Recap of Last Module (“The RL Problem”)

* The Agent-Environment Interface
 Goals, Rewards, Returns

* The Markov Property

* The Markov Decision Process

* Value Functions

* Optimal Value Functions

« Optimality and Approximation



MDP Recap

*Finite MDP: {S, A, R, p, v}
*Model: p(s’, r| s, a)



Value Functions Recap

e State-value function: Uy (S)
 Action-value function: G (s,a)
 Optimal state-value function:  v.(s)
« Optimal action-value function: ¢ (s, a)



Bellman Equations - Summary
vs() = D m(als) DBl 7ls, a)lr o+ yue(s)
ACOEDWCE D+ 73 p@]5)ar (o', @)
vu(s) = apr( rls, a)[r+ yv.(s)

¢u(s.a) = p(s',rls.a)[r +ymaxq.(s, a')]

s’ r



=" Microsoft

Dynamic
Programming

ROLAND FERNANDEZ

Researcher, MSR Al
Instructor, Al School




Outline

* What is Dynamic Programming?
* Policy Evaluation
* Policy Improvement

* Policy Iteration

*Value Iteration

* Asynchronous DP
* GPI

* Efficiency of DP



Outline

* What is Dynamic Programming?
* Policy Evaluation
* Policy Improvement

* Policy Iteration

*Value lteration

* Asynchronous DP
* GP]

* Efficiency of DP



What is Dynamic Programming’?

* Aka Dynamic Optimization

 General Technigue

* Overlapping Subproblems



Dynamic Programming for finite MDPs

Key idea: use values function to organize and structure the search for good policies

Key idea: can turn Bellman equations into iterative updates
Z?r als) Zps rls,a)lr + yvg(s')]

The overlapping subproblems on the value functions on the right-hand side

This is aka planning — since it uses complete model of MDP (vs, environment
Interaction)
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Policy Evaluation

*Goal:
 Given a policy, compute the long term value of each state
« Formally: given policy 11, compute vx(s) (forall s € S)

» Also called the prediction problem of planning



Policy Evaluation

* Method: terative policy evaluation:

Vpg1 (S Z?r als) Z'p s, rls, a)

« Two array vs. in-place updating
o Called expected (vs. sampled) updates

 This is an example of bootstrapping

+ Yup(s’)]



Policy Evaluation

« Convergence
» Converges when vg4+1(s) = vg(s)
« Convergence guaranteed if y < 1 or termination is guaranteed

* In-place updating: state order affects convergence rate



Algorithm: Iterative Policy Evaluation

Iterative policy evaluation

Input m, the policy to be evaluated
Initialize an array V(s) =0, for all s € 8t
Repeat
A+0
For each s € &:
v+ V(s)
V(s) & X n(als) Sy, 05", 715,0)fr + 2V ()]
A + max(A, [v — V(s)])
until A < 6 (a small positive number)
Output V = v,




terative Policy Evaluation: Gridworld Example
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Gridworld Example
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Gridworld Example
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Policy Improvement

*How can we compare two policies to find which is better?

*Policy Improvement Theorem:

 For all states, if the value of following the new policy for 1 step and then
following the current policy >= the value of following the current policy, then

the new policy is better than or equal to the current policy

« Formally:
Vs € S, q:(s,m(8)) > v:(s) = v (s) > v:(s)

* This is Policy Improvement, aka the control problem of planning



Policy Improvement

By policy improvement theorem, greedy policy will be better than or
equal to our current policy:

m'(s) = arg max Zp(s’; rls,a)|r + yv.(s")]

s',r

* We will use greedy policy as our policy improvement method

*|f greedy policy doesn’'t improve our policy, our policy is optimal
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Policy Iteration

*We have seen:
» Given initial policy, we can find vx(s) using Iterative Policy Evaluation

* Given vx(s), we can find improved policy 7’ using Policy Improvement
« Repeat this process:

« monotonically improving policies and values functions

E I E I E I E
o 7 Ung 7 T1 7 Uy 7 T2 7ot 7 Ty 7 Uk,



Algorithm: Policy Iteration

Policy iteration (using iterative policy evaluation)

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Repeat
A<+ 0
For each s € &:
v+ V(s)
V(s) = Lo, 05, 7|5, 7() [ + 7V ()]
A +— max(A, v — V(s)])
until A < 6 (a small positive number)

3. Policy Improvement
policy-stable < true
For each s € &:
old-action < m(s)
(s) + argmax, >, . p(s',r|s,a)[r + 1V (s')]
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V' = v, and 7 = 7,; else go to 2
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Value Iteration

* What's wrong with Policy Iteration?
* We have to wait for each round of Policy Evaluation to converge
* Solutions
 Can approx. value function by stopping after N state sweeps of Policy Evaluation
« Convergence still guaranteed for discounted, finite MDPs
 Stop after 1 sweep = Value Iteration

* Single update to combine Policy Improvement with truncated Policy Evaluation:

(9= xSl sl )



Algorithm: Value Iteration

Value iteration

Initialize array V arbitrarily (e.g., V(s) =0 for all s € 8§T)

Repeat
A<+ 0
For cach s € &:
v« V(s)
V(s) < max, ), . p(s',r]s,a) 7+ 7V (s)]
A +— max(A, |v —V(s)|)
until A < 6 (a small positive number)

Output a deterministic policy, m = m,, such that
7(s) = argmax,, Zs,jrp(s’? r|s,a) ['r' + 7V(s’)}
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Asynchronous DP

* The problem
« Normal DP requires multiple sweeps of state space

« For some problems, cannot do even a single state sweep

« Backgammon: 10**20 states, > 1thousand years / sweep
* Asynchronous DP
* In-place iterative DP algorithms that don't use systematic state sweeps
o States updated in any order, multiple times

 For convergence, all states must be updated eventually
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GPI (Generatea Policy Iteration) evaluation

Vias vy
W/\V

* Generalizing the interaction of Policy

Evaluation and Policy Improvement 7~ greedy(V)
Processes. _
Improvement
e Sync vs. Async .
 Various levels of granularity between interaction ’

« Competition and cooperation

Tx < >V

Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017
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Efficiency of DP

* Not Practical for Large Problems

e Efficient compared to other MDP methods:

 Polynomial in number of states and actions
e Today's computers can solve DP models with millions of states

* Approximate DP methods used for large problems



summary

* What is Dynamic Programming?

« Components:
» Policy Evaluation
» Policy Improvement
* Algorithms:
 Policy Iteration
« Value Iteration
* Asynchronous DP

* Observations:

« GPI
* Efficiency of DP



