Ming Zhang “ Data Structures and Algorithms *“

T -
>

Data Structures
and Algorithms (3)

Instructor: Ming Zhang
Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao

Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook)
https://courses.edx.org/courses/PekingX/04830050x/2T2014/

https://courses.edx.org/courses/PekingX/04830050x/2T2014/

_ Chapter 3

Stacks and

Queues

Chapter 3 Stacks and Queues

. Stacks

. Applications of stacks

- Implementation of Recursion
using Stacks

- Queues

Ming Zhang “Data Structures and Algorithms”

B Chevter |

Stacks and
Queues

Linear lists with limited operation
- Stack

- Operation are permitted only on one

end

- Queue
- Operation are permitted only on two

ends

Ming Zhang “Data Structures and Algorithms”

B Choverd |

Stacks and | 3 1 Stacks
QUEUES | T

Definition of stack

- Last In First Out
- A linear list with limited access port
- Maln operation pop push
- push, pop \
. Applications
. . Stack top — K.
- Expression evaluation

- Elimination of recursion k
- Depth-first search 1
Stack bottom —> k,

e 4 Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacksand | 3 1 Stacks
QUS| T

Abstract data type of stacks

template <class T>
class Stack {
public: // Operation set of stacks
void clear(); // Change into an empty stack
bool push(const T item);
// push item into the stack , return true if succeed, otherwise false
bool pop(T& item);
// pop item out of the stack , return true if succeed, otherwise false
bool top(T& item);
// read item at the top of the stack, return true if succeed, otherwise false
bool isEmpty(); // If the stack is empty return true
bool isFull(); // If the stack is full return true

Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacksand | 3 71 Stacks
QUEUES | e

Railway station problem

Judge whether the trains go out of the station in the
right order?
- http://poj.org/problem?id=1363

N trains numbered as 1,2,....,n go into the train in order

, given an arrangement , judge whether the trains go
out of the station in the right order?

5,4,3,2,1 1,2,3,4,5
B A

Railway station

e s Ming Zhang “Data Structures and Algorithms”

http://poj.org/problem?id=1363

3.1 Stacks

Use legal reconstruction to find conflicts

?HE 12

Ming Zhang “Data Structures and Algorithms”

I —

3.1 Stacks

Question

- If the order of the item pushed into the stack is
1,2,3,4, then what is the order of the item
popped out of the stack ?

. There is an original input sequence 1, 2, ..., n
, you are required to get the output sequence of
P:. Py, ..., Py (They are a permutation of 1, 2
, ..., h)using a stack. If there exists subscript i
, j » k, which meet the condition that i<j<k and
P,<P,<P; , then whether the output sequence is
legal or not ?

_ 8 Ming Zhang “Data Structures and Algorithms”

I —

3.1 Stacks

Implementation of stacks

. Array-based Stack

- Implemented by using vectors , is a
simplified version of sequential list
- The size of the stack

- The key point is to make sure which end as
the stack top

- Overflow, underflow problem

- Linked Stack

- Use single linked list for storage , in which
the direction of the pointer is from stack

top down
9 Ming Zhang “Data Structures and Algorithms”

The class definition of Array-based Stack

template <class T> class arrStack : public Stack <T> {

private: // storage of Array-based Stack
int mSize; // the number of elements that the stack can have at most
int top; // stack top , should be small than mSize
T *st; // array to put stack element

public: // implementation of the operation of the Array-based Stack

arrStack(int size) {
// creates an instance of Array-based Stack with given size
mSize = size; top = -1; st = new T[mSize];

}

arrStack() {// creates an instance of Array-based Stack
top = -1;

}

~arrStack() { delete [] st; }
void clear() { top =-1;} // clear the stack

_ 10 Ming Zhang “Data Structures and Algorithms”

Array-based Stack

- The index of the last element pushed
into the stack is 4 , followed by 3,2,1 in

order

Stack top =—p
Stack bottom =%

I

=N WD

Ming Zhang “Data Structures and Algorithms”

Overflow of Array-based Stack

Overflow

- When you perform push operation on a
full stack (that already has
maxsize elements), overflow will occur.

Underflow

- When you perform pop operation on an
empty stack, underflow will occur.

