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Discrete Time Fourier Transform (DTFT)

The DTFT is the Fourier transform of choice for analyzing infinite-length signals and systems

Useful for conceptual, pencil-and-paper work, but not Matlab friendly (infinitely-long vectors)

Properties are very similar to the Discrete Fourier Transform (DFT) with a few caveats

We will derive the DTFT as the limit of the DFT as the signal length N →∞
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Recall: DFT (Unnormalized)

Analysis (Forward DFT)

• Choose the DFT coefficients X[k] such that the synthesis produces the signal x

• The weight X[k] measures the similarity between x and the harmonic sinusoid sk

• Therefore, X[k] measures the “frequency content” of x at frequency k

Xu[k] =

N−1∑
n=0

x[n] e−j
2π
N kn

Synthesis (Inverse DFT)

• Build up the signal x as a linear combination of harmonic sinusoids sk weighted by the

DFT coefficients X[k]

x[n] =
1

N

N−1∑
k=0

Xu[k] e
j 2π
N kn
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The Centered DFT

Both x[n] and X[k] can be interpreted as periodic with period N , so we will shift the intervals of
interest in time and frequency to be centered around n, k = 0

−N
2
≤ n, k ≤ N

2
− 1

The modified forward and inverse DFT formulas are

Xu[k] =

N/2−1∑
n=−N/2

x[n] e−j
2π
N kn, −N

2
≤ k ≤ N

2
− 1

x[n] =
1

N

N/2−1∑
k=−N/2

Xu[k] e
j 2π
N kn − N

2
≤ n ≤ N

2
− 1
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Recall: DFT Frequencies

Xu[k] =

N/2−1∑
n=−N/2

x[n] e−j
2π
N kn, −N

2
≤ k ≤ N

2
− 1

Xu[k] measures the similarity between the time signal x and the harmonic sinusoid sk

Therefore, Xu[k] measures the “frequency content” of x at frequency

−π ≤ ωk =
2π

N
k < π
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Take It To The Limit (1)

Xu[k] =

N/2−1∑
n=−N/2

x[n] e−j
2π
N kn, −N

2
≤ k ≤ N

2
− 1

Let the signal length N increase towards ∞ and study what happens to Xu[k]

Key fact: No matter how large N grows, the frequencies of the DFT sinusoids remain in the
interval

−π ≤ ωk =
2π

N
k < π
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Take It To The Limit (2)
Xu[k] =

N/2−1∑
n=−N/2

x[n] e−j
2π
N kn

N time signal x[n] DFT X[k]
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Discrete Time Fourier Transform (Forward)

As N →∞, the forward DFT converges to a function of the continuous frequency variable ω
that we will call the forward discrete time Fourier transform (DTFT)

N/2−1∑
n=−N/2

x[n] e−j
2π
N kn −→

∞∑
n=−∞

x[n] e−jωn = X(ω), − π ≤ ω < π

Recall: Inner product for infinite-length signals

〈x, y〉 =

∞∑
n=−∞

x[n] y[n]∗

Analysis interpretation: The value of the DTFT X(ω) at frequency ω measures the similarity
of the infinite-length signal x[n] to the infinite-length sinusoid ejωn
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Discrete Time Fourier Transform (Inverse)

Inverse unnormalized DFT

x[n] =
2π

2πN

N/2−1∑
k=−N/2

Xu[k] e
j 2π
N kn

In the limit as the signal length N →∞, the inverse DFT converges in a more subtle way:

ej
2π
N kn −→ ejωn, Xu[k] −→ X(ω),

2π

N
−→ dω,

N/2−1∑
k=−N/2

−→
∫ π

−π

resulting in the inverse DTFT

x[n] =

∫ π

−π
X(ω) ejωn

dω

2π
, ∞ < n <∞

Synthesis interpretation: Build up the signal x as an infinite linear combination of sinusoids
ejωn weighted by the DTFT X(ω)
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Summary

