
• The Agent-Environment Interface

• Goals, Rewards, Returns

• The Markov Property

• The Markov Decision Process

• Value Functions

•Optimal Value Functions

•Optimality and Approximation



•Finite MDP: {S, A, R, p, γ}

•Model: p(s’, r | s, a)



• State-value function: 

• Action-value function:

• Optimal state-value function:   

• Optimal action-value function:    
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•Aka Dynamic Optimization

•General Technique

•Overlapping Subproblems



• Key idea: use values function to organize and structure the search for good policies

• Key idea: can turn Bellman equations into iterative updates

• The overlapping subproblems on the value functions on the right-hand side

• This is aka planning – since it uses complete model of MDP (vs, environment 

interaction)
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•Goal: 

• Given a policy, compute the long term value of each state 

• Formally: given policy π, compute            (for all          ) 

• Also called the prediction problem of planning



•Method: Iterative policy evaluation:

• Two array vs. in-place updating

• Called expected (vs. sampled) updates

• This is an example of bootstrapping



•Convergence

• Converges when 

• Convergence guaranteed if γ < 1 or termination is guaranteed 

• In-place updating: state order affects convergence rate



Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017
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•How can we compare two policies to find which is better?

•Policy Improvement Theorem:

• For all states, if the value of following the new policy for 1 step and then 

following the current policy >= the value of following the current policy, then 

the new policy is better than or equal to the current policy

• Formally: 

• This is Policy Improvement, aka the control problem of planning



•By policy improvement theorem, greedy policy will be better than or 

equal to our current policy:

•We will use greedy policy as our policy improvement method

• If greedy policy doesn’t improve our policy, our policy is optimal
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•We have seen:

• Given initial policy, we can find           using Iterative Policy Evaluation

• Given          , we can find improved policy      using Policy Improvement

•Repeat this process:

• monotonically improving policies and values functions



Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017
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•What’s wrong with Policy Iteration?

• We have to wait for each round of Policy Evaluation to converge

•Solutions

• Can approx. value function by stopping after N state sweeps of Policy Evaluation

• Convergence still guaranteed for discounted, finite MDPs

• Stop after 1 sweep = Value Iteration

• Single update to combine Policy Improvement with truncated Policy Evaluation:



Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017
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•The problem

• Normal DP requires multiple sweeps of state space

• For some problems, cannot do even a single state sweep

• Backgammon: 10**20 states, > 1 thousand years / sweep

•Asynchronous DP

• In-place iterative DP algorithms that don’t use systematic state sweeps

• States updated in any order, multiple times

• For convergence, all states must be updated eventually
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•Generalizing the interaction of Policy 

Evaluation and Policy Improvement 

processes:

• Sync vs. Async

• Various levels of granularity between interaction

• Competition and cooperation

Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017
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•Not Practical for Large Problems

•Efficient compared to other MDP methods:

• Polynomial in number of states and actions

•Today’s computers can solve DP models with millions of states

•Approximate DP methods used for large problems



•What is Dynamic Programming?

• Components:

• Policy Evaluation

• Policy Improvement 

• Algorithms:

• Policy Iteration

• Value Iteration

• Asynchronous DP

•Observations:

• GPI

• Efficiency of DP


