Recap of Last Module ("The RL Problem")

- The Agent-Environment Interface
- Goals, Rewards, Returns
- The Markov Property
- The Markov Decision Process
- Value Functions
- Optimal Value Functions
- Optimality and Approximation

- Finite MDP: {S, A, R, p, γ}
- Model: p(s', r | s, a)

Value Functions Recap

- State-value function:
- Action-value function: $q_{\pi}(s, a)$

 $v_{\pi}(s)$

- Optimal state-value function: $v_*(s)$
- Optimal action-value function: $q_*(s, a)$

Bellman Equations - Summary

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

$$q_{\pi}(s,a) = \sum_{s',r} p(s',r|s,a) [r + \gamma \sum_{a'} p(a'|s')q_{\pi}(s',a')]$$

$$v_*(s) = \max_a \sum_{s',r} p(s',r|s,a)[r + \gamma v_*(s')]$$

$$q_*(s,a) = \sum_{s',r} p(s',r|s,a) [r + \gamma \max_{a'} q_*(s',a')]$$

Dynamic Programming

ROLAND FERNANDEZ

Researcher, MSR AI Instructor, AI School

- What is Dynamic Programming?
- Policy Evaluation
- Policy Improvement
- Policy Iteration
- Value Iteration
- Asynchronous DP
- GPI
- Efficiency of DP

- What is Dynamic Programming?
- Policy Evaluation
- Policy Improvement
- Policy Iteration
- Value Iteration
- Asynchronous DP
- GPI
- Efficiency of DP

What is Dynamic Programming?

- Aka Dynamic Optimization
- General Technique
- Overlapping Subproblems

Dynamic Programming for finite MDPs

- Key idea: use values function to organize and structure the search for good policies
- Key idea: can turn Bellman equations into *iterative updates*

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

- The overlapping subproblems on the value functions on the right-hand side
- This is aka *planning* since it uses complete model of MDP (vs, environment interaction)

- What is Dynamic Programming?
- Policy Evaluation
- Policy Improvement
- Policy Iteration
- Value Iteration
- Asynchronous DP
- GPI
- Efficiency of DP

Policy Evaluation

• Goal:

- Given a policy, compute the long term value of each state
- Formally: given policy π , compute $v_{\pi}(s)$ (for all $s \in S$)
- Also called the *prediction problem* of planning

Policy Evaluation

• Method: *Iterative policy evaluation*:

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_k(s')]$$

- Two array vs. in-place updating
- Called *expected* (vs. *sampled*) updates
- This is an example of *bootstrapping*

Policy Evaluation

- Convergence
 - Converges when $v_{k+1}(s) = v_k(s)$
 - Convergence guaranteed if $\gamma < 1$ or termination is guaranteed
 - In-place updating: state order affects convergence rate

Algorithm: Iterative Policy Evaluation

Iterative policy evaluation

```
Input \pi, the policy to be evaluated

Initialize an array V(s) = 0, for all s \in S^+

Repeat

\Delta \leftarrow 0

For each s \in S:

v \leftarrow V(s)

V(s) \leftarrow \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]

\Delta \leftarrow \max(\Delta, |v - V(s)|)

until \Delta < \theta (a small positive number)

Output V \approx v_{\pi}
```

Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017

Iterative Policy Evaluation: Gridworld Example

Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017

Gridworld Example
$$v_{k+1}(s) = \sum_{k} v_{k+1}(s)$$

$$v_{r+1}(s) = \sum_{a} .25 \sum_{s',r} [r + v_k(s')]$$

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

k = 0

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

0	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	0

Gridworld Example

$$v_{k+1}(s) = \sum_{a} .25 \sum_{s',r} [r + v_k(s')]$$

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

k = 1

0	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	0

0	-1.75	-2	-2
-1.75	-2	-2	-2
-2	-2	-2	-1.75
-2	-2	-1.75	0

Gridworld Example
$$v_{k+1}(s) = \sum_{a} .25 \sum_{s',r} [r + v_k(s')]$$

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

k = 113

0	-14	-20	-22
-14	-18	-20	-20
-20	-20	-18	-14
-22	-20	-14	0

- What is Dynamic Programming?
- Policy Evaluation
- Policy Improvement
- Policy Iteration
- Value Iteration
- Asynchronous DP
- GPI
- Efficiency of DP

Policy Improvement

- How can we compare two policies to find which is better?
- Policy Improvement Theorem:
 - For all states, if the value of following the new policy for 1 step and then following the current policy > = the value of following the current policy, then the new policy is better than or equal to the current policy
 - Formally:

$$\forall s \in S, q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s) \implies v'_{\pi}(s) \ge v_{\pi}(s)$$

