

Discrete Time Fourier Transform (DTFT)

■ The DTFT is the Fourier transform of choice for analyzing infinite-length signals and systems

■ Useful for conceptual, pencil-and-paper work, but not Matlab friendly (infinitely-long vectors)

■ Properties are very similar to the Discrete Fourier Transform (DFT) with a few caveats

lacktriangle We will derive the DTFT as the limit of the DFT as the signal length $N o \infty$

Recall: DFT (Unnormalized)

Analysis (Forward DFT)

- Choose the DFT coefficients X[k] such that the synthesis produces the signal x
- ullet The weight X[k] measures the similarity between x and the harmonic sinusoid s_k
- \bullet Therefore, X[k] measures the "frequency content" of x at frequency k

$$X_u[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn}$$

Synthesis (Inverse DFT)

• Build up the signal x as a linear combination of harmonic sinusoids s_k weighted by the DFT coefficients X[k]

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_u[k] e^{j\frac{2\pi}{N}kn}$$

The Centered DFT

■ Both x[n] and X[k] can be interpreted as periodic with period N, so we will shift the intervals of interest in time and frequency to be centered around n, k = 0

$$-\frac{N}{2} \le n, k \le \frac{N}{2} - 1$$

The modified forward and inverse DFT formulas are

$$X_{u}[k] = \sum_{n=-N/2}^{N/2-1} x[n] e^{-j\frac{2\pi}{N}kn}, \quad -\frac{N}{2} \le k \le \frac{N}{2} - 1$$
$$x[n] = \frac{1}{N} \sum_{n=-N/2}^{N/2-1} X_{u}[k] e^{j\frac{2\pi}{N}kn} \quad -\frac{N}{2} \le n \le \frac{N}{2} - 1$$

Recall: DFT Frequencies

$$X_u[k] = \sum_{n=-N/2}^{N/2-1} x[n] e^{-j\frac{2\pi}{N}kn}, \quad -\frac{N}{2} \le k \le \frac{N}{2} - 1$$

- lacksquare $X_u[k]$ measures the similarity between the time signal x and the harmonic sinusoid s_k
- Therefore, $X_u[k]$ measures the "frequency content" of x at frequency

$$-\pi \le \omega_k = \frac{2\pi}{N}k < \pi$$

Take It To The Limit (1)

$$X_u[k] = \sum_{n=-N/2}^{N/2-1} x[n] e^{-j\frac{2\pi}{N}kn}, \quad -\frac{N}{2} \le k \le \frac{N}{2} - 1$$

- lacksquare Let the signal length N increase towards ∞ and study what happens to $X_u[k]$
- **Key fact:** No matter how large N grows, the frequencies of the DFT sinusoids remain in the interval

$$-\pi \leq \omega_k = \frac{2\pi}{N}k < \pi$$

Take It To The Limit (2)

$$X_u[k] = \sum_{n=-N/2}^{N/2-1} x[n] e^{-j\frac{2\pi}{N}kn}$$

Discrete Time Fourier Transform (Forward)

■ As $N \to \infty$, the forward DFT converges to a function of the **continuous frequency variable** ω that we will call the **forward discrete time Fourier transform** (DTFT)

$$\sum_{n=-N/2}^{N/2-1} x[n] e^{-j\frac{2\pi}{N}kn} \longrightarrow \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} = X(\omega), \qquad -\pi \le \omega < \pi$$

■ Recall: Inner product for infinite-length signals

$$\langle x, y \rangle = \sum_{n=-\infty}^{\infty} x[n] y[n]^*$$

■ Analysis interpretation: The value of the DTFT $X(\omega)$ at frequency ω measures the similarity of the infinite-length signal x[n] to the infinite-length sinusoid $e^{j\omega n}$

Discrete Time Fourier Transform (Inverse)

Inverse unnormalized DFT

$$x[n] = \frac{2\pi}{2\pi N} \sum_{k=-N/2}^{N/2-1} X_u[k] e^{j\frac{2\pi}{N}kn}$$

