
6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #1

10. Assembly Language,
Models of Computation

6.004x Computation Structures
Part 2 – Computer Architecture

Copyright © 2015 MIT EECS

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #2

Beta ISA Summary

•  Storage:
–  Processor: 32 registers (r31 hardwired to 0) and PC

–  Main memory: Up to 4 GB, 32-bit words, 32-bit byte
addresses, 4-byte-aligned accesses

•  Instruction formats:

•  Instruction classes:
–  ALU: Two input registers, or register and constant

–  Loads and stores: access memory

–  Branches, Jumps: change program counter

OPCODE rc ra rb unused

OPCODE rc ra 16-bit signed constant

32 bits

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #3

Programming Languages

Means, to the BETA, Reg[4]		ß		Reg[2]	+	Reg[3]	

opcode rb ra

1 0

(unused)

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1

rc

0 0 0 0 0 0 0 0 0 0 0

32-bit (4-byte) ADD instruction:

We’d rather write in assembly language:

ADD(R2,	R3,	R4)	

a	=	b	+	c;	

or better yet a high-level language:

0

Today

Coming up

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #4

•  Abstracts bit-level representation of instructions and
addresses

•  We’ll learn UASM (“microassembler”), built into BSim

•  Main elements:
–  Values
–  Symbols
–  Labels (symbols for addresses)
–  Macros

Assembler
01101101
11000110
00101111
10110001
.....

Source
text file

Binary
machine
language

Array of bytes
to be loaded
into memory

Assembly Language

Symbolic
representation

of stream of bytes

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #5

Example UASM Source File

•  Comments after //, ignored by assembler (also /*…*/)
•  Symbols are symbolic representations of a constant

value (they are NOT variables!)

•  Labels are symbols for addresses
•  Macros expand into sequences of bytes

–  Most frequently, macros are instructions

–  We can use them for other purposes

	N	=	12														//	loop	index	initial	value	
	ADDC(r31,	N,	r1)	 	//	r1	=	loop	index	
	ADDC(r31,	1,	r0)	 	//	r0	=	accumulated	product	

loop:	MUL(r0,	r1,	r0) 	 	//	r0	=	r0	*	r1	
	SUBC(r1,	1,	r1) 	 	/*	r1	=	r1	–	1	*/	
	BNE(r1,	loop,	r31) 	//	if	r1	!=	0,	NextPC=loop	

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #6

How Does It Get Assembled?

•  Load predefined symbols
into a symbol table

•  Read input line by line
–  Add symbols to symbol table

as they are defined
–  Expand macros, translating

symbols to values first

Text input
	N	=	12	
	ADDC(r31,	N,	r1)	
	ADDC(r31,	1,	r0)	

loop:	MUL(r0,	r1,	r0)	
	SUBC(r1,	1,	r1)	
	BNE(r1,	loop,	r31)	

Binary output Symbol Value

r0 0

r1 1

r31 31

Symbol table

N 12

110000	00001	11111	00000000	00001100	[0x00]	
110000	00000	11111	00000000	00000001	[0x04]	
100010	00000	00000	00001	00000000000	[0x08]	

loop 8

…	
…	

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #7

Registers are Predefined Symbols

•  r0 = 0, …, r31 = 31
•  Treated like

normal symbols:

•  No “type checking” if you use the wrong opcode…

ADDC(r31,	N,	r1)

ADDC(31,	12,	1)

110000	00001	11111	00000000	00001100	

Substitute symbols with their values

Expand macro

ADDC(r31,	r12,	r1)

ADDC(31,	12,	1)

Reg[1]	ß	Reg[31]	+	12	

ADD(r31,	N,	r1)

ADD(31,	12,	1)

Reg[1]	ß	Reg[31]	+	Reg[12]	

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #8

Labels and Offsets

•  Label value is the address
of a memory location

•  BEQ/BNE macros compute
offset automatically

•  Labels hide addresses!