Discrete-time Fourier transform (DTFT)

X(ω) =

∞∑
n=−∞

x[n] e−jωn, − π ≤ ω < π

x[n] =

∫ π

−π
X(ω) ejωn

dω

2π
, ∞ < n <∞

The core “basis functions” of the DTFT are the sinusoids ejωn with arbitrary frequencies ω

The DTFT can be derived as the limit of the DFT as the signal length N →∞

The analysis/synthesis interpretation of the DFT holds for the DTFT, as do most of its properties
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Eigenanalysis of
LTI Systems
(Infinite-Length Signals)



LTI Systems for Infinite-Length Signals

x H y

y = Hx

For infinite length signals, H is an infinitely large Toeplitz matrix with entries

[H]n,m = h[n−m]

where h is the impulse response

Goal: Calculate the eigenvectors and eigenvalues of H

Eigenvectors v are input signals that emerge at the system output unchanged (except for a
scaling by the eigenvalue λ) and so are somehow “fundamental” to the system

2



Eigenvectors of LTI Systems

Fact: The eigenvectors of a Toeplitz matrix (LTI system) are the complex sinusoids

sω[n] = ejωn = cos(ωn) + j sin(ωn), −π ≤ ω < π, −∞ < n <∞
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Sinusoids are Eigenvectors of LTI Systems

sω H λωsω

Prove that harmonic sinusoids are the eigenvectors of LTI systems simply by computing the
convolution with input sω and applying the periodicity of the sinusoids (infinite-length)

sω[n] ∗ h[n] =

∞∑
m=−∞

sω[n−m]h[m] =

∞∑
m=−∞

ejω(n−m) h[m]

=

∞∑
m=−∞

ejωn e−jωm h[m] =

( ∞∑
m=−∞

h[m] e−jωm

)
ejωn

= λω sω[n] X
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Eigenvalues of LTI Systems
The eigenvalue λω ∈ C corresponding to the sinusoid eigenvector sω is called the frequency
response at frequency ω since it measures how the system “responds” to sk

λω =

∞∑
n=−∞

h[n] e−ωn = 〈h, sω〉 = H(ω) (DTFT of h)

Recall properties of the inner product: λω grows/shrinks as h and sω become more/less similar
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Eigendecomposition and Diagonalization of an LTI System

x H y

y[n] = x[n] ∗ h[n] =

∞∑
m=−∞

h[n−m]x[m]

While we can’t explicitly display the infinitely large matrices involved, we can use the DTFT to
“diagonalize” an LTI system

Taking the DTFTs of x and h

X(ω) =

∞∑
m=−∞

x[n] e−ωn, H(ω) =

∞∑
m=−∞

h[n] e−ωn

we have that
Y (ω) = X(ω)H(ω)

and then

y[n] =

∫ π

−π
Y (ω) ejωn

dω

2π
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Summary

Complex sinusoids are the eigenfunctions of LTI systems for infinite-length signals
(Toeplitz matrices)

Therefore, the discrete time Fourier transform (DTFT) is the natural tool for studying LTI
systems for infinite-length signals

Frequency response H(ω) equals the DTFT of the impulse response h[n]

Diagonalization by eigendecomposition implies

Y (ω) = X(ω)H(ω)

7



Discrete Time Fourier Transform
Examples



Discrete Time Fourier Transform

X(ω) =

∞∑
n=−∞

x[n] e−jωn, − π ≤ ω < π

x[n] =

∫ π

−π
X(ω) ejωn

dω

2π
, ∞ < n <∞

The Fourier transform of choice for analyzing infinite-length signals and systems

Useful for conceptual, pencil-and-paper work, but not Matlab friendly (infinitely-long vectors)
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DTFT of the Unit Pulse (1)