In the limit as the signal length $N \to \infty$, the inverse DFT converges in a more subtle way:

$$e^{j\frac{2\pi}{N}kn} \longrightarrow e^{j\omega n}, \quad X_u[k] \longrightarrow X(\omega), \quad \frac{2\pi}{N} \longrightarrow d\omega, \quad \sum_{k=-N/2}^{N/2-1} \longrightarrow \int_{-\pi}^{\pi}$$

resulting in the inverse DTFT

$$x[n] = \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} \frac{d\omega}{2\pi}, \quad \infty < n < \infty$$

Synthesis interpretation: Build up the signal x as an infinite linear combination of sinusoids $e^{j\omega n}$ weighted by the DTFT $X(\omega)$

Summary

Discrete-time Fourier transform (DTFT)

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}, \quad -\pi \le \omega < \pi$$
$$x[n] = \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} \frac{d\omega}{2\pi}, \quad \infty < n < \infty$$

- \blacksquare The core "basis functions" of the DTFT are the sinusoids $e^{j\omega n}$ with arbitrary frequencies ω
- lacksquare The DTFT can be derived as the limit of the DFT as the signal length $N o \infty$
- The analysis/synthesis interpretation of the DFT holds for the DTFT, as do most of its properties

LTI Systems for Infinite-Length Signals

For infinite length signals, **H** is an infinitely large **Toeplitz matrix** with entries

$$[\mathbf{H}]_{n,m} = h[n-m]$$

where h is the **impulse response**

- Goal: Calculate the eigenvectors and eigenvalues of H
- Eigenvectors v are input signals that emerge at the system output unchanged (except for a scaling by the eigenvalue λ) and so are somehow "fundamental" to the system

Eigenvectors of LTI Systems

■ Fact: The eigenvectors of a Toeplitz matrix (LTI system) are the complex sinusoids

$$s_{\omega}[n] = e^{j\omega n} = \cos(\omega n) + j\sin(\omega n), \quad -\pi \le \omega < \pi, \quad -\infty < n < \infty$$

Sinusoids are Eigenvectors of LTI Systems

■ Prove that harmonic sinusoids are the eigenvectors of LTI systems simply by computing the convolution with input s_{ω} and applying the periodicity of the sinusoids (infinite-length)

$$s_{\omega}[n] * h[n] = \sum_{m=-\infty}^{\infty} s_{\omega}[n-m] h[m] = \sum_{m=-\infty}^{\infty} e^{j\omega(n-m)} h[m]$$

$$= \sum_{m=-\infty}^{\infty} e^{j\omega n} e^{-j\omega m} h[m] = \left(\sum_{m=-\infty}^{\infty} h[m] e^{-j\omega m}\right) e^{j\omega n}$$

$$= \lambda_{\omega} s_{\omega}[n] \checkmark$$

Eigenvalues of LTI Systems

■ The eigenvalue $\lambda_{\omega} \in \mathbb{C}$ corresponding to the sinusoid eigenvector s_{ω} is called the **frequency** response at frequency ω since it measures how the system "responds" to s_k

$$\lambda_{\omega} = \sum_{n=-\infty}^{\infty} h[n] e^{-\omega n} = \langle h, s_{\omega} \rangle = H(\omega) \text{ (DTFT of } h)$$

■ Recall properties of the **inner product**: λ_{ω} grows/shrinks as h and s_{ω} become more/less similar

Eigendecomposition and Diagonalization of an LTI System

$$x \longrightarrow \underbrace{\mathcal{H}} \longrightarrow y$$

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$$

- While we can't explicitly display the infinitely large matrices involved, we can use the DTFT to "diagonalize" an LTI system
- \blacksquare Taking the DTFTs of x and h

$$X(\omega) = \sum_{m=-\infty}^{\infty} x[n] e^{-\omega n}, \quad H(\omega) = \sum_{m=-\infty}^{\infty} h[n] e^{-\omega n}$$

we have that

$$Y(\omega) = X(\omega)H(\omega)$$

and then

$$y[n] = \int_{-\pi}^{\pi} Y(\omega) e^{j\omega n} \frac{d\omega}{2\pi}$$

Summary

 Complex sinusoids are the eigenfunctions of LTI systems for infinite-length signals (Toeplitz matrices)

■ Therefore, the discrete time Fourier transform (DTFT) is the natural tool for studying LTI systems for infinite-length signals

lacksquare Frequency response $H(\omega)$ equals the DTFT of the impulse response h[n]