Input file
	N	=	12	
	ADDC(r31,	N,	r1)	
	ADDC(r31,	1,	r0)	

loop:	MUL(r0,	r1,	r0)	
	SUBC(r1,	1,	r1)	
	BNE(r1,	loop,	r31)	

Symbol Value

r0 0

r1 1

r31 31

Symbol table

110000	00001	11111	00000000	00001100	[0x00]	
110000	00000	11111	00000000	00000001	[0x04]	
100010	00000	00001	00000	00000000000	[0x08]	
110001	00001	00001	00000000	00000001	[0x0C]	
011101	11111	00001	11111111	11111101	[0x10]	 N 12

loop 8

Output file

offset	=	(label	-	<addr	of	BNE/BEQ>)/4	–	1	
							=	(8	–	16)/4	–	1	=	-3	

…	

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #9

Mighty Macroinstructions

// Macro to generate 4 consecutive bytes:
.macro consec(n) n n+1 n+2 n+3

// Invocation of above macro:
consec(37)

Macros are parameterized abbreviations, or shorthand

⇒ 37 37+1 37+2 37+3 ⇒ 37 38 39 40
Is expanded to

// Assemble into bytes, little-endian:
.macro WORD(x) x%256 (x/256)%256
.macro LONG(x) WORD(x) WORD(x >> 16)

Here are macros for breaking multi-byte data types into byte-
sized chunks

Has same effect as:

0xef 0xbe 0xad 0xde
Mem: 0x100 0x101 0x102 0x103

. = 0x100
LONG(0xdeadbeef) Boy, that’s hard to read.

Maybe, those big-endian
types do have a point.

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #10

Assembly of Instructions

// Assemble Beta op instructions
.macro betaop(OP,RA,RB,RC) {
 .align 4
 LONG((OP<<26)+((RC%32)<<21)+((RA%32)<<16)+((RB%32)<<11))
}

OPCODE RC RA RB UNUSED

OPCODE RC RA 16-BIT SIGNED CONSTANT

110000 ADDC = 0x30 = 1000000000000000 -32768 = 01111 15 = 00000 0 =

1000000000000000 00000 01111 110000
“.align 4” ensures instructions will begin
on word boundary (i.e., address = 0 mod 4)

For example:
 .macro ADDC(RA,C,RC) betaopc(0x30,RA,C,RC)

 ADDC(R15, -32768, R0) --> betaopc(0x30,15,-32768,0)

// Assemble Beta opc instructions
.macro betaopc(OP,RA,CC,RC) {
 .align 4
 LONG((OP<<26)+((RC%32)<<21)+((RA%32)<<16)+(CC % 0x10000))
}

// Assemble Beta branch instructions
.macro betabr(OP,RA,RC,LABEL) betaopc(OP,RA,((LABEL-(.+4))>>2),RC)

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #11

Example Assembly
ADDC(R3,1234,R17)

betaopc(0x30,R3,1234,R17)

expand ADDC macro with RA=R3, C=1234, RC=R17

.align 4
LONG((0x30<<26)+((R17%32)<<21)+((R3%32)<<16)+(1234 % 0x10000))

expand betaopc macro with OP=0x30, RA=R3, CC=1234, RC=R17

WORD(0xC22304D2) WORD(0xC22304D2 >> 16)

expand LONG macro with X=0xC22304D2

0xC22304D2%256 (0xC22304D2/256)%256 WORD(0xC223)

expand first WORD macro with X=0xC22304D2

0xD2 0x04 0xC223%256 (0xC223/256)%256

evaluate expressions, expand second WORD macro with X=0xC223

0xD2 0x04 0x23 0xC2

evaluate expressions

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #12

UASM Macros for Beta Instructions

| BETA Instructions:
.macro ADD(RA,RB,RC) betaop(0x20,RA,RB,RC)
.macro ADDC(RA,C,RC) betaopc(0x30,RA,C,RC)
.macro AND(RA,RB,RC) betaop(0x28,RA,RB,RC)
.macro ANDC(RA,C,RC) betaopc(0x38,RA,C,RC)
.macro MUL(RA,RB,RC) betaop(0x22,RA,RB,RC)
.macro MULC(RA,C,RC) betaopc(0x32,RA,C,RC)