Ming Zhang “Data Structures and Algorithms”

Push

bool arrStack<T>::push(const T item) {
if (top == mSize-1) {
// the stack has been full
cout << “Stack overflow" << endl;
return false;

} else { //push new element into the stack and
modify the pointer of the stack top

st[++top] = item;
return true;

Ming Zhang “Data Structures and Algorithms”

Pop

bool arrStack<T>::pop(T & item) { // pop
if (top == -1) { // the stack is empty
cout << " The stack is empty, you can’t
pop "<< endl;
return false;
} else {
// Get top value and decrease top by 1
item = st[top--];
return true;

Ming Zhang “Data Structures and Algorithms”

I —

3.1.2 Linked Stack

Definition of Linked Stack

- Use single linked list for storage

- The direction of the pointer is from stack top
down

Stack top —>‘Kn_1! l
‘Kn-2! l

3.1.2 Linked Stack

Construction of Linked Stack

template <class T> class InkStack : public Stack <T> {
private: // storage for linked stack
Link<T>* top;
//Pointer which points to the stack top
int size; // the number of elements that the stack can
have at most
public:// implementation of the operation of the linked Stack
InkStack(int defSize) { // constructed function
top = NULL; size = 0O;
}
~InkStack() { // destructor function
clear();

_ 16 Ming Zhang “Data Structures and Algorithms”

I —

3.1.2 Linked Stack

// implementation of push operation of linked stack
bool InksStack<T>:: push(const T item) {

Link<T>* tmp = new Link<T>(item, top);

top = tmp;

size++;

return true;

§

Link(const T info, Link* nextValue) {
// constructed function with 2 parameters
data = info;
next = nextValue;

_ 17 Ming Zhang “Data Structures and Algorithms”

3.1.2 Linked Stack

Pop

// implementation of pop operation of linked stack
bool InkStack<T>:: pop(T& item) {
Link <T> *tmp;
if (size == 0) {
cout << " The stack is empty, you can’t pop"<< endl;
return false;
}
item = top->data;
tmp = top->next;
delete top;
top = tmp;
size--;
return true;

- Ming Zhang “Data Structures and Algorithms”

I —

3.1 Stacks

Comparison of Array-based Stack and Linked Stack

- Time efficiency
- All operations only take constant time

- Array-based Stack and Linked Stack have
almost the same time efficiency

. Space efficiency
- The length of an Array-based Stack is fixed

- The length of a Linked Stack is variable,
with extra structural cost

_ 19 Ming Zhang “Data Structures and Algorithms”

— I |

3.1 Stacks

Comparison of Array-based Stack and Linked Stack

- In real applications , Array-based Stack is more

widely used than Linked Stack

- It is easy for Array-based Stack to perform relative
replacement according to the position of stack top,
quickly position and read the internal element

- The time taken for Array-based Stack to read
internal element is O(1). And the Linked stack has to
walk along the chain of pointers, and is slower than
Array-based Stack . It takes O(k) time to read the kth
element.

In general, the stack does not allow the

internal operation, can only operate in the

stack to
20 Ming Zhang “Data Structures and Algorithms”

I —

3.1 Stacks

Question : functions about stack in STL

- Top function gets the element of the stack top
and returns the result back to the user

- Pop function pops a element out of the stack
top (if the stack is not empty)

- Pop function is just an operation and doesn’t return
the result

- pointer = aStack.pop() ? Error!

- Why does STL divide these two operations ?
Why not provide ptop ?

_ 21 Ming Zhang “Data Structures and Algorithms”

I —

3.1 Stacks

Applications of stacks

.- Characteristic of stacks : last-in first-out
- Embodies the transparency between elements

- Commonly used to deal with data which
has recursive structure

- DFSevaluate the expression
- Subroutine / function call management
- Elimination of recursion

Ming Zhang “Data Structures and Algorithms”

I —

3.1 Stacks

Evaluate the expression

- Recursive definition of expressions

- The basic symbolset :{0,1,...,9,+,-,7%
/o C)

- Grammar set : {<expression> , <term> ,
<factor> , <constant> , <digit> }

.- The infix expression 23+(34*45)/(5+6+7)
- Postfix expression 23344556 +7+/ +

Ming Zhang “Data Structures and Algorithms”

3.1 Stacks

Infix expression

- Infix expression
4*x*(2*xX+a)-cC
- Operator in the middle

- Need brackets to change
the priority

I —

3.1 Stacks

Syntax formula for infix expression

<expression> ::= <term> <term> +
| <term> <term> -
| <term>
<term> := <factor> < factor > *
| < factor > < factor> /
| < factor >
< factor > ::= < constant >
< constant > = <digit>
| <digit> <constant>
<digit> ==0[|1[2]314|5|16|7|8]9