Compute the DTFT of the symmetrical unit pulse p[n] =

{
1 −M ≤ n ≤M
0 otherwise

Note: Duration Dx = 2M + 1 samples

Example for M = 3

−15 −10 −5 0 5 10 15
0

0.5

1

p[n ]

n

Forward DTFT

P (ω) =

∞∑
n=−∞

p[n] e−jωn =

M∑
n=−M

e−jωn . . .
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DTFT of the Unit Pulse (2)

Apply the finite geometric series formula

P (ω) =

∞∑
n=−∞

p[n] e−jωn =

M∑
n=−M

e−jωn =

M∑
n=−M

(
e−jω

)n
=

ejωM − e−jω(M+1)

1− e−jω

This is an answer but it is not simplified enough to make sense, so we continue simplifying

P (ω) =
ejωM − e−jω(M+1)

1− e−jω =
e−jω/2

(
ejω

2M+1
2 − e−jω 2M+1

2

)
e−jω/2

(
ejω/2 − e−jω/2

)
=

2j sin
(
ω 2M+1

2

)
2j sin

(
ω
2

)
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DTFT of the Unit Pulse (3)

Simplified DTFT of the unit pulse of duration Dx = 2M + 1 samples

P (ω) =
sin
(
2M+1

2 ω
)

sin
(
ω
2

)
This is called the Dirichlet kernel or “digital sinc”

• It has a shape reminiscent of the classical sinx/x sinc function, but it is 2π-periodic

If p[n] is interpreted as the impulse response of the moving average system, then P (ω) is the
frequency response (eigenvalues) (low-pass filter)
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DTFT of a One-Sided Exponential

Recall the impulse response of the recursive average system: h[n] = αn u[n], |α| < 1

Compute the frequency response H(ω)

Forward DTFT

H(ω) =

∞∑
n=−∞

h[n] e−jωn =

∞∑
n=0

αn e−jωn =

∞∑
n=0

(α e−jω)n =
1

1− α e−jω

Recursive system with α = 0.8 is a low-pass filter
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Impulse Response of the Ideal Lowpass Filter (1)

The frequency response H(ω) of the ideal low-pass filter passes low frequencies (near ω = 0)
but blocks high frequencies (near ω = ±π)

H(ω) =

{
1 −ωc ≤ ω ≤ ωc
0 otherwise

Compute the impulse response h[n] given this H(ω)

Apply the inverse DTFT

h[n] =

∫ π

−π
H(ω) ejωn

dω

2π
=

∫ ωc

−ωc

ejωn
dω

2π
=

ejωn

jn

∣∣∣∣ωc

−ωc

=
ejωcn − e−jωcn

jn
= 2ωc

sin(ωcn)

ωcn
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Impulse Response of the Ideal Lowpass Filter (2)

The frequency response H(ω) of the ideal low-pass filter passes low frequencies (near ω = 0)
but blocks high frequencies (near ω = ±π)

H(ω) =

{
1 −ωc ≤ ω ≤ ωc
0 otherwise

h[n] = 2ωc
sin(ωcn)

ωcn
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0
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n

The infamous “sinc” function!
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Summary

DTFT of a rectangular pulse is a Dirichlet kernel

DTFT of a one-sided exponential is a low-frequency bump

Inverse DTFT of the ideal lowpass filter is a sinc function

Work some examples on your own!
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Discrete Time Fourier Transform
of a Sinusoid



Discrete Fourier Transform (DFT) of a Harmonic Sinusoid

Thanks to the orthogonality of the length-N harmonic sinusoids, it is easy to calculate the DFT
of the harmonic sinusoid x[n] = sl[n] = ej

2π
N ln/

√
N

X[k] =

N−1∑
n=0

sl[n]
e−j

2π
N kn

√
N

= 〈sl, sk〉 = δ[k − l]
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n
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n

So what is the DTFT of the infinite length sinusoid ejω0n?

