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Discrete Time Fourier Transform (DTFT)

m The DTFT is the Fourier transform of choice for analyzing infinite-length signals and systems
m Useful for conceptual, pencil-and-paper work, but not Matlab friendly (infinitely-long vectors)
m Properties are very similar to the Discrete Fourier Transform (DFT) with a few caveats

m We will derive the DTFT as the limit of the DFT as the signal length N — oo



Recall: DFT (Unnormalized)

m Analysis (Forward DFT)
e Choose the DFT coefficients X [k] such that the synthesis produces the signal
e The weight X[k] measures the similarity between = and the harmonic sinusoid s

o Therefore, X [k] measures the “frequency content” of x at frequency k
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m Synthesis (Inverse DFT)

e Build up the signal x as a linear combination of harmonic sinusoids si weighted by the
DFT coefficients X [k]



The Centered DFT

m Both z[n] and X[k] can be interpreted as periodic with period NV, so we will shift the intervals of
interest in time and frequency to be centered around n,k =0
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m The modified forward and inverse DFT formulas are
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Recall: DFT Frequencies
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m X, [k] measures the similarity between the time signal = and the harmonic sinusoid s,

m Therefore, X, [k] measures the “frequency content” of x at frequency
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Take It To The Limit (1)
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m Let the signal length N increase towards co and study what happens to X, [k]

m Key fact: No matter how large N grows, the frequencies of the DFT sinusoids remain in the
interval
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Take It To The Limit (2)

N/2-1
Xulk] = Z z[n] e I FEn
n=—N/2
N time signal z[n] DFT X[k]
10 sl
0 Ll I I | I 11 | | I .
32 I ! e e
T 10 5 o 5 o s 15 10 5 0 5 10 15
n k
1r 5
61 0 "'.,.'“ it ||I| | H| ||H
L | o, et Lt
a0 20 10 o 10 20 0 30 20 ~10 0 10 20 30
n k
1r 5l
128 vy MMWMWM
0 w0 20 0 20 20 60 * 60 -40 -20 0 20 40 60
n k
i b f
256 ° "' I A*M“‘IJ"L_*_‘
-1 I I I . 0
0
n

100 50 50 100 -100 -50 0 50 100



Discrete Time Fourier Transform (Forward)

m As N — oo, the forward DFT converges to a function of the continuous frequency variable w
that we will call the forward discrete time Fourier transform (DTFT)
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m Recall: Inner product for infinite-length signals

(@y) = Y zn]yn)*

m Analysis interpretation: The value of the DTFT X (w) at frequency w measures the similarity
of the infinite-length signal z[n] to the infinite-length sinusoid e/“™



Discrete Time Fourier Transform (Inverse)

m Inverse unnormalized DFT
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m In the limit as the signal length N — oo, the inverse DFT converges in a more subtle way:
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resulting in the inverse DTFT
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m Synthesis interpretation: Build up the signal x as an infinite linear combination of sinusoids
ed“n weighted by the DTFT X (w)



Summary

m Discrete-time Fourier transform (DTFT)
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m The core “basis functions” of the DTFT are the sinusoids e/“™ with arbitrary frequencies w

m The DTFT can be derived as the limit of the DFT as the signal length N — oo

m The analysis/synthesis interpretation of the DFT holds for the DTFT, as do most of its properties
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LTI Systems for Infinite-Length Signals

m For infinite length signals, H is an infinitely large Toeplitz matrix with entries
H]pnm = hln—m]

where h is the impulse response
m Goal: Calculate the eigenvectors and eigenvalues of H

m Eigenvectors v are input signals that emerge at the system output unchanged (except for a
scaling by the eigenvalue \) and so are somehow “fundamental” to the system



Eigenvectors of LTI Systems

m Fact: The eigenvectors of a Toeplitz matrix (LTI system) are the complex sinusoids

su[n] = €™ = cos(wn) + jsin(wn),
cos(wn)
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Sinusoids are Eigenvectors of LTI Systems
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m Prove that harmonic sinusoids are the eigenvectors of LTI systems simply by computing the
convolution with input s,, and applying the periodicity of the sinusoids (infinite-length)
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Eigenvalues of LTI Systems

m The eigenvalue )\, € C corresponding to the sinusoid eigenvector s, is called the frequency
response at frequency w since it measures how the system “responds” to sy

Ao = i hinle™™ = (h,s,) = H(w) (DTFT of h)

n—=—oo

m Recall properties of the inner product: A\, grows/shrinks as h and s,, become more/less similar
Aw cos(wn)

ol
I R e R B ’ZJ. J J~H

Sw y H )‘wsw




Eigendecomposition and Diagonalization of an LTI System

Tr — H — Y

yln] = z[n]*h[n] = Z hin —m] z[m]

m=—0oQ

m While we can’t explicitly display the infinitely large matrices involved, we can use the DTFT to
“diagonalize” an LTI system

m Taking the DTFTs of z and h

Xw)= Y alnle™", H@)= Y hlnje"
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and then



