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Beta ISA Summary 

•  Storage: 
–  Processor: 32 registers (r31 hardwired to 0) and PC 

–  Main memory: Up to 4 GB, 32-bit words, 32-bit byte 
addresses, 4-byte-aligned accesses 

•  Instruction formats: 

•  Instruction classes: 
–  ALU: Two input registers, or register and constant 

–  Loads and stores: access memory 

–  Branches, Jumps: change program counter 

OPCODE rc ra rb unused 

OPCODE rc ra 16-bit signed constant  

32 bits 
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Programming Languages 

Means, to the BETA,    Reg[4]		ß		Reg[2]	+	Reg[3]	

opcode rb ra 

1 0 

(unused) 

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 

rc 

0 0 0 0 0 0 0 0 0 0 0 

32-bit (4-byte) ADD instruction: 

We’d rather write in assembly language: 

ADD(R2,	R3,	R4)	

a	=	b	+	c;	

or better yet a high-level language: 

0 

Today 

Coming up 
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•  Abstracts bit-level representation of instructions and 
addresses 

•  We’ll learn UASM (“microassembler”), built into BSim 

•  Main elements: 
–  Values 
–  Symbols 
–  Labels (symbols for addresses) 
–  Macros  

Assembler 
01101101 
11000110 
00101111 
10110001 
..... 

Source 
text file 

Binary 
machine 
language 

Array of bytes 
to be loaded 
into memory 

Assembly Language 

Symbolic 
representation 

of stream of bytes 
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Example UASM Source File 

•  Comments after //, ignored by assembler (also /*…*/) 
•  Symbols are symbolic representations of a constant 

value (they are NOT variables!) 

•  Labels are symbols for addresses 
•  Macros expand into sequences of bytes 

–  Most frequently, macros are instructions 

–  We can use them for other purposes 

	N	=	12														//	loop	index	initial	value	
	ADDC(r31,	N,	r1)	 	//	r1	=	loop	index	
	ADDC(r31,	1,	r0)	 	//	r0	=	accumulated	product	

loop:	MUL(r0,	r1,	r0) 	 	//	r0	=	r0	*	r1	
	SUBC(r1,	1,	r1) 	 	/*	r1	=	r1	–	1	*/	
	BNE(r1,	loop,	r31) 	//	if	r1	!=	0,	NextPC=loop	
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How Does It Get Assembled? 

•  Load predefined symbols 
into a symbol table 

•  Read input line by line 
–  Add symbols to symbol table 

as they are defined 
–  Expand macros, translating 

symbols to values first 

Text input 
	N	=	12	
	ADDC(r31,	N,	r1)	
	ADDC(r31,	1,	r0)	

loop:	MUL(r0,	r1,	r0)	
	SUBC(r1,	1,	r1)	
	BNE(r1,	loop,	r31)	

Binary output Symbol Value 

r0 0 

r1 1 

r31 31 

Symbol table 

N 12 

110000	00001	11111	00000000	00001100	[0x00]	
110000	00000	11111	00000000	00000001	[0x04]	
100010	00000	00000	00001	00000000000	[0x08]	

loop 8 

…	
…	
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Registers are Predefined Symbols 

•  r0 = 0, …, r31 = 31 
•  Treated like 

normal symbols: 

•  No “type checking” if you use the wrong opcode… 

ADDC(r31,	N,	r1) 

ADDC(31,	12,	1) 

110000	00001	11111	00000000	00001100	

Substitute symbols with their values 

Expand macro 

ADDC(r31,	r12,	r1) 

ADDC(31,	12,	1) 

Reg[1]	ß	Reg[31]	+	12	

ADD(r31,	N,	r1) 

ADD(31,	12,	1) 

Reg[1]	ß	Reg[31]	+	Reg[12]	
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Labels and Offsets 

•  Label value is the address 
of a memory location 

•  BEQ/BNE macros compute 
offset automatically 

•  Labels hide addresses! 