Diagonalization by eigendecomposition implies

$$Y(\omega) = X(\omega) H(\omega)$$

Discrete Time Fourier Transform

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}, \quad -\pi \le \omega < \pi$$
$$x[n] = \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} \frac{d\omega}{2\pi}, \quad \infty < n < \infty$$

■ The Fourier transform of choice for analyzing infinite-length signals and systems

Useful for conceptual, pencil-and-paper work, but not Matlab friendly (infinitely-long vectors)

DTFT of the Unit Pulse (1)

- $\begin{tabular}{ll} \begin{tabular}{ll} \begin$
- Note: Duration $D_x = 2M + 1$ samples
- \blacksquare Example for M=3

Forward DTFT

$$P(\omega) = \sum_{n=-\infty}^{\infty} p[n] e^{-j\omega n} = \sum_{n=-M}^{M} e^{-j\omega n} \dots$$

DTFT of the Unit Pulse (2)

Apply the finite geometric series formula

$$P(\omega) = \sum_{n = -\infty}^{\infty} p[n] e^{-j\omega n} = \sum_{n = -M}^{M} e^{-j\omega n} = \sum_{n = -M}^{M} \left(e^{-j\omega}\right)^n = \frac{e^{j\omega M} - e^{-j\omega(M+1)}}{1 - e^{-j\omega}}$$

■ This is an answer but it is not simplified enough to make sense, so we continue simplifying

$$\begin{split} P(\omega) &= \frac{e^{j\omega M} - e^{-j\omega(M+1)}}{1 - e^{-j\omega}} \; = \; \frac{e^{-j\omega/2} \left(e^{j\omega\frac{2M+1}{2}} - e^{-j\omega\frac{2M+1}{2}}\right)}{e^{-j\omega/2} \left(e^{j\omega/2} - e^{-j\omega/2}\right)} \\ &= \; \frac{2j\sin\left(\omega\frac{2M+1}{2}\right)}{2j\sin\left(\frac{\omega}{2}\right)} \end{split}$$

DTFT of the Unit Pulse (3)

■ Simplified DTFT of the unit pulse of duration $D_x = 2M + 1$ samples

$$P(\omega) = \frac{\sin\left(\frac{2M+1}{2}\omega\right)}{\sin\left(\frac{\omega}{2}\right)}$$

- This is called the **Dirichlet kernel** or "digital sinc"
 - It has a shape reminiscent of the classical $\sin x/x$ sinc function, but it is 2π -periodic
- If p[n] is interpreted as the impulse response of the moving average system, then $P(\omega)$ is the frequency response (eigenvalues) (low-pass filter)

DTFT of a One-Sided Exponential

- Recall the impulse response of the recursive average system: $h[n] = \alpha^n u[n]$, $|\alpha| < 1$
- lacktriangle Compute the frequency response $H(\omega)$
- Forward DTFT

$$H(\omega) = \sum_{n=-\infty}^{\infty} h[n] e^{-j\omega n} = \sum_{n=0}^{\infty} \alpha^n e^{-j\omega n} = \sum_{n=0}^{\infty} (\alpha e^{-j\omega})^n = \frac{1}{1 - \alpha e^{-j\omega}}$$

 \blacksquare Recursive system with $\alpha = 0.8$ is a low-pass filter

Impulse Response of the Ideal Lowpass Filter (1)

■ The frequency response $H(\omega)$ of the ideal low-pass filter passes low frequencies (near $\omega=0$) but blocks high frequencies (near $\omega=\pm\pi$)

$$H(\omega) = \begin{cases} 1 & -\omega_c \le \omega \le \omega_c \\ 0 & \text{otherwise} \end{cases}$$

- Compute the impulse response h[n] given this $H(\omega)$
- Apply the inverse DTFT

$$h[n] = \int_{-\pi}^{\pi} H(\omega) e^{j\omega n} \frac{d\omega}{2\pi} = \int_{-\omega_c}^{\omega_c} e^{j\omega n} \frac{d\omega}{2\pi} = \left. \frac{e^{j\omega n}}{jn} \right|_{-\omega_c}^{\omega_c} = \left. \frac{e^{j\omega_c n} - e^{-j\omega_c n}}{jn} \right. = \left. 2\omega_c \frac{\sin(\omega_c n)}{\omega_c n} \right.$$