Summary

m Complex sinusoids are the eigenfunctions of LTI systems for infinite-length signals
(Toeplitz matrices)

m Therefore, the discrete time Fourier transform (DTFT) is the natural tool for studying LTI
systems for infinite-length signals

m Frequency response H(w) equals the DTFT of the impulse response h[n]

m Diagonalization by eigendecomposition implies
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Discrete Time Fourier Transform

o0

X(w) = Z x[n] e 7", —m<w<T
n=-—oo

x[n] = X(w)ej“’”d—w7 00 <N < 0o
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m The Fourier transform of choice for analyzing infinite-length signals and systems

m Useful for conceptual, pencil-and-paper work, but not Matlab friendly (infinitely-long vectors)



DTFT of the Unit Pulse (1)

1 -M<n<M

m Compute the DTFT of the symmetrical unit pulse p[n| = )
0 otherwise

m Note: Duration D, = 2M + 1 samples

m Example for M =3
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m Forward DTFT



DTFT of the Unit Pulse (2)

m Apply the finite geometric series formula

oo M M eIwM _ p—jw(M+1)
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m This is an answer but it is not simplified enough to make sense, so we continue simplifying
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DTFT of the Unit Pulse (3)

m Simplified DTFT of the unit pulse of duration D, = 2M + 1 samples

sin (%;1 w)
sin (%)

Pw) =

m This is called the Dirichlet kernel or “digital sinc”

e |t has a shape reminiscent of the classical sinz/z sinc function, but it is 27-periodic

m If p[n] is interpreted as the impulse response of the moving average system, then P(w) is the
frequency response (eigenvalues) (low-pass filter)
P(w)




DTFT of a One-Sided Exponential

m Recall the impulse response of the recursive average system: h[n] = o™ u[n], || <1
m Compute the frequency response H (w)

m Forward DTFT
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H(w) = nzz_ooh e~don = Za” —Jen — g(aeﬂ“’)” il p———

m Recursive system with a = 0.8 is a low-pass filter
o
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Impulse Response of the Ideal Lowpass Filter (1)

m The frequency response H(w) of the ideal low-pass filter passes low frequencies (near w = 0)

but blocks high frequencies (near w = +)
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H(w)

m Compute the impulse response h[n] given this
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m Apply the inverse DTFT
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Impulse Response of the Ideal Lowpass Filter (2)

m The frequency response H(w) of the ideal low-pass filter passes low frequencies (near w = 0)
but blocks high frequencies (near w = +)

H(w) 1 —w. <w<w,.
w prg
0 otherwise

hn] = 2wcsin(wcn)

Wen

m The infamous “sinc” function!



Summary

m DTFT of a rectangular pulse is a Dirichlet kernel

m DTFT of a one-sided exponential is a low-frequency bump

m Inverse DTFT of the ideal lowpass filter is a sinc function

m Work some examples on your own!
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Discrete Fourier Transform (DFT) of a Harmonic Sinusoid

m Thanks to the orthogonality of the length-N harmonic sinusoids, it is easy to calculate the DFT
of the harmonic sinusoid z[n] = s;[n] = eI %" /y/N
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m So what is the DTFT of the infinite length sinusoid e/«°o™?



DTFT of an Infinite-Length Sinusoid

m The calculation for the DTFT and infinite-length signals is much more delicate than for the DFT
and finite-length signals

m Calculate the value X (wp) for the signal z[n] = e/won

oo oo

X(wo) = Y ap]ed=om = Y efomerivon = Z 1 = oo

n=—oo n=—oo n=—oo

m Calculate the value X (w) for the signal z[n] = e/“°™ at a frequency w # wy

oo o0 oo

X(wo) = Z x[n]e 7 = Z glwon g=jwn — Z e~ d(w—wo)n 999
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Dirac Delta Function (1)

m One semi-rigorous way to deal with this quandary is to use the Dirac delta “function,” which is

defined in terms of the following limit process

m Consider the following function d.(w) of the continuous variable w

de(w)

1/e/[€

0 w

m Note that, for all values of the width €, d.(w) always has unit area

/de(w) dw = 1



Dirac Delta Function (2)

de(w)

1/e/[€

m What happens to d.(w) as we let ¢ — 07

o Clearly dc(w) is converging toward something that is infinitely tall and infinitely narrow but still with
unit area

m The safest way to handle a function like d.(w) is inside an integral, like so

[x@adwds



Dirac Delta Function (3)

m As ¢ — 0, it seems reasonable that
/ X(w) do(w)dw =8 X(0)

and
/X(w)de(w—wo)dw =9 X (wo)

m So we can think of d.(w) as a kind of “sampler” that picks out values of functions from inside an
integral

m We describe the results of this limiting process (as € — 0) as the Dirac delta “function” §(w)



Dirac Delta Function (4)

m Dirac delta “function” §(w)

m We write

/X(w)é(w)dw = X(0)

and
/X(w)é(wfwo)dw = X(wp)

m Remarks and caveats
¢ Do not confuse the Dirac delta “function” with the nicely behaved discrete delta function 6[n]
e The Dirac has lots of “delta,” but it is not really a “function” in the normal sense (it can be made
more rigorous using the theory of generalized functions)
e Colloquially, engineers will describe the Dirac delta as “infinitely tall and infinitely narrow”