2



DTFT of an Infinite-Length Sinusoid

The calculation for the DTFT and infinite-length signals is much more delicate than for the DFT
and finite-length signals

Calculate the value X(ω0) for the signal x[n] = ejω0n

X(ω0) =

∞∑
n=−∞

x[n] e−jω0n =

∞∑
n=−∞

ejω0n e−jω0n =

∞∑
n=−∞

1 = ∞

Calculate the value X(ω) for the signal x[n] = ejω0n at a frequency ω 6= ω0

X(ω0) =
∞∑

n=−∞
x[n] e−jωn =

∞∑
n=−∞

ejω0n e−jωn =
∞∑

n=−∞
e−j(ω−ω0)n = ???
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Dirac Delta Function (1)

One semi-rigorous way to deal with this quandary is to use the Dirac delta “function,” which is
defined in terms of the following limit process

Consider the following function dε(ω) of the continuous variable ω

Note that, for all values of the width ε, dε(ω) always has unit area∫
dε(ω) dω = 1
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Dirac Delta Function (2)

What happens to dε(ω) as we let ε→ 0?

• Clearly dε(ω) is converging toward something that is infinitely tall and infinitely narrow but still with

unit area

The safest way to handle a function like dε(ω) is inside an integral, like so∫
X(ω) dε(ω) dω
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Dirac Delta Function (3)

As ε→ 0, it seems reasonable that∫
X(ω) dε(ω) dω

ε→0−→ X(0)

and ∫
X(ω) dε(ω − ω0) dω

ε→0−→ X(ω0)

So we can think of dε(ω) as a kind of “sampler” that picks out values of functions from inside an
integral

We describe the results of this limiting process (as ε→ 0) as the Dirac delta “function” δ(ω)
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Dirac Delta Function (4)

Dirac delta “function” δ(ω)

We write ∫
X(ω) δ(ω) dω = X(0)

and ∫
X(ω) δ(ω − ω0) dω = X(ω0)

Remarks and caveats

• Do not confuse the Dirac delta “function” with the nicely behaved discrete delta function δ[n]
• The Dirac has lots of “delta,” but it is not really a “function” in the normal sense (it can be made

more rigorous using the theory of generalized functions)
• Colloquially, engineers will describe the Dirac delta as “infinitely tall and infinitely narrow”
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Scaled Dirac Delta Function

If we scale the area of dε(ω) by L, then it has the following effect in the limit∫
X(ω)Lδ(ω) dω = LX(0)
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And Now Back to Our Regularly Scheduled Program . . .

Back to determining the DTFT of an infinite length sinusoid

Rather than computing the DTFT of a sinusoid using the forward DTFT, we will show that an
infinite-length sinusoid is the inverse DTFT of the scaled Dirac delta function 2πδ(ω − ω0)∫ π

−π
2πδ(ω − ω0) e

jωn dω

2π
= ejω0n

Thus we have the (rather bizarre) DTFT pair

ejω0n DTFT←→ 2π δ(ω − ω0)
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DTFT of Real-Valued Sinusoids

Since

cos(ω0n) =
1

2

(
ejω0n + e−jω0n

)
we can calculate its DTFT as

cos(ω0n)
DTFT←→ π δ(ω − ω0) + π δ(ω + ω0)

Since

sin(ω0n) =
1

2j

(
ejω0n − e−jω0n

)
we can calculate its DTFT as

sin(ω0n)
DTFT←→ π

j
δ(ω − ω0) +

π

j
δ(ω + ω0)
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Summary

The DTFT would be of limited utility if we could not compute the transform of an infinite-length
sinusoid

Hence, the Dirac delta “function” (or something else) is a necessary evil

The Dirac delta has infinite energy (2-norm); but then again so does an infinite-length sinusoid
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Discrete Time Fourier Transform
Properties



Recall: Discrete-Time Fourier Transform (DTFT)

Forward DTFT (Analysis)

X(ω) =

∞∑
n=−∞

x[n] e−jωn, − π ≤ ω < π

Inverse DTFT (Synthesis)

x[n] =

∫ π

−π
X(ω) ejωn

dω

2π
, ∞ < n <∞

DTFT pair

x[n]
DTFT←→ X(ω)