Impulse Response of the Ideal Lowpass Filter (2)

■ The frequency response $H(\omega)$ of the ideal low-pass filter passes low frequencies (near $\omega=0$) but blocks high frequencies (near $\omega=\pm\pi$)

$$H(\omega) = \begin{cases} 1 & -\omega_c \le \omega \le \omega_c \\ 0 & \text{otherwise} \end{cases}$$

$$h[n] = 2\omega_c \frac{\sin(\omega_c n)}{\omega_c n}$$

■ The infamous "sinc" function!

Summary

■ DTFT of a rectangular pulse is a Dirichlet kernel

■ DTFT of a one-sided exponential is a low-frequency bump

■ Inverse DTFT of the ideal lowpass filter is a sinc function

■ Work some examples on your own!

Discrete Fourier Transform (DFT) of a Harmonic Sinusoid

■ Thanks to the orthogonality of the length-N harmonic sinusoids, it is easy to calculate the DFT of the harmonic sinusoid $x[n] = s_l[n] = e^{j\frac{2\pi}{N}ln}/\sqrt{N}$

$$X[k] = \sum_{n=0}^{N-1} s_l[n] \frac{e^{-j\frac{2\pi}{N}kn}}{\sqrt{N}} = \langle s_l, s_k \rangle = \delta[k-l]$$

■ So what is the DTFT of the infinite length sinusoid $e^{j\omega_0 n}$?

DTFT of an Infinite-Length Sinusoid

 The calculation for the DTFT and infinite-length signals is much more delicate than for the DFT and finite-length signals

■ Calculate the value $X(\omega_0)$ for the signal $x[n] = e^{j\omega_0 n}$

$$X(\omega_0) \ = \ \sum_{n=-\infty}^{\infty} x[n] \, e^{-j\omega_0 n} \ = \ \sum_{n=-\infty}^{\infty} e^{j\omega_0 n} \, e^{-j\omega_0 n} \ = \ \sum_{n=-\infty}^{\infty} 1 \ = \ \infty$$

■ Calculate the value $X(\omega)$ for the signal $x[n] = e^{j\omega_0 n}$ at a frequency $\omega \neq \omega_0$

$$X(\omega_0) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} = \sum_{n=-\infty}^{\infty} e^{j\omega_0 n} e^{-j\omega n} = \sum_{n=-\infty}^{\infty} e^{-j(\omega-\omega_0)n} = ???$$

Dirac Delta Function (1)

- One semi-rigorous way to deal with this quandary is to use the Dirac delta "function," which is defined in terms of the following limit process
- Consider the following function $d_{\epsilon}(\omega)$ of the continuous variable ω

■ Note that, for all values of the width ϵ , $d_{\epsilon}(\omega)$ always has unit area

$$\int d_{\epsilon}(\omega) \, d\omega = 1$$

Dirac Delta Function (2)

- What happens to $d_{\epsilon}(\omega)$ as we let $\epsilon \to 0$?
 - Clearly $d_{\epsilon}(\omega)$ is converging toward something that is infinitely tall and infinitely narrow but still with unit area
- The safest way to handle a function like $d_{\epsilon}(\omega)$ is inside an integral, like so

$$\int X(\omega) d_{\epsilon}(\omega) d\omega$$

Dirac Delta Function (3)

■ As $\epsilon \to 0$, it seems reasonable that

$$\int X(\omega) d_{\epsilon}(\omega) d\omega \stackrel{\epsilon \to 0}{\longrightarrow} X(0)$$

and

$$\int X(\omega) d_{\epsilon}(\omega - \omega_0) d\omega \stackrel{\epsilon \to 0}{\longrightarrow} X(\omega_0)$$

- lacksquare So we can think of $d_{\epsilon}(\omega)$ as a kind of "sampler" that picks out values of functions from inside an integral
- lacktriangle We describe the results of this limiting process (as $\epsilon o 0$) as the **Dirac delta "function"** $\delta(\omega)$

Dirac Delta Function (4)