Scaled Dirac Delta Function

Lde(w) L(S(w)
L/e [e L

0 w 0 w

m If we scale the area of d.(w) by L, then it has the following effect in the limit

/X(w) Lo(w)dw = LX(0)



And Now Back to Our Regularly Scheduled Program ...

m Back to determining the DTFT of an infinite length sinusoid

m Rather than computing the DTFT of a sinusoid using the forward DTFT, we will show that an
infinite-length sinusoid is the inverse DTFT of the scaled Dirac delta function 276 (w — wp)

T ] d )
/ 27r5(w—w0)ej“m2—w = elvon

- s

m Thus we have the (rather bizarre) DTFT pair

eiwon RIEL on d(w —wp)



DTFT of Real-Valued Sinusoids

m Since

cos(won) = = (&% 4 e7Ie0m)

N —

we can calculate its DTFT as

cos(won) RALI md(w — wp) + 7w + wp)

m Since

sin(won) = % (ejwon _ efjwon)

we can calculate its DTFT as

sin(won) RALIS g O(w —wo) + g 0(w + wo)



Summary

m The DTFT would be of limited utility if we could not compute the transform of an infinite-length
sinusoid

m Hence, the Dirac delta “function” (or something else) is a necessary evil

m The Dirac delta has infinite energy (2-norm); but then again so does an infinite-length sinusoid
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Recall: Discrete-Time Fourier Transform (DTFT)

m Forward DTFT (Analysis)

X(w) = Z x[n] e Ivn, —r<w<T

n=-—oo

m Inverse DTFT (Synthesis)

m DTFT pair



The DTFT is Periodic

m We defined the DTFT over an interval of w of length 27, but it can also be interpreted as
periodic with period 27
X(w) = X(w+27k), keZ

m Proof
X(w+27k) = Z x[n] eI WH2mkn — Z z[n] e I eIt — X (W)
X (w)

1

0.5
0

05 ‘ ‘ ‘ ‘ ‘ ‘

-3n -2n - 0 b 2n 3n

w



DTFT Frequencies

X(w) = z x[n] e I, —m<w<T

n—=—oo

m X (w) measures the similarity between the time signal = and and a sinusoid e/“" of frequency w

m Therefore, X (w) measures the "frequency content” of x at frequency w
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DFT Frequencies and Periodicity

m Periodicity of DFT means we can treat frequencies mod 27

m X (w) measures the “frequency content” of x at frequency (w)ar

X(w)
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DTFT Frequency Ranges
m Periodicity of DTFT means every length-27 interval of w carries the same information

m Typical interval 1: 0 <w < 27

.
3n/2 2n

2 T
w

m Typical interval 2: —7 < w < 7 (more intuitive)




DTFT and Time Shift

m If z[n] and X (w) are a DTFT pair then

x[n — m) 2 eI X (w)

m Proof: Use the change of variables r =n —m

o0 o0 o0

Z x[n —m] eTivn = Z x[r] e~ dwlrtm) Z x[r] e Iwr gmiwm

n=—oo r=—00 rT=—00

= e Jwm Z zfr]e T = eI X (w) v

r=—00



DTFT and Modulation

m If z[n] and X (w) are a DFT pair then

ewom [n) JELIEN X(w —wo)

m Remember that the DTFT is 2m-periodic, and so we can interpret the right hand side as
X((w—wo)2r)

m Proof: - -

Z engnx[n]efjwn _ Z x[n} efj(wfwo)n _ X(wwa) v

n—=—oo n—=—oo



DTFT and Convolution

m If

then

m Convolution in the time domain = multiplication in the frequency domain



The DTFT is Linear

m It is trivial to show that if

DTFT DTFT
— —

z1[n] Xi(w) z2[n] Xa(w)

then

a1z1[n] + az(2] 2 Xy (W) + e Xa(w)



DTFT Symmetry Properties

m The sinusoids e/“™ of the DTFT have symmetry properties:
Re (e/“") = cos(wn) (even function)

Im (e’*") = sin(wn) (odd function)

m These induce corresponding symmetry properties on X (w) around the frequency w = 0

Even signal /DFT

Odd signal /DFT
2[n) = —a[=n],  X(w) = -X(-w)

m Proofs of the symmetry properties are identical to the DFT case; omitted here



DFT Symmetry Properties Table

2[n] X(w) Re(X(@) Im(X(w) |X(@) ZX()
real X(—w) = X(w)* even odd even odd
real & even real & even even zero even
real & odd imaginary & odd zero odd even
imaginary X(—w) =—-X(w)* odd even even odd
imaginary & even | imaginary & even zero even even
imaginary & odd imaginary & odd odd zero even




Summary

m DTFT is periodic with period 27
m Convolution in time becomes multiplication in frequency

m DTFT has useful symmetry properties
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