2



The DTFT is Periodic

We defined the DTFT over an interval of ω of length 2π, but it can also be interpreted as
periodic with period 2π

X(ω) = X(ω + 2πk), k ∈ Z

Proof

X(ω + 2πk) =

∞∑
n=−∞

x[n] e−j(ω+2πk)n =

∞∑
n=−∞

x[n] e−jωn e−j2πkn = X(ω) X
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DTFT Frequencies

X(ω) =

∞∑
n=−∞

x[n] e−jωn, − π ≤ ω < π

X(ω) measures the similarity between the time signal x and and a sinusoid ejωn of frequency ω

Therefore, X(ω) measures the “frequency content” of x at frequency ω
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DFT Frequencies and Periodicity

Periodicity of DFT means we can treat frequencies mod 2π

X(ω) measures the “frequency content” of x at frequency (ω)2π
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DTFT Frequency Ranges

Periodicity of DTFT means every length-2π interval of ω carries the same information

Typical interval 1: 0 ≤ ω < 2π
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Typical interval 2: −π ≤ ω < π (more intuitive)
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DTFT and Time Shift

If x[n] and X(ω) are a DTFT pair then

x[n−m]
DFT←→ e−jωmX(ω)

Proof: Use the change of variables r = n−m
∞∑

n=−∞
x[n−m] e−jωn =

∞∑
r=−∞

x[r] e−jω(r+m) =

∞∑
r=−∞

x[r] e−jωr e−jωm

= e−jωm
∞∑

r=−∞
x[r] e−jωr = e−jωmX(ω) X

7



DTFT and Modulation

If x[n] and X(ω) are a DFT pair then

ejω0n x[n]
DFT←→ X(ω − ω0)

Remember that the DTFT is 2π-periodic, and so we can interpret the right hand side as
X((ω − ω0)2π)

Proof:
∞∑

n=−∞
ejω0n x[n] e−jωn =

∞∑
n=−∞

x[n] e−j(ω−ω0)n = X(ω − ω0) X
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DTFT and Convolution

x h y

y[n] = x[n] ∗ h[n] =

∞∑
m=−∞

h[n−m]x[m]

If
x[n]

DTFT←→ X(ω), h[n]
DTFT←→ H(ω), y[n]

DTFT←→ Y (ω)

then
Y (ω) = H(ω)X(ω)

Convolution in the time domain = multiplication in the frequency domain
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The DTFT is Linear

It is trivial to show that if

x1[n]
DTFT←→ X1(ω) x2[n]

DTFT←→ X2(ω)

then

α1x1[n] + α2x[2]
DFT←→ α1X1(ω) + α2X2(ω)
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DTFT Symmetry Properties

The sinusoids ejωn of the DTFT have symmetry properties:

Re
(
ejωn

)
= cos (ωn) (even function)

Im
(
ejωn

)
= sin (ωn) (odd function)

These induce corresponding symmetry properties on X(ω) around the frequency ω = 0

Even signal/DFT
x[n] = x[−n], X(ω) = X(−ω)

Odd signal/DFT
x[n] = −x[−n], X(ω) = −X(−ω)

Proofs of the symmetry properties are identical to the DFT case; omitted here
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DFT Symmetry Properties Table

x[n] X(ω) Re(X(ω)) Im(X(ω)) |X(ω)| ∠X(ω)

real X(−ω) = X(ω)∗ even odd even odd

real & even real & even even zero even

real & odd imaginary & odd zero odd even

imaginary X(−ω) = −X(ω)∗ odd even even odd

imaginary & even imaginary & even zero even even

imaginary & odd imaginary & odd odd zero even
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Summary

DTFT is periodic with period 2π

Convolution in time becomes multiplication in frequency

DTFT has useful symmetry properties
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