■ Dirac delta "function" $\delta(\omega)$

■ We write

$$\int X(\omega) \, \delta(\omega) \, d\omega = X(0)$$

and

$$\int X(\omega) \, \delta(\omega - \omega_0) \, d\omega = X(\omega_0)$$

- Remarks and caveats
 - ullet Do not confuse the Dirac delta "function" with the nicely behaved discrete delta function $\delta[n]$
 - The Dirac has lots of "delta," but it is not really a "function" in the normal sense (it can be made more rigorous using the theory of generalized functions)
 - Colloquially, engineers will describe the Dirac delta as "infinitely tall and infinitely narrow"

Scaled Dirac Delta Function

• If we scale the area of $d_{\epsilon}(\omega)$ by L, then it has the following effect in the limit

$$\int X(\omega) L \, \delta(\omega) \, d\omega = L \, X(0)$$

And Now Back to Our Regularly Scheduled Program . . .

■ Back to determining the DTFT of an infinite length sinusoid

■ Rather than computing the DTFT of a sinusoid using the forward DTFT, we will show that an infinite-length sinusoid is the inverse DTFT of the scaled Dirac delta function $2\pi\delta(\omega-\omega_0)$

$$\int_{-\pi}^{\pi} 2\pi \delta(\omega - \omega_0) e^{j\omega n} \frac{d\omega}{2\pi} = e^{j\omega_0 n}$$

■ Thus we have the (rather bizarre) DTFT pair

$$e^{j\omega_0 n} \stackrel{\text{DTFT}}{\longleftrightarrow} 2\pi \,\delta(\omega - \omega_0)$$

DTFT of Real-Valued Sinusoids

Since

$$\cos(\omega_0 n) = \frac{1}{2} \left(e^{j\omega_0 n} + e^{-j\omega_0 n} \right)$$

we can calculate its DTFT as

$$\cos(\omega_0 n) \stackrel{\text{DTFT}}{\longleftrightarrow} \pi \, \delta(\omega - \omega_0) + \pi \, \delta(\omega + \omega_0)$$

Since

$$\sin(\omega_0 n) = \frac{1}{2i} \left(e^{j\omega_0 n} - e^{-j\omega_0 n} \right)$$

we can calculate its DTFT as

$$\sin(\omega_0 n) \stackrel{\text{DTFT}}{\longleftrightarrow} \frac{\pi}{i} \delta(\omega - \omega_0) + \frac{\pi}{i} \delta(\omega + \omega_0)$$

Summary

■ Hence, the Dirac delta "function" (or something else) is a necessary evil

■ The Dirac delta has infinite energy (2-norm); but then again so does an infinite-length sinusoid

Recall: Discrete-Time Fourier Transform (DTFT)

■ Forward DTFT (Analysis)

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}, \qquad -\pi \le \omega < \pi$$

Inverse DTFT (Synthesis)

$$x[n] = \int_{-\infty}^{\pi} X(\omega) e^{j\omega n} \frac{d\omega}{2\pi}, \quad \infty < n < \infty$$

DTFT pair

$$x[n] \stackrel{\mathrm{DTFT}}{\longleftrightarrow} X(\omega)$$

The DTFT is Periodic

• We defined the DTFT over an interval of ω of length 2π , but it can also be interpreted as **periodic** with period 2π

$$X(\omega) = X(\omega + 2\pi k), \quad k \in \mathbb{Z}$$

Proof

$$X(\omega + 2\pi k) = \sum_{n=-\infty}^{\infty} x[n] e^{-j(\omega + 2\pi k)n} = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} e^{-j2\pi kn} = X(\omega)$$

DTFT Frequencies

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}, \qquad -\pi \le \omega < \pi$$

- $\blacksquare \ X(\omega)$ measures the similarity between the time signal x and and a sinusoid $e^{j\omega n}$ of frequency ω
- \blacksquare Therefore, $X(\omega)$ measures the "frequency content" of x at frequency ω

DFT Frequencies and Periodicity

 \blacksquare Periodicity of DFT means we can treat frequencies mod 2π

 $lackbox{ } X(\omega)$ measures the "frequency content" of x at frequency $(\omega)_{2\pi}$

DTFT Frequency Ranges

- \blacksquare Periodicity of DTFT means every length- 2π interval of ω carries the same information
- Typical interval 1: $0 \le \omega < 2\pi$

