#### Week 6 – part 3 : Likelihood of a spike train



## **Neuronal Dynamics:** Computational Neuroscience of Single Neurons

# Week 6 – Noise models:

#### Escape noise

Wulfram Gerstner

EPFL, Lausanne, Switzerland

### 6.1 Escape noise

- stochastic intensity and point process
- √ 6.2 Interspike interval distribution
  - Time-dependend renewal process
  - Firing probability in discrete time

### 6.3 Likelihood of a spike train

- generative model

### 6.4 Comparison of noise models

- escape noise vs. diffusive noise
- 6.5. Rate code vs. Temporal Code
  - timing codes
  - stochastic resonance

#### Week 6 – part 3 : Likelihood of a spike train



### 6.1 Escape noise

- stochastic intensity and point process

## **6.2** Interspike interval distribution

- Time-dependend renewal process
- Firing probability in discrete time

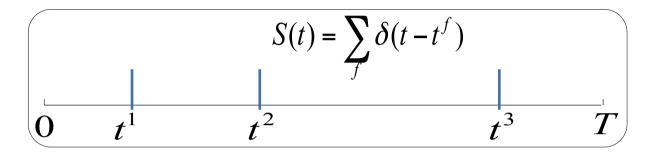
### 6.3 Likelihood of a spike train

- generative model

### 6.4 Comparison of noise models

- escape noise vs. diffusive noise
- 6.5. Rate code vs. Temporal Code
  - timing codes
  - stochastic resonance

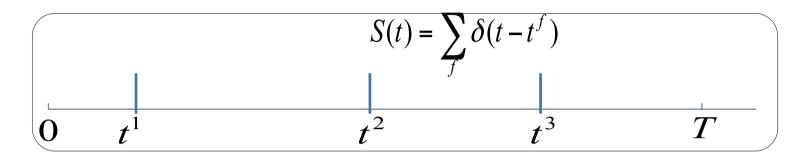
## Neuronal Dynamics – 6.3. Likelihood of a spike train



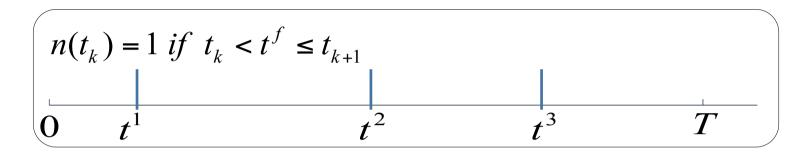
Measured spike train with spike times  $t^1, t^2, ..., t^N$ 

**Explanation now:** Likelihood *L* that this spike train could have been generated by model?  $L(t^{1},...,t^{N}) = \exp(-\int_{0}^{t^{1}} \rho(t')dt')\rho(t^{1}) \cdot \exp(-\int_{t^{1}}^{t^{2}} \rho(t')dt')...$ e.g., Brillinger 1988

## Neuronal Dynamics – 6.3. Likelihood of a spike train

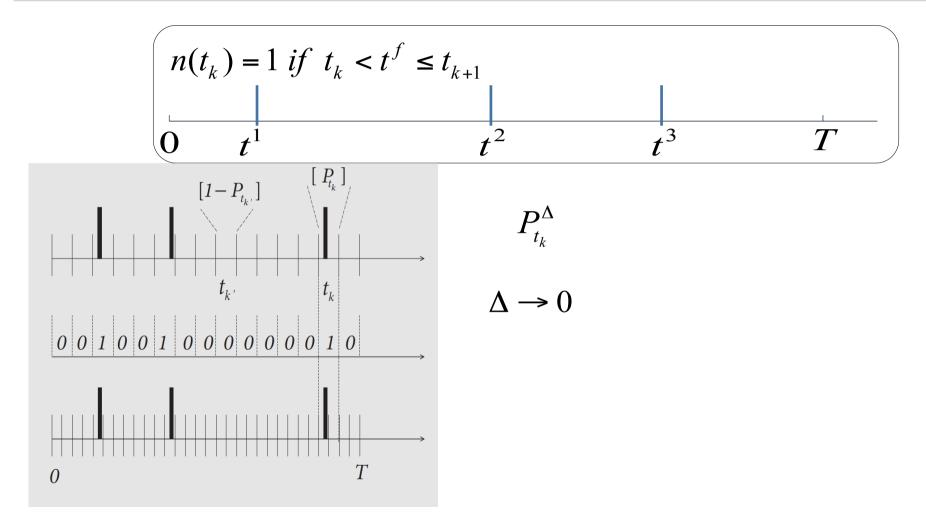


## Neuronal Dynamics – 6.3. Likelihood in discrete time



Prob. to fire in  $t_k < t \le t_{k+1}$   $P_{t_k}^{\Delta}$ Prob. to be silent in  $t_k < t \le t_{k+1}$   $S^{\Delta}$ how about  $\Delta \rightarrow 0$  ??

## Neuronal Dynamics – 6.3. Likelihood in discrete time



## Neuronal Dynamics – 6.3. Likelihood of a spike train

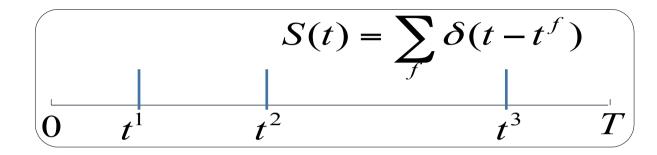
$$S(t) = \sum_{f} \delta(t - t^{f})$$

$$0 \quad t^{1} \quad t^{2} \quad t^{3} \quad T$$

$$L(t^{1}, ..., t^{N}) = \exp(-\int_{0}^{t^{1}} \rho(t') dt') \rho(t^{1}) \cdot \exp(-\int_{t^{1}}^{t^{2}} \rho(t') dt') \rho(t^{2}) ... \cdot \exp(-\int_{t^{N}}^{T} \rho(t') dt')$$

$$L(t^{1},...,t^{N}) = \exp(-\int_{0}^{T} \rho(t')dt') \prod_{f} \rho(t^{f})$$

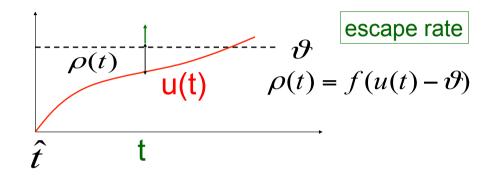
### Neuronal Dynamics – 6.3. Log-likelihood of a spike train



$$L(t^{1},...,t^{N}) = \exp(-\int_{0}^{T} \rho(t')dt') \prod_{f} \rho(t^{f})$$

$$\log L(t^{1},...,t^{N}) = -\int_{0}^{T} \rho(t')dt' + \sum_{f} \log \rho(t^{f})$$

### Neuronal Dynamics – 6.3. generative model of a spike train



#### generative model of spike train

- generates spikes stochastically
- calculated likelihood that an
   observed experimental spike train
   could have been generated

$$\log L(t^{1},...,t^{N}) = -\int_{0}^{T} \rho(t')dt' + \sum_{f} \log \rho(t^{f})$$

## Neuronal Dynamics – Quiz 6.2. Tick all correct answers

[] A leaky integrate-and-fire model with escape noise can be interpreted as a generative model of a spike train
[] For a leaky integrate-and-fire model with escape noise we can (numerically) calculate the likelihood that observed experimental data could have been generated by the model
[] Suppose we inject a time-dependent current into a real neuron and observe the resulting spike train. We the inject the same time-dependent current into a nonlinear integrate-and-fire model with exponential escape noise with parameter theta. For each choice of theta we can then calculate the likelihood that the model could have generated the observed spike train.