•
•

•
.macro LD(RA,CC,RC) betaopc(0x18,RA,CC,RC)
.macro LD(CC,RC) betaopc(0x18,R31,CC,RC)
.macro ST(RC,CC,RA) betaopc(0x19,RA,CC,RC)
.macro ST(RC,CC) betaopc(0x19,R31,CC,RC)

•
•

•
.macro BEQ(RA,LABEL,RC) betabr(0x1C,RA,RC,LABEL)
.macro BEQ(RA,LABEL) betabr(0x1C,RA,r31,LABEL)
.macro BNE(RA,LABEL,RC) betabr(0x1D,RA,RC,LABEL)
.macro BNE(RA,LABEL) betabr(0x1D,RA,r31,LABEL)

Convenience
macros so we
don’t have to
specify R31…

(defined in beta.uasm)

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #13

Pseudoinstructions
•  Convenience macros that expand to one or more real instructions
•  Extend set of operations without adding instructions to the ISA

//	Convenience	macros	so	we	don’t	have	to	use	R31	
.macro	LD(CC,RC) 	 	LD(R31,CC,RC)	
.macro	ST(RA,CC) 	 	ST(RA,CC,R31)	
.macro	BEQ(RA,LABEL) 	BEQ(RA,LABEL,R31)			
.macro	BNE(RA,LABEL) 	BNE(RA,LABEL,R31)			
	
.macro	MOVE(RA,RC)	 	ADD(RA,R31,RC) 	//	Reg[RC]	<-	Reg[RA]	
.macro	CMOVE(CC,RC) 	ADDC(R31,C,RC) 	//	Reg[RC]	<-	C	
.macro	COM(RA,RC) 	 	XORC(RA,-1,RC) 	//	Reg[RC]	<-	~Reg[RA]	
.macro	NEG(RB,RC) 	 	SUB(R31,RB,RC) 	//	Reg[RC]	<-	-Reg[RB]	
.macro	NOP() 	 	ADD(R31,R31,R31) 	//	do	nothing	

	
.macro	BR(LABEL) 	 	BEQ(R31,LABEL) 	//	always	branch	
.macro	BR(LABEL,RC) 	BEQ(R31,LABEL,RC) 	//	always	branch	 		
.macro	CALL(LABEL)	 	BEQ(R31,LABEL,LP) 	//	call	subroutine	
.macro	BF(RA,LABEL,RC) 	BEQ(RA,LABEL,RC) 	//	0	is	false	
.macro	BF(RA,LABEL) 	BEQ(RA,LABEL)	
.macro	BT(RA,LABEL,RC) 	BNE(RA,LABEL,RC) 	//	1	is	true	
.macro	BT(RA,LABEL) 	BNE(RA,LABEL)	

	
//	Multi-instruction	sequences	
.macro	PUSH(RA) 	 	ADDC(SP,4,SP)		ST(RA,-4,SP)	
.macro	POP(RA) 	 	LD(SP,-4,RA)			ADDC(SP,-4,SP)	
	

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #14

Factorial with Pseudoinstructions

	N	=	12	
	ADDC(r31,	N,	r1)	
	ADDC(r31,	1,	r0)	

loop:	MUL(r0,	r1,	r0)	
	SUBC(r1,	1,	r1)	
	BNE(r1,	loop,	r31)	

	N	=	12	
	CMOVE(N,	r1)	
	CMOVE(1,	r0)	

loop:	MUL(r0,	r1,	r0)	
	SUBC(r1,	1,	r1)	
	BNE(r1,	loop)	

Before After

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #15

Raw Data

•  LONG assembles a 32-bit value
–  Variables

–  Constants > 16 bits

N: 	LONG(12)	
factN:	LONG(0xdeadbeef)	

	…	
Start:	

	LD(N,	r1)	
	CMOVE(1,	r0)	

loop:	MUL(r0,	r1,	r0)	
	SUBC(r1,	1,	r1)	
	BT(r1,	loop)	
	ST(r0,	factN)	

Symbol Value

N 0

factN 4

Symbol table

…	

LD(r31,	N,	r1)

LD(31,	0,	1)

Reg[1]	ß	Mem[Reg[31]	+	0]	
							ß	Mem[0]	
							ß	12	

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #16

UASM Expressions and Layout

•  Values can be written as expressions
–  Assembler evaluates expressions, they are not translated to

instructions to compute the value!

