
Chapter 6

Period Finding and Factoring

Let’s say we are given a black box for computing a periodic function, i.e. a function where

f(x) = f(y) if and only if x ≡ y (mod r)

The goal of a period finding algorithm is to find r.

The algorithm for period finding is very similar to Simon’s algorithm, in fact we can think of it as
a generalization of Simon’s algorithm. The steps we follow are very similar.

Classically, we could solve this problem by querying our function with subsequent inputs until the
function repeats. This takes O(r) = O(2n) queries to the function. There are other ways to solve
this problem, but it can be shown that all classical algorithms solve this problem in exponential
time.

With a Quantum computer, we can access the function in superposition to query the function with
N = 2n inputs for each n qubits at the same time. The key ingredients to our approach will be the
period/wavelength and linear shift properties of the Fourier transform. We first access the function
in superposition to create a periodic superposition that may not start from 0 (it includes alinear
shift), and then take its Fourier transform to get rid of the linear shift.

This approach is very similar to the approach of Simon’s algorithm, and is the historical motivation
for the period finding algorithm. Lets examine the details.

Step 1: Prepare the periodic superposition
�

r

N

�N/r−1
j=0 |x0 + jr�

Step 2: Fourier sample to measure some y = kN

r
for k ∈ {0, 1, · · · , r − 1}.

Step 3: Repeat until there are enough such y’s so that we can compute their greatest common
divisor and solve for r.

Step 1. It is best to start a quantum algorithm with the easily prepared state |0�, but we want to
access our function in superposition: we need the state 1√

N

�
N−1
x=0 |x� |0�. To prepare this state, we

51

52 CHAPTER 6. PERIOD FINDING AND FACTORING

just implement QFTN on the first n1 qubits:

|0� |0�
QFTN
−→

1
√
N

N−1�

x=0

|x� |0�

Next, as in Simon’s algorithm, we access our function in superposition. Let Uf be the unitary
transformation that carries out our function, and implement it:

1
√
N

N−1�

x=0

|x� |0�
Uf
−→

1
√
N

N−1�

x=0

|x� |f(x)�

To get a periodic superposition out of this, we measure |f�. Then |f� must collapse into some
value f(x0). Furthermore, because measuring |f� reveals information about |x�, the state |x� will
also collapse into the pre-image of f(x0). But because f is periodic, the pre-image of f(x0) is
{x0, x0 + r, x0 + 2r, · · · , x0 + (N

r
− 1)r}.

1
√
N

N−1�

x=0

|x� ⊗ |f(x)�
measure|f�

−→

�
r

N

N/r−1�

i=0

|x0 + ir� |f(x0)�

Now our first register is in a periodic superposition, where the period is the same as the period
of the function! But we can’t just measure, because each time we run the algorithm, we might
measure a different value of |f�, thus obtaining a periodic superposition that is linearly shifted by
some other x0

Step 2: We can’t just measure our superposition right away, because that would destroy the
superposition. And because of the random linear shift x0, a measurement wouldn’t reveal any
useful information. Instead, we will rely on the properties of the Fourier transform to retrieve the
information we want. Remember that if f is periodic with period r, then f̂ is periodic with period
N/r. Furthermore, remember that we only see the effect of the linear shift x0 in the phase of f̂ .
Therefore if we take the Fourier transform of the first register, we will be left only with states that
are multiples of N/r.

�
r

N

N/r−1�

i=0

|ir + x0�
QFTN
−→

1
√
r

r−1�

i=0

����i
N

r

�
φi

where φi is the (unimportant) phase associated with each term due to the linear shift x0.

Now we can measure and retrieve kN

r
for some integer k!

Step 3 Now we repeat the algorithm to retrieve several distinct multiples of N/r. Once we have
enough values, we can compute their GCD to retrieve N/r. N is a given in the problem, so it is
easy to compute r. Computing GCD is easy thanks to Euclid’s algorithm.

1Don’t let the different n’s confuse you. If there are n qubits, then we need N = 2n complex numbers to describe
the system.

53

How long should we expect this to take? Let us compute the chance of finding the correct period
after t samples. Suppose after finding t distinct multiples of N/r, we have not found the desired
period N/r, but instead an integer multiple of it, say λN/r. This means that each of the t samples
must be a multiple of λN/r. There are exactly N/(λN/r) = r/λ such multiples of λN/r. And since
there are r multiples in total, the probability of measuring a multiple of λN/r is 1/λ. Therefore,

Pr[gcd is a multiple of N/r] =

�
1

λ

�t

≤

�
1

2

�t

,

and we err with probability

Pr[gcd > N/r after t samples] ≤ N

�
1

2

�t

.