■ Typical interval 2: $-\pi \le \omega < \pi$ (more intuitive)

DTFT and Time Shift

■ If x[n] and $X(\omega)$ are a DTFT pair then

$$x[n-m] \stackrel{\mathrm{DFT}}{\longleftrightarrow} e^{-j\omega m} X(\omega)$$

■ Proof: Use the change of variables r = n - m

$$\sum_{n=-\infty}^{\infty} x[n-m] e^{-j\omega n} = \sum_{r=-\infty}^{\infty} x[r] e^{-j\omega(r+m)} = \sum_{r=-\infty}^{\infty} x[r] e^{-j\omega r} e^{-j\omega m}$$
$$= e^{-j\omega m} \sum_{r=-\infty}^{\infty} x[r] e^{-j\omega r} = e^{-j\omega m} X(\omega) \checkmark$$

DTFT and Modulation

lacksquare If x[n] and $X(\omega)$ are a DFT pair then

$$e^{j\omega_0 n} x[n] \stackrel{\text{DFT}}{\longleftrightarrow} X(\omega - \omega_0)$$

Remember that the DTFT is 2π -periodic, and so we can interpret the right hand side as $X((\omega-\omega_0)_{2\pi})$

■ Proof:

$$\sum_{n=-\infty}^{\infty} e^{j\omega_0 n} x[n] e^{-j\omega n} = \sum_{n=-\infty}^{\infty} x[n] e^{-j(\omega-\omega_0)n} = X(\omega-\omega_0) \checkmark$$

DTFT and Convolution

$$x \longrightarrow h \longrightarrow y$$

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$$

If

$$x[n] \stackrel{\mathrm{DTFT}}{\longleftrightarrow} X(\omega), \qquad h[n] \stackrel{\mathrm{DTFT}}{\longleftrightarrow} H(\omega), \qquad y[n] \stackrel{\mathrm{DTFT}}{\longleftrightarrow} Y(\omega)$$

then

$$Y(\omega) = H(\omega) X(\omega)$$

■ Convolution in the time domain = multiplication in the frequency domain

The DTFT is Linear

■ It is trivial to show that if

$$x_1[n] \stackrel{\text{DTFT}}{\longleftrightarrow} X_1(\omega) \qquad x_2[n] \stackrel{\text{DTFT}}{\longleftrightarrow} X_2(\omega)$$

then

$$\alpha_1 x_1[n] + \alpha_2 x[2] \stackrel{\text{DFT}}{\longleftrightarrow} \alpha_1 X_1(\omega) + \alpha_2 X_2(\omega)$$

DTFT Symmetry Properties

■ The sinusoids $e^{j\omega n}$ of the DTFT have symmetry properties:

$$\operatorname{Re}\left(e^{j\omega n}\right) = \cos\left(\omega n\right)$$
 (even function)
$$\operatorname{Im}\left(e^{j\omega n}\right) = \sin\left(\omega n\right)$$
 (odd function)

- These induce corresponding symmetry properties on $X(\omega)$ around the frequency $\omega=0$
- Even signal/DFT

$$x[n] = x[-n], \qquad X(\omega) = X(-\omega)$$

Odd signal/DFT

$$x[n] = -x[-n], \qquad X(\omega) = -X(-\omega)$$

Proofs of the symmetry properties are identical to the DFT case; omitted here

DFT Symmetry Properties Table

x[n]	$X(\omega)$	$\operatorname{Re}(X(\omega))$	$\operatorname{Im}(X(\omega))$	$ X(\omega) $	$\angle X(\omega)$
real	$X(-\omega) = X(\omega)^*$	even	odd	even	odd
real & even	real & even	even	zero	even	
real & odd	imaginary & odd	zero	odd	even	
imaginary	$X(-\omega) = -X(\omega)^*$	odd	even	even	odd
imaginary & even	imaginary & even	zero	even	even	
imaginary & odd	imaginary & odd	odd	zero	even	

Summary

lacktriangle DTFT is periodic with period 2π

Convolution in time becomes multiplication in frequency

■ DTFT has useful symmetry properties

Acknowledgements

© 2014 Richard Baraniuk, All Rights Reserved