  
         - subthreshold and superthreshold 

  Week 5 – part 3b :Poisson Model 

Neuronal Dynamics: 
Computational Neuroscience 
of Single Neurons 
Week 5 – Variability and Noise: 
The question of  the neural code 
Wulfram Gerstner 
EPFL, Lausanne, Switzerland 



5.1 Variability of spike trains 
       - experiments 
5.2 Sources of Variability?   

      - Is variability equal to noise? 
5.3 Three definitions of Rate code 
         - Poisson Model 
5.4 Stochastic spike arrival 
        - Membrane potential fluctuations 
5.5. Stochastic spike firing  
         - subthreshold and superthreshold 

  Week 5 – part 3b :Poisson Model 



T 

nsp 

Pure rate code = stochastic spiking à Poisson model 
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Neuronal Dynamics – 5.3b.  Inhomogeneous Poisson Process 



Homogeneous Poisson model: constant rate 

Pure rate code = stochastic spiking à Poisson model 

Math detour: 
  Poisson model 
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Neuronal Dynamics – 5.3b.  Poisson Model 
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Neuronal Dynamics – 5.3b.  Poisson Model 

Take  0tΔ →
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Neuronal Dynamics – 5.3b.  Interval distribution 
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(i) Continuous time (ii) Discrete time steps 
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Neuronal Dynamics – 5.3b.  Inhomogeneous Poisson Process 
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inhomogeneous Poisson model consistent with rate coding 
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Neuronal Dynamics – 5.3b.  Inhomogeneous Poisson Process 
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Neuronal Dynamics – 5.3b.  Inhomogeneous Poisson Process 
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Neuronal Dynamics –  Quiz 5.3. 
A Homogeneous Poisson Process: 
A spike train is generated by a homogeneous Poisson 
process with rate 25Hz with time steps of 0.1ms. 
[ ] The most likely interspike interval is 25ms. 
[ ] The most likely interspike interval is 40 ms. 
[ ] The most likely interspike interval is 0.1ms 
[ ] We can’t say. 

B Inhomogeneous Poisson Process: 
A spike train is generated by an inhomogeneous 
Poisson process with a rate that oscillates periodically 
(sine wave) between 0 and 50Hz (mean 25Hz). A first 
spike has been fired at a time when the rate was at its 
maximum.  Time steps are 0.1ms. 
[ ] The most likely interspike interval is 25ms. 
[ ] The most likely interspike interval is 40 ms. 
[ ] The most likely interspike interval is 0.1ms. 
[ ] We can’t say. 
 


