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6.1 Escape noise 
       - stochastic intensity and point process 
6.2  Interspike interval distribution  

      - Time-dependend renewal process  
      - Firing probability in discrete time 

6.3 Likelihood of a spike train 
         - generative model 
6.4 Comparison of noise models 
        - escape noise vs. diffusive noise 
6.5.  Rate code vs. Temporal Code 
         - timing codes 
         - stochastic resonance 
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Explanation now: 
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Neuronal Dynamics – 6.3. Likelihood of a spike train 

e.g., Brillinger 1988 
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Neuronal Dynamics – 6.3.  Likelihood in discrete time 
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Neuronal Dynamics – 6.3. Log-likelihood of a spike train 
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Neuronal Dynamics – 6.3. generative model of a spike train 
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generative model of spike train 
   - generates spikes stochastically 
   - calculated likelihood that an 
       observed experimental spike train 
       could have been generated 



Neuronal Dynamics –  Quiz 6.2. Tick all correct answers 
[ ] A leaky integrate-and-fire model with escape noise can be 
     interpreted as a generative model of a spike train 
[ ] For a leaky  integrate-and-fire model with escape noise 
    we can (numerically) calculate the likelihood that observed 
     experimental data could have been generated by the model 
[ ] Suppose we inject a time-dependent current into a real neuron and observe the 
      resulting spike train. We the inject the same time-dependent current  into a  
     nonlinear integrate-and-fire model with exponential escape noise with 
      parameter theta. For each choice of theta we  can then calculate the likelihood 
that the model could have generated the observed spike train.  