• This is Policy Improvement, aka the *control problem* of planning

Policy Improvement

• By policy improvement theorem, *greedy policy* will be better than or equal to our current policy:

$$\pi'(s) = \arg\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

- We will use greedy policy as our policy improvement method
- If greedy policy doesn't improve our policy, our policy is optimal

- What is Dynamic Programming?
- Policy Evaluation
- Policy Improvement
- Policy Iteration
- Value Iteration
- Asynchronous DP
- GPI
- Efficiency of DP

Policy Iteration

- We have seen:
 - Given initial policy, we can find $v_{\pi}(s)$ using Iterative Policy Evaluation
 - Given $v_{\pi}(s)$, we can find improved policy π' using Policy Improvement
- Repeat this process:
 - monotonically improving policies and values functions

$$\pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi_* \xrightarrow{E} v_*,$$

Algorithm: Policy Iteration

Policy iteration (using iterative policy evaluation)

1. Initialization $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in S$ 2. Policy Evaluation Repeat $\Delta \leftarrow 0$ For each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \sum_{s',r} p(s',r \,|\, s, \pi(s)) \big[r + \gamma V(s') \big]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number) 3. Policy Improvement policy-stable $\leftarrow true$ For each $s \in S$: old-action $\leftarrow \pi(s)$ $\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$ If old-action $\neq \pi(s)$, then policy-stable \leftarrow false If *policy-stable*, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017

- What is Dynamic Programming?
- Policy Evaluation
- Policy Improvement
- Policy Iteration
- Value Iteration
- Asynchronous DP
- GPI
- Efficiency of DP

Value Iteration

- What's wrong with Policy Iteration?
 - We have to wait for each round of Policy Evaluation to converge
- Solutions
 - Can approx. value function by stopping after N state sweeps of Policy Evaluation
 - Convergence still guaranteed for discounted, finite MDPs
 - Stop after 1 sweep = *Value Iteration*
 - Single update to combine Policy Improvement with truncated Policy Evaluation:

$$v_{k+1}(s) = \max_{a} \sum_{s',r} p(s',r|s,a)[r+\gamma v_k(s')]$$

Algorithm: Value Iteration

Value iteration

```
Initialize array V arbitrarily (e.g., V(s) = 0 for all s \in S^+)

Repeat

\Delta \leftarrow 0

For each s \in S:

v \leftarrow V(s)

V(s) \leftarrow \max_a \sum_{s',r} p(s', r | s, a) [r + \gamma V(s')]

\Delta \leftarrow \max(\Delta, |v - V(s)|)

until \Delta < \theta (a small positive number)

Output a deterministic policy, \pi \approx \pi_*, such that
```

 $\pi(s) = \operatorname{argmax}_{a} \sum_{s',r} p(s', r | s, a) \left[r + \gamma V(s') \right]$

Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017

- What is Dynamic Programming?
- Policy Evaluation
- Policy Improvement
- Policy Iteration
- Value Iteration
- Asynchronous DP
- GPI
- Efficiency of DP

Asynchronous DP

- The problem
 - Normal DP requires multiple sweeps of state space
 - For some problems, cannot do even a single state sweep
 - Backgammon: 10**20 states, > 1 thousand years / sweep
- Asynchronous DP
 - In-place iterative DP algorithms that don't use systematic state sweeps
 - States updated in any order, multiple times
 - For convergence, all states must be updated eventually

- What is Dynamic Programming?
- Policy Evaluation
- Policy Improvement
- Policy Iteration
- Value Iteration
- Asynchronous DP
- •GPI
- Efficiency of DP

GPI (Generated Policy Iteration)

- Generalizing the interaction of Policy Evaluation and Policy Improvement processes:
 - Sync vs. Async
 - Various levels of granularity between interaction
 - Competition and cooperation

Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017

- What is Dynamic Programming?
- Policy Evaluation
- Policy Improvement
- Policy Iteration
- Value Iteration
- Asynchronous DP
- GPI
- Efficiency of DP

Efficiency of DP

- Not Practical for Large Problems
- Efficient compared to other MDP methods:
 - Polynomial in number of states and actions
- Today's computers can solve DP models with millions of states
- Approximate DP methods used for large problems

Summary

- What is Dynamic Programming?
- Components:
 - Policy Evaluation
 - Policy Improvement
- Algorithms:
 - Policy Iteration
 - Value Iteration
 - Asynchronous DP
- Observations:
 - GPI
 - Efficiency of DP