•  The “.” (period) symbol means the next byte address to be
filled
–  Can read or write to it
–  Useful to control data layout or leave empty space (e.g., for

arrays)

.	=	0x100 	 	 	//	Assemble	into	0x100	
LONG(0xdeadbeef)	
k	=	. 	 	 	 	//	Symbol	“k”	has	value	0x104	
LONG(0x00dec0de)	
.	=	.+16 	 	 	//	Skip	16	bytes	
LONG(0xc0ffeeee)	

A	=	7	+	3	*	0x0cc41	
B	=	A	-	3	

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #17

Summary: Assembly Language

•  Low-level language, symbolic representation of
sequence of bytes. Abstracts:
–  Bit-level representation of instructions

–  Addresses

•  Elements: Values, symbols, labels, macros
•  Values can be constants or expressions

•  Symbols are symbolic representations of values
•  Labels are symbols for addresses

•  Macros are expanded to byte sequences:
–  Instructions

–  Pseudoinstructions (translate to 1+ real instructions)

–  Raw data

•  Can control where to assemble with “.” symbol

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #18

Universality?

•  Recall: We say a set of Boolean gates is universal if
we can implement any Boolean function using only
gates from that set.

•  What problems can we solve with a von Neumann

computer? (e.g., the Beta)
–  Everything that FSMs can solve?

–  Every problem?
–  Does it depend on the ISA?

•  Needed: a mathematical model of computation
–  Prove what can be computed, what can’t

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #19

Models of Computation

The roots of computer science stem from
the evaluation of many alternative
mathematical “models” of computation to
determine the classes of computations
each could represent.

An elusive goal was to find a universal
model, capable of representing all
practical computations...

• switches

• gates

• combinational
logic

• memories

• FSMs

Are FSMs the ultimate
digital computing

device?

We’ve got FSMs…
what else do we need?

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #20

FSM Limitations
Despite their usefulness and flexibility, there are common
problems that cannot be solved by any FSM. For instance:

Paren
Checker

“(()())”	 OK	

Paren
Checker

“(())())”	 Nix	

Well-formed Parentheses Checker:

Given any string of coded left &
right parens, outputs 1 if it is
balanced, else 0.

Simple, easy to describe.

PROBLEM: Requires arbitrarily many states,
depending on input. Must "COUNT"
unmatched left parens. An FSM can only
keep track of a finite number of unmatched
parens: for every FSM, we can find a string it
can’t check.

NO!

Alan Turing

I know how
to fix that!

Can this problem be solved using an FSM???

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #21

Turing Machines

Alan Turing was one of a group
of researchers studying
alternative models of
computation.

He proposed a conceptual model
consisting of an FSM combined
with an infinite digital tape that
could be read and written at
each step.
• encode input as symbols on tape
• FSM reads tape/writes symbols/
changes state until it halts

• Answer encoded on tape

Turing’s model (like others of the
time) solves the "FINITE" problem
of FSMs.

S1

1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0

S2

0,(1,R)

0,(1,L)

1,Halt

1,(1,L)

Bounded tape configuration
can be expressed as a
(large!) integer

FSMs can be enumerated and
given a (very large) integer index.

We can talk about TM 347
running on input 51, producing
an answer of 42.
TMs as integer functions:
 y = TMI[x]

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #22

Other Models of Computation…

Turing Machines [Turing]

FSM i

0 1 1 0 0 0 1 0 0

Alan Turing

Recursive Functions [Kleene]
F(0,x) ≡ x
F(1+y,x) ≡ 1+F(x,y)

(define (fact n)
 (... (fact (- n 1)) ...)

Stephen
Kleene

Lambda calculus [Church, Curry, Rosser...]