Therefore we must repeat the period finiding circuit O(logN) times to be confident in our solution.

The above algorithm can be summed up by Figure 1:

|0�

|0� |f(x)�

QFTM

Uf

QFTM

Figure 6.1: Circuit for period finding

Example

In this example we find the period of the function f(x) = x (mod 2). It is easy to see that the
period of this function is r = 2

We will use a 3-qubit system so that N = 8. It is a good rule of thumb to choose N � r. The first
step is to apply the quantum Fourier transform:

|0� |0�
QFT8
−→

1
√
8

7�

x=0

|x� |0�

Next we apply our function.

1
√
8

7�

x=0

|x� |0�
Uf
−→

1
√
8

7�

x=0

|x� |x mod 2�

The next step is to measure |f�. Then |f� must collapse into either |0� or |1�. For the purpose of
demonstration, lets say our measurement returns |f(x)� = |1�. Then x must be odd.

1
√
8

7�

x=0

|x� ⊗ |f(x)�
measure|f�

−→
1

2
(|1�+ |3�+ |5�+ |7�)⊗ |1�

54 CHAPTER 6. PERIOD FINDING AND FACTORING

Now we need to extract the period of the first register without the obnoxious linear shift. So once
again we apply the Fourier transform.

1

2
(|1�+ |3�+ |5�+ |7�)

QFT8
−→

1
√
2
(|0� − |4�)

Note: If instead of measuring |f� = |1� we had measured |f� = |0�, there would be a different
linear shift. But the properties of Fourier transform dictate that this only effects the phase of the

Fourier transform. In other words, that last step would have looked like 1
2(|0�+ |2�+ |4�+ |6�)

QFT8
−→

1√
2
(|0�+ |4�). This agrees with what we know about the principal of deferred measurement.

Finally, if we take a few measurements we will be sure to measure both |0� and |4�. Therefore
N/r = 4, and since N = 8, it is clear that r = 2.

Summary

Now that we understand how the algorithm works, we can write it without some of the fluff.

|0� |0�
QFTM
−→

1
√
M

�

x∈ZM

|x� |0� (6.1)

f
−→

1
√
M

�

x∈ZM

|x� |f(x)� (6.2)

measure 2nd register
−→

�
r

M

M
r −1�

k=0

|x0 + kr� |f(x0)� (6.3)

QFTM
−→

�
r

M

1
√
M

�

y∈ZM

αy |y� (6.4)

where αy =
�M/r−1

k=0 ω(x0+kn)y = ωx0y
�

k
ωkry.

There are two cases for y:

1. Case 1: y is a multiple of M

r
.

In this case, then ωkry = e2πiry/M = en2πi = 1. So αy =
√
r

M

M

r
= 1√

r
. This should be thought

of as constructive interference due to the final QFTM .

Note that there are r multiples of M/r. Because
�

r

1(
1√
r
)2 = 1, we know that αy = 0 for any

y that is not a multiple of M

r
by normality.

2. Case 2: y is not a multiple of M

r
.

We already know that αy must be 0 from the previous case. Furthermore, note that ωry, ω2ry, . . .
are evenly spaced vectors in the complex plain of unit length around the origin. Summing
over these vectors we see that αy is 0. This can be viewed as destructive interference due to
the final QFTM .

6.1. SHOR’S QUANTUM FACTORING ALGORITHM 55

The interference that occurs in the final step is one reason quantum computers are so well equipped
for period finding. We call it interference because it is additions in the phase that cause the
cancellations.

6.1 Shor’s Quantum Factoring Algorithm

One of the most celebrated algorithms for quantum computers is Shor’s Algorithm for factoring.
The time it takes for a classical computer to factor some number with n digits grows exponentially
with n, meaning that numbers with many digits take a very long time for a classical computer to
factor. RSA cryptography and other cryptography algorithms take advantage of this difficulty, and
as a result a large amount of information is protected by large semi prime numbers (products of
two primes).

The time it takes a quantum computer to factor an n-digit number grows as a polynomial in n.

The reason we focused so much attention on period finding is because the problem of factoring can
be reduced to the problem of period finding thanks to modular arithmetic. This isn’t obvious, but
with a little setup we can understand why.

Setup

In modular arithmetic, we call a number x a non-trivial square root of 1 modulo N if x2 ≡ 1
(mod N) and x �= ±1. For example, 2 is a non-trivial square root of unity modulo 3 because
22 = 4 ≡ 1 (mod 3). It turns out that if we can find such an x, we can factor N . Later we will see
that we can use period finding to find x. This idea is summed up in the following lemmas.

