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Neuronal Dynamics - 6.3. Likelihood of a spike train

g S(t) = }/‘(5@-#) A
S | | \
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Measured spike train with spike times t',t7,.."

Likelihood L that this spike train

EXxplanation now:  could have been generated by model?

L({t,..,t") = exp(—fp(t "t ')p(t1)°exp(—f,0(t Ndt"...

e.g., Brillinger 1988



Neuronal Dynamics - 6.3. Likelihood of a spike train
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Neuronal Dynamics - 6.3. Likelihood in discrete time
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Neuronal Dynamics - 6.3. Likelihood in discrete time
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Neuronal Dynamics - 6.3. Likelihood of a spike train
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L(',....t") =exp(- fp(t "t ')1_[ o)
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Neuronal Dynamics - 6.3. Log-likelihood of a spike train

g S =So@-t") |
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L({',...t") = exp(—fp(t "t ')H o)

T
log L(¢',....t") = - fp(t ')dt'+2 logo(t')
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Neuronal Dynamics - 6.3. yenerative model of a spike train

escape rate

generative model of spike train
- generates spikes stochastically
- calculated likelihood that an
observed experimental spike train
could have been generated

T
log L(',....t") = - fp(t ')dt'+Zlog,0(tf )
0



Neuronal Dynamics - Quiz 6.2. Tick all correct answers

[ ] A leaky integrate-and-fire model with escape noise can be
interpreted as a generative model of a spike train
[ ] For a leaky integrate-and-fire model with escape noise
we can (numerically) calculate the likelihood that observed
experimental data could have been generated by the model
[ ] Suppose we inject a time-dependent current into a real neuron and observe the
resulting spike train. We the inject the same time-dependent current into a
nonlinear integrate-and-fire model with exponential escape noise with
parameter theta. For each choice of theta we can then calculate the likelihood
that the model could have generated the observed spike train.