Input file 
	N	=	12	
	ADDC(r31,	N,	r1)	
	ADDC(r31,	1,	r0)	

loop:	MUL(r0,	r1,	r0)	
	SUBC(r1,	1,	r1)	
	BNE(r1,	loop,	r31)	

Symbol Value 

r0 0 

r1 1 

r31 31 

Symbol table 

110000	00001	11111	00000000	00001100	[0x00]	
110000	00000	11111	00000000	00000001	[0x04]	
100010	00000	00001	00000	00000000000	[0x08]	
110001	00001	00001	00000000	00000001	[0x0C]	
011101	11111	00001	11111111	11111101	[0x10]	 N 12 

loop 8 

Output file 

offset	=	(label	-	<addr	of	BNE/BEQ>)/4	–	1	
							=	(8	–	16)/4	–	1	=	-3	

…	
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Mighty Macroinstructions 

// Macro to generate 4 consecutive bytes: 
.macro consec(n)  n  n+1  n+2  n+3 

// Invocation of above macro: 
consec(37) 

Macros  are parameterized abbreviations, or shorthand 

⇒ 37 37+1 37+2 37+3 ⇒ 37  38  39  40 
Is expanded to 

// Assemble into bytes, little-endian: 
.macro WORD(x) x%256 (x/256)%256 
.macro LONG(x) WORD(x) WORD(x >> 16) 

Here are macros for breaking multi-byte data types into byte-
sized chunks 

Has same effect as: 

0xef  0xbe  0xad  0xde 
Mem: 0x100  0x101 0x102  0x103   

. = 0x100 
LONG(0xdeadbeef) Boy, that’s hard to read. 

Maybe, those big-endian 
types do have a point. 
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Assembly of Instructions 

// Assemble Beta op instructions 
.macro betaop(OP,RA,RB,RC) { 
    .align 4 
    LONG((OP<<26)+((RC%32)<<21)+((RA%32)<<16)+((RB%32)<<11)) 
} 

OPCODE RC RA RB UNUSED 

OPCODE RC RA 16-BIT SIGNED CONSTANT 

110000 ADDC = 0x30 = 1000000000000000 -32768 = 01111 15 = 00000 0 = 

1000000000000000 00000 01111 110000 
“.align 4” ensures instructions will begin 
on word boundary (i.e., address = 0 mod 4) 

For example: 
   .macro ADDC(RA,C,RC)  betaopc(0x30,RA,C,RC) 
 

   ADDC(R15, -32768, R0) --> betaopc(0x30,15,-32768,0)  

// Assemble Beta opc instructions 
.macro betaopc(OP,RA,CC,RC) { 
    .align 4 
    LONG((OP<<26)+((RC%32)<<21)+((RA%32)<<16)+(CC % 0x10000)) 
} 
 
// Assemble Beta branch instructions 
.macro betabr(OP,RA,RC,LABEL) betaopc(OP,RA,((LABEL-(.+4))>>2),RC) 
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Example Assembly 
ADDC(R3,1234,R17) 

betaopc(0x30,R3,1234,R17) 

expand ADDC macro with RA=R3, C=1234, RC=R17 

.align 4 
LONG((0x30<<26)+((R17%32)<<21)+((R3%32)<<16)+(1234 % 0x10000)) 

expand betaopc macro with OP=0x30, RA=R3, CC=1234, RC=R17 

WORD(0xC22304D2)   WORD(0xC22304D2 >> 16)  

expand LONG macro with X=0xC22304D2 

0xC22304D2%256   (0xC22304D2/256)%256   WORD(0xC223)  

expand first WORD macro with X=0xC22304D2 

0xD2   0x04   0xC223%256   (0xC223/256)%256  

evaluate expressions, expand second WORD macro with X=0xC223 

0xD2   0x04   0x23   0xC2 

evaluate expressions 
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UASM Macros for Beta Instructions 

| BETA Instructions: 
.macro ADD(RA,RB,RC)  betaop(0x20,RA,RB,RC) 
.macro ADDC(RA,C,RC)  betaopc(0x30,RA,C,RC) 
.macro AND(RA,RB,RC)   betaop(0x28,RA,RB,RC) 
.macro ANDC(RA,C,RC)   betaopc(0x38,RA,C,RC) 
.macro MUL(RA,RB,RC)  betaop(0x22,RA,RB,RC) 
.macro MULC(RA,C,RC)  betaopc(0x32,RA,C,RC) 

• 
• 

• 
.macro LD(RA,CC,RC)  betaopc(0x18,RA,CC,RC)   
.macro LD(CC,RC)  betaopc(0x18,R31,CC,RC) 
.macro ST(RC,CC,RA)  betaopc(0x19,RA,CC,RC) 
.macro ST(RC,CC)  betaopc(0x19,R31,CC,RC) 