Factoring is equivalent to finding a nontrivial squareroot of 1 mod N . Let x �= ±1 mod N and
x2 = 1 mod N . Then x2 − 1 = 0 (mod N) so that x2 − 1 is a multiple of N . Factoring, we see
that N | (x+ 1)(x− 1), but because x �= ±1 (mod N), N � (x± 1).

Therefore, gcd(N, x + 1) and gcd(N, x − 1) are factors of N, and greatest common divisor is easy
to compute with Euclid’s algorithm.

Example: Suppose we want to factor the number 15. It is easy to see that 42 = 16 ≡ 1 mod 15,
but 4 �= ±1 mod 15. So 4 is a non-trivial square root of unity modulo 15. Then gcd(15,5) and
gcd(15,3) are factors of 15. Sure enough we see that 5 · 3 = 15.

Now, all we need to do is find this nontrivial squareroot of unity, and we can factor whatever
number we need. As promised, we can do this with period finding, specifically by computing the
order of a random integer.

The order of some integer x modulo N is the smallest integer r such that xr = 1 mod N . For
example, the order of 2 modulo 3 is 2 since 22 ≡ 1, the order of 3 modulo 5 is 4 since 32 = 9 ≡ 4;
33 = 25 ≡ 2; and 34 = 81 ≡ 1 (mod 5). Another way to say this is that the order of x is just the
period of the function f(i) = xi mod N .

Suppose N = p · q, and x ∈ ZN , x �= p, q. Then with probability ≥ 1/2, the order s of x is even,
and xs/2 is a nontrivial square root of 1 mod N.

56 CHAPTER 6. PERIOD FINDING AND FACTORING

The proof of this statement requires results from number theory (Fermat’s little Theorem, Chinese
remainder Theorem) that are outside the scope of this course, so we will state it without proof.
However, it should be intuitive: if you imagine the order of a number to vary randomly from one
number to the next, you expect the order of a number to be even with probability about half.

Example: Find the order of 2 (mod 63), and use it to factor 63.

1. 2 = 2

2. 22 = 4

3. 23 = 8

4. 24 = 16

5. 25 = 32

6. 26 = 64 ≡ 1 (mod 63)

so that the order of 2 is 6. Note that a quantum computer wouldn’t have to compute each of
these powers, it would simply use the period finding algorithm described earlier. Now we compute
23 = 8 �= ±1, so that gcd(63, 8 + 1) = 9 and gcd(63, 8− 1) = 7 are factors of 63.

The Algorithm

When finding order using the period finding algorithm, it is important to use enough qubits. A
sensible rule is that you need to use m qubits so that 2m � N2, where N is the number we are
trying to factor, because the order of a random number might be as large as N .

We now have all the necessary tools to carry out Shor’s algorithm. Start by picking a random
number, then use the period finding algorithm to compute its order. If the order is even, we can
use it to find a nontrivial square root of unity. If the order is odd or xs/2 = −1, throw it out and
start with a new number.

Because we know that the order of x will be even and xs/2 will be a nontrivial square root with
probability at least 1/2, we can be confident that we will be able to factor N in just a few runs of
the algorithm. Because the time it takes to find the period grows as a polynomial in the number
of bits, and the number of bits grows like 2 logN(by the above requirement), we expect the time it
takes to factor N to grow as a polynomial in logN .

Here is the circuit for Shor’s Algorithm. It relies heavily on period finding, and so the circuit looks
a lot like the circuit for period finding. The key difference is that we are finding the period of
f(i) = xi, and the number of bits we need to input is very large.

Example

Here’s an example that’s a little more fun. Lets factor 119. Suppose we pick the number 16 to
start with.

First, we compute it’s order.

6.1. SHOR’S QUANTUM FACTORING ALGORITHM 57

m : 2m � N2 |0�

|0�
��xi

�

QFTM

Uxi
QFTM

Figure 6.2: Circuit for factoring

1. 16 = 16

2. 16 · 16 = 256 ≡ 18

3. 18 · 16 = 288 ≡ 50

4. 50 · 16 = 800 ≡ 86

5. 86 · 16 = 1376 ≡ 67

6. 67 · 16 = 1072 = 119 · 7 + 1 ≡ 1

so that the order of 16 mod 119 is 6. Now, we compute 163 ≡ 50. Gcd(49,119) = 7, so 7 is a factor
of 119, and gcd(51, 119) = 17 which is another factor of 119.