λ x. λ y.xxy

(lambda(x)(lambda(y)(x (x y))))

Alonzo
Church

Production Systems [Post, Markov]

α → β
IF pulse=0 THEN
 patient=dead

Emile Post

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #23

Computability
FACT: Each model studied is capable of computing exactly the
same set of integer functions!

Proof Technique:
Constructions that translate between models

BIG IDEA:

Computability, independent of computation scheme chosen

Church's Thesis:

Every discrete function computable by ANY
realizable machine is computable by some
Turing machine.

f(x) computable ⇔ for some k, all x
 f(x) = Tk[x]

unproved, but
universally
accepted...

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #24

FSM

0 1 1 0 0 0 1 0 0

Multiplication

FSM

0 1 1 0 0 0 1 0 0

Sorting

FSM

0 1 1 0 0 0 1 0 0

Factorization FSM

0 1 1 0 0 0 1 0 0

Primality Test

Is there an alternative to
infinitely many ad-hoc Turing
Machines?

“special-purpose”
 Turing Machines....

meanwhile...

Turing machines Galore!

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #25

Here’s an interesting function to explore: the Universal
function, U, defined by

SURPRISE! U is computable by a Turing Machine:

TU
k

j Tk[j]

In fact, there are infinitely many such machines. Each is
capable of performing any computation that can be
performed by any TM!

U(k, j) = Tk[j]

Could this be computable???

it sure would be
neat to have a
single, general-
purpose
machine...

The Universal Function

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #26

Universality

TU
k

j Tk[j]

What’s going on here?

k encodes a “program” – a description
of some arbitrary machine.

j encodes the input data to be used.

TU interprets the program, emulating
its processing of the data!

KEY IDEA: Interpretation.
Manipulate coded representations of
computing machines, rather than the
machines themselves.

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #27

Turing Universality

The Universal Turing Machine is the paradigm for modern
general-purpose computers!

Basic threshold test: Is your computer Turing Universal ?
•  If so, it can emulate every other Turing machine!
•  Thus, your computer can compute any computable

function

To show your computer is Universal: demonstrate that it can
emulate some known UTM.

•  Actually given finite memory, can only emulate UTMs +
inputs up to a certain size

•  This is not a high bar: conditional branches (BEQ) and
some simple arithmetic (SUB) are enough.

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #28

Coded Algorithms: Key to CS
data vs hardware

Algorithms as data: enables
COMPILERS: analyze, optimize, transform behavior

SOFTWARE ENGINEERING:
Composition, iteration,
abstraction of coded behavior

 F(x) = g(h(x), p((q(x)))

TCOMPILER-X-to-Y[PX] = PY, such that TX[PX, z] = TY[PY, z]

Px

Py

Pgm

Pgm

PLINUX PJade

Pgm
Pgm

Pgm

LANGUAGE DESIGN: Separate
specification from implementation

•  C, Java, JSIM, Linux, ... all run on
X86, Sun, ARM, JVM, CLR, ...

•  Parallel development paths:
•  Language/Software design
•  Interpreter/Hardware design

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #29

Uncomputability (!)

Uncomputable functions: There are well-defined discrete
functions that a Turing machine cannot compute

–  No algorithm can compute f(x) for arbitrary x in finite number of
steps

–  Not that we don’t know algorithm - can prove no algorithm exists

–  Corollary: Finite memory is not the only limiting factor on
whether we can solve a problem

The most famous uncomputable function is the so-called
Halting function, fH(k, j), defined by:

 fH(k, j) = 1 if Tk[j] halts;

 0 otherwise.

fH(k, j) determines whether the kth TM halts when given a tape
containing j.

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #30

If fH is computable, it is equivalent to some TM (say, TH):

TH

k

j
1 iff Tk[j] halts,
else 0

Then TN (N for “Nasty”), which must be computable if TH is:

TN

TH ?
1

0

LOOP

HALT

TN[x]: LOOPS if Tx[x] halts;
 HALTS if Tx[x] loops

Finally, consider giving N as an argument to TN:

TN[N]: LOOPS if TN[N] halts;
 HALTS if TN[N] loops

TN can’t be
computable, hence
TH can’t either!

x

Why fH is Uncomputable