_ 25 Ming Zhang “Data Structures and Algorithms”

E— I

3.1 Stacks

expression >
term factor >
[—O—

SO -O—

factor —— >

_ 26 Ming Zhang “Data Structures and Algorithms”

3.1 Stacks

Postfix expression
- Postfix expression

4 x * 2 X *a+ *c-
- Operators behind
- No need for brackets

1 —
3.1 Stacks

Postfix expression

<expression> ::= <term> <term> +
| <term> <term> -
| <term>
<term> := <factor> < factor > *
| < factor > < factor> /
| < factor >
< factor > ::= < constant >
< constant > = <digit>
| <digit> <constant>
<digit> ==0[|1[2]314|5|16|7|8]9

_ 28 Ming Zhang “Data Structures and Algorithms”

I —

3.1 Stacks

Evaluating a postfix expression
233445 *56+7+/+=7

Calculation characteristics ?

The main differences between infix

and postfix expression ?
23+34*45 /(5+6+7)=7

233445*56+7+/+=7
_ 29 Ming Zhang “Data Structures and Algorithms”

postfix expression to be handled :

233445 * 5 6 + 7 + [/ +

change of the]J&IHH)‘
stack state

calculation result

I —

3.1 Stacks

Evaluating a postfix expression

- Loop : read symbol sequences of expressions

(assume “=" as the end of the input sequence)
, and analyze one by one according to the
element symbol read
1. When an operand is met , push

2. When an operator is met, pop twice and get two
operands, calculate them using the operator. And
finally push the result into the stack.

. Continue the process above until the symbol “
=" is met, then the value of the stack top is
the value of the input expression

_ 31 Ming Zhang “Data Structures and Algorithms”

3.1 Stacks

The class definition of postfix calculator

class Calculator {
private:
Stack<double> s;//the stack is used for pushing and storing operands
// push two operands opd1l and opd?2 from the stack top
bool GetTwoOperands(double& opdl,double& opd?2);
// get two operands, and calculate according to op
void Compute(char op);
public:
Calculator(void){} ;
// creates calculator instance and construct a new stack
void Run(void); // read the postfix expression, ends when meet "="
void Clear(void); // clear the calculator to prepare for the next calculation

Ming Zhang “Data Structures and Algorithms”

3.1 Stacks

The class definition of postfix calculator

template <class ELEM>
bool Calculator<ELEM>::GetTwoOperands(ELEM& opnd1l, ELEM& opnd?2) {
if (S.IsEmpty()) {
cerr << "Missing operand!" <<endl;
return false;
}
opndl = S.Pop(); // right operator
if (S.IsEmpty()) {
cerr << "Missing operand!" <<endl;
return false;
}
opnd2 = S.Pop(); // left operator
return true;

_ 33 Ming Zhang “Data Structures and Algorithms”

I _II

3.1 Stacks

The class definition of postfix calculator

template <class ELEM> void Calculator<ELEM>::Compute(char op) {
bool result; ELEM operandl, operand?2;
result = GetTwoOperands(operandl, operand?);
if (result == true)
switch(op) {
case '+' : S.Push(operand2 + operandl); break;
case '-': S.Push(operand?2 - operandl); break;
case "*': S.Push(operand?2 * operandl); break;
case /' :if (operandl == 0.0) {
cerr << "Divide by 0!" << end]l;
S.ClearStack();
} else S.Push(operand? / operandl);
break;

}
else S.ClearStack();

}
_ 34 Ming Zhang “Data Structures and Algorithms”

3.1 Stacks

The class definition of postfix calculator

template <class ELEM> void Calculator<ELEM>::Run(void) {
char ¢; ELEM newoperand;
while (cin >> ¢, ¢ 1="=") {
switch(c) {
case '+": case '-': case '*': case '/":
Compute(c);
break;
default:
cin.putback(c); cin >> newoperand;
Enter(newoperand);
break;

}

}
if (IS.IsEmpty())
cout << S.Pop() << endl; // print the final result

_ 35 Ming Zhang “Data Structures and Algorithms”

Question

. 1. Stack is usually implemented by
using single linked list. Can we use
doubly linked list? Which is better ?

. 2. Please summarize the properties
of prefix expression, as well as the
evaluation process.

_ 36 Ming Zhang “Data Structures and Algorithms”

Ming Zhang “ Data Structures and Algorithms *“

Data Structures
and Algorithms

Thanks

the National Elaborate Course (Only available for IPs in China)
http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/

Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)