• 
• 

• 
.macro BEQ(RA,LABEL,RC) betabr(0x1C,RA,RC,LABEL) 
.macro BEQ(RA,LABEL)  betabr(0x1C,RA,r31,LABEL) 
.macro BNE(RA,LABEL,RC) betabr(0x1D,RA,RC,LABEL) 
.macro BNE(RA,LABEL)  betabr(0x1D,RA,r31,LABEL) 
 

Convenience 
macros so we 
don’t have to 
specify R31… 

(defined in beta.uasm) 
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Pseudoinstructions 
•  Convenience macros that expand to one or more real instructions 
•  Extend set of operations without adding instructions to the ISA 

//	Convenience	macros	so	we	don’t	have	to	use	R31	
.macro	LD(CC,RC) 	 	LD(R31,CC,RC)	
.macro	ST(RA,CC) 	 	ST(RA,CC,R31)	
.macro	BEQ(RA,LABEL) 	BEQ(RA,LABEL,R31)			
.macro	BNE(RA,LABEL) 	BNE(RA,LABEL,R31)			
	
.macro	MOVE(RA,RC)	 	ADD(RA,R31,RC) 	//	Reg[RC]	<-	Reg[RA]	
.macro	CMOVE(CC,RC) 	ADDC(R31,C,RC) 	//	Reg[RC]	<-	C	
.macro	COM(RA,RC) 	 	XORC(RA,-1,RC) 	//	Reg[RC]	<-	~Reg[RA]	
.macro	NEG(RB,RC) 	 	SUB(R31,RB,RC) 	//	Reg[RC]	<-	-Reg[RB]	
.macro	NOP() 	 	ADD(R31,R31,R31) 	//	do	nothing	

	
.macro	BR(LABEL) 	 	BEQ(R31,LABEL) 	//	always	branch	
.macro	BR(LABEL,RC) 	BEQ(R31,LABEL,RC) 	//	always	branch	 		
.macro	CALL(LABEL)	 	BEQ(R31,LABEL,LP) 	//	call	subroutine	
.macro	BF(RA,LABEL,RC) 	BEQ(RA,LABEL,RC) 	//	0	is	false	
.macro	BF(RA,LABEL) 	BEQ(RA,LABEL)	
.macro	BT(RA,LABEL,RC) 	BNE(RA,LABEL,RC) 	//	1	is	true	
.macro	BT(RA,LABEL) 	BNE(RA,LABEL)	

	
//	Multi-instruction	sequences	
.macro	PUSH(RA) 	 	ADDC(SP,4,SP)		ST(RA,-4,SP)	
.macro	POP(RA) 	 	LD(SP,-4,RA)			ADDC(SP,-4,SP)	
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Factorial with Pseudoinstructions 

	N	=	12	
	ADDC(r31,	N,	r1)	
	ADDC(r31,	1,	r0)	

loop:	MUL(r0,	r1,	r0)	
	SUBC(r1,	1,	r1)	
	BNE(r1,	loop,	r31)	

	N	=	12	
	CMOVE(N,	r1)	
	CMOVE(1,	r0)	

loop:	MUL(r0,	r1,	r0)	
	SUBC(r1,	1,	r1)	
	BNE(r1,	loop)	

Before After 
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Raw Data 

•  LONG assembles a 32-bit value 
–  Variables 

–  Constants > 16 bits 

N: 	LONG(12)	
factN:	LONG(0xdeadbeef)	

	…	
Start:	

	LD(N,	r1)	
	CMOVE(1,	r0)	

loop:	MUL(r0,	r1,	r0)	
	SUBC(r1,	1,	r1)	
	BT(r1,	loop)	
	ST(r0,	factN)	

Symbol Value 

N 0 

factN 4 

Symbol table 

…	

LD(r31,	N,	r1) 

LD(31,	0,	1) 

Reg[1]	ß	Mem[Reg[31]	+	0]	
							ß	Mem[0]	
							ß	12	
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UASM Expressions and Layout 

•  Values can be written as expressions 
–  Assembler evaluates expressions, they are not translated to 

instructions to compute the value! 

•  The “.” (period) symbol means the next byte address to be 
filled 
–  Can read or write to it 
–  Useful to control data layout or leave empty space (e.g., for 

arrays) 

 
.	=	0x100 	 	 	//	Assemble	into	0x100	
LONG(0xdeadbeef)	
k	=	. 	 	 	 	//	Symbol	“k”	has	value	0x104	
LONG(0x00dec0de)	
.	=	.+16 	 	 	//	Skip	16	bytes	
LONG(0xc0ffeeee)	

A	=	7	+	3	*	0x0cc41	
B	=	A	-	3	
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Summary: Assembly Language 

•  Low-level language, symbolic representation of 
sequence of bytes. Abstracts: 
–  Bit-level representation of instructions 

–  Addresses 

•  Elements: Values, symbols, labels, macros 
•  Values can be constants or expressions 

•  Symbols are symbolic representations of values 
•  Labels are symbols for addresses 

•  Macros are expanded to byte sequences: 
–  Instructions 

–  Pseudoinstructions (translate to 1+ real instructions) 

–  Raw data 

•  Can control where to assemble with “.” symbol 
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Universality? 

•  Recall: We say a set of Boolean gates is universal if 
we can implement any Boolean function using only 
gates from that set. 

 
•  What problems can we solve with a von Neumann 

computer? (e.g., the Beta) 
–  Everything that FSMs can solve? 

–  Every problem? 
–  Does it depend on the ISA? 

 

•  Needed: a mathematical model of computation 
–  Prove what can be computed, what can’t 
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Models of Computation 

The roots of computer science stem from 
the evaluation of many alternative 
mathematical “models” of computation to 
determine the classes of computations 
each could represent. 

An elusive goal was to find a universal 
model, capable of representing all 
practical computations... 

• switches 

• gates 

• combinational 
logic 

• memories 

• FSMs 

Are FSMs the ultimate 
digital computing 

device? 

We’ve got FSMs… 
what else do we need? 
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FSM Limitations 
Despite their usefulness and flexibility, there are common 
problems that cannot be solved by any FSM. For instance: 

Paren 
Checker 

“(()())”	 OK	

Paren 
Checker 

“(())())”	 Nix	

Well-formed Parentheses Checker: 

Given any string of coded left & 
right parens, outputs 1 if it is 
balanced, else 0. 

Simple, easy to describe. 

PROBLEM: Requires arbitrarily many states, 
depending on input.   Must "COUNT" 
unmatched  left parens. An FSM can only 
keep track of a finite number of unmatched 
parens: for every FSM, we can find a string it 
can’t check. 

NO! 

Alan Turing 

I know how 
to fix that! 

Can this problem be solved using an FSM??? 



6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #21 

Turing Machines 

Alan Turing was one of a group 
of researchers studying 
alternative models of 
computation. 
 
He proposed a conceptual model 
consisting of an FSM combined 
with an infinite digital tape that 
could be read and written at 
each step. 
• encode input as symbols on tape 
• FSM reads tape/writes symbols/ 
changes state until it halts 

• Answer encoded on tape 
 
Turing’s model (like others of the 
time) solves the "FINITE" problem 
of FSMs. 

S1 

1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 

S2 

0,(1,R) 

0,(1,L) 

1,Halt 

1,(1,L) 

Bounded tape configuration 
can be expressed as a 
(large!) integer 

FSMs can be enumerated and 
given a (very large) integer index. 

We can talk about TM 347 
running on input 51, producing  
an answer of 42. 
TMs as integer functions: 
               y = TMI[x] 
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Other Models of Computation… 

Turing Machines [Turing] 

FSM  i 

0 1 1 0 0 0 1 0 0 

Alan Turing 

Recursive Functions [Kleene] 
F(0,x) ≡ x
F(1+y,x) ≡ 1+F(x,y) 

(define (fact n) 
  (... (fact (- n 1)) ...) 

Stephen 
Kleene 

Lambda calculus [Church, Curry, Rosser...] 

λ x. λ y.xxy 

(lambda(x)(lambda(y)(x (x y)))) 

Alonzo 
Church 

Production Systems [Post, Markov] 

α   →   β 
IF pulse=0 THEN 
   patient=dead 

Emile Post 
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Computability 
FACT: Each model studied is capable of computing exactly the 
same set of integer functions! 
 

Proof Technique: 
Constructions that translate between models 

 
BIG IDEA: 

Computability, independent of computation scheme chosen 

Church's Thesis: 
 

Every discrete function computable by ANY  
realizable machine is computable by some 
Turing machine. 
 

f(x) computable ⇔ for some k, all x 
 f(x) = Tk[x] 

 

unproved, but 
universally 
accepted... 
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FSM 

0 1 1 0 0 0 1 0 0 

Multiplication 

FSM 

0 1 1 0 0 0 1 0 0 

Sorting 

FSM 

0 1 1 0 0 0 1 0 0 

Factorization FSM 

0 1 1 0 0 0 1 0 0 

Primality Test 

Is there an alternative to 
infinitely many ad-hoc Turing 
Machines? 
 

“special-purpose” 
      Turing Machines.... 

meanwhile... 

Turing machines Galore! 
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Here’s an interesting function to explore: the Universal 
function, U, defined by 

SURPRISE!  U is computable by a Turing Machine: 

TU 
k 

j Tk[j] 

In fact, there are infinitely many such machines.  Each is 
capable of performing any computation that can be 
performed by any TM!  

U(k, j) = Tk[j] 

Could this be computable??? 

it sure would be 
neat to have a 
single, general-
purpose 
machine... 

The Universal Function 
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Universality 

TU 
k 

j Tk[j] 

What’s going on here? 

k encodes a “program” – a description 
of some arbitrary machine. 

j encodes the input data to be used. 

TU interprets the program, emulating 
its processing of the data! 

KEY IDEA: Interpretation.  
Manipulate coded representations  of 
computing machines, rather than the 
machines themselves. 
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Turing Universality 

The Universal Turing Machine is the paradigm for modern 
general-purpose computers! 

Basic threshold test:  Is your computer Turing Universal ? 
•  If so, it can emulate every other Turing machine! 
•  Thus, your computer can compute any computable 

function 

To show your computer is Universal: demonstrate that it can 
emulate some known UTM. 

•  Actually given finite memory, can only emulate UTMs + 
inputs up to a certain size 

•  This is not a high bar: conditional branches (BEQ) and 
some simple arithmetic (SUB) are enough. 
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Coded Algorithms: Key to CS 
data vs hardware 

Algorithms as data: enables 
COMPILERS: analyze, optimize, transform behavior 

SOFTWARE ENGINEERING: 
Composition, iteration, 
abstraction of coded behavior 

       F(x) = g(h(x), p((q(x))) 

TCOMPILER-X-to-Y[PX] = PY, such that TX[PX, z] = TY[PY, z] 

Px 

Py 

Pgm 

Pgm 

PLINUX PJade 

Pgm 
Pgm 

Pgm 

LANGUAGE DESIGN: Separate 
specification from implementation 

•  C, Java, JSIM, Linux, ... all run on 
X86, Sun, ARM, JVM, CLR, ... 

•  Parallel development paths: 
•  Language/Software design 
•  Interpreter/Hardware design 
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Uncomputability (!) 

Uncomputable functions: There are well-defined discrete 
functions that a Turing machine cannot compute 

–  No algorithm can compute f(x) for arbitrary x in finite number of 
steps 

–  Not that we don’t know algorithm - can prove no algorithm exists 

–  Corollary: Finite memory is not the only limiting factor on 
whether we can solve a problem 

The most famous uncomputable function is the so-called 
Halting function, fH(k, j), defined by: 

      fH(k, j)  =  1  if Tk[j] halts; 

                      0   otherwise. 

fH(k, j) determines whether the kth TM halts when given a tape 
containing j. 
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If fH is computable, it is equivalent to some TM (say, TH): 

TH 

k 

j 
1 iff Tk[j] halts, 
else 0 

Then TN (N for “Nasty”), which must be computable if TH is: 

TN 

TH ? 
1 

0 

LOOP 

HALT 

TN[x]:  LOOPS if Tx[x] halts; 
       HALTS if Tx[x] loops 

Finally, consider giving N as an argument to TN: 

TN[N]:  LOOPS if TN[N] halts; 
       HALTS if TN[N] loops 

TN can’t be 
computable, hence 
TH can’t either! 

x 

Why fH is Uncomputable 


