

Data Structures and Algorithms (6)

Instructor: Ming Zhang Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook)

https://courses.edx.org/courses/PekingX/04830050x/2T2014/

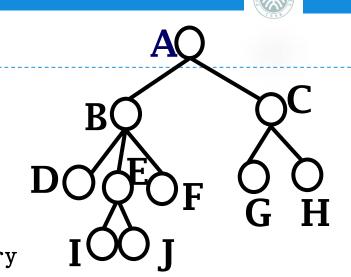
Chapter 6 Trees

Chapter 6 Trees

- General Definitions and Terminology of Tree
 - Trees and Forest
 - Equivalent Transformation between a Forest and a Binary Tree
 - Abstract Data Type of Tree
 - General Tree Traversals
- Linked Storage Structure of Tree
- Sequential Storage Structure of Tree

2

• K-ary Trees

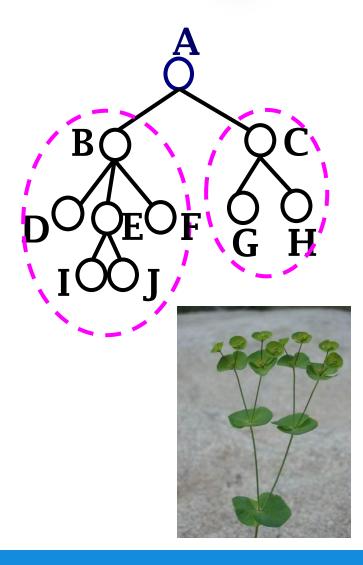


Trees

6.1 General Definitions and Terminology of Tree

Trees and Forest

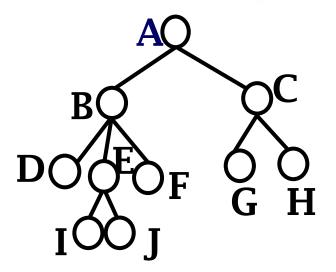
- A tree T is a finite set of one or more nodes :
 - there is one specific node R, called the root of T
 - If the set T-{R} is not empty, these nodes are partitioned into m > 0 disjoint finite subsets T₁, T₂, ..., T_m, each of which is a tree. The subsets T_i are said to be subtrees of T.
 - Directed ordered trees: the relative order of subtrees is important
- An ordered tree with degree 2 is not a binary tree
 - After the first child node is deleted
 - The second child node will take the first child node's place



Chapter 6Trees6.1 General Definitions and Terminology of Tree

Logical Structure of Tree

- A finite set K of n nodes, and a relation r satisfying the following conditions:
 - There is a unique node $k_0 \in K$, who has no predecessor in relation r.
 - Node k_0 is called the root of the tree.
 - Except k₀, all the other nodes in K has a unique predecessor in relation r
- An example as in the figure on the right
 - Node set K = { A, B, C, D, E, F, G, H, I, J }
 - The relation on K: r = { <A, B>, <A, C>, <B, D>, <B, E>, <B, F>, <C, G>, <C, H>, <E, I>, <E, J> }

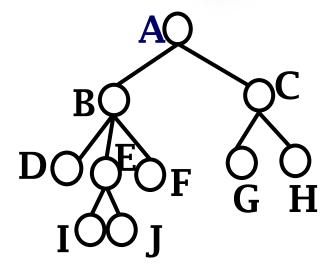


Trees

6.1 General Definitions and Terminology of Tree

Terminology of Tree

- Node
 - Child node, parent node, the first child node
 - If <k, k'> ∈ r, we call that k is the parent node of k', and k' is the child node of k
 - Sibling node, previous/next sibling node
 - If $\langle k, k' \rangle \in r$ and $\langle k, k'' \rangle \in r$, we call k' and k'' are sibling nodes
 - Branch node, leaf node
 - Nodes who have no subtrees are called leaf nodes
 - Other nodes are called branch nodes



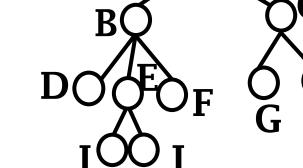
Trees

6.1 General Definitions and Terminology of Tree

Terminology of Tree

• Edge

- The ordered pair of two nodes is called an edge
- Path, path length
 - Except the node k_0 , for any other node $k \in K$, there exists a node sequence k_0 , k_1 , ..., k_s , s.t. k_0 is the root node, k_s =k, and $\langle k_{i-1}, k_i \rangle \in r$ (1 $\leq i \leq s$).



- This sequence is called a path from the root node to node k, and the path length (the total number of edges in the path) is s
- Ancestor, descendant

6

- If there is a path from node k to node k_s, we call that k is an ancestor of k_s, and k_s is a descendant of k

Trees

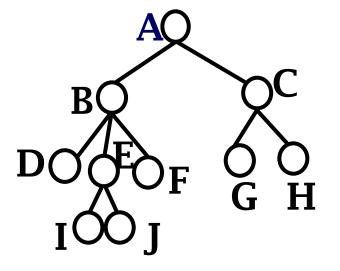
6.1 General Definitions and Terminology of Tree

Terminology of Tree

- **Degree**: The degree of a node is the number of children for that node.
- **Level**: The root node is at level 0

7

- The level of any other node is the level of its parent node plus 1
- **Depth**: The depth of a node M in the tree is the path length from the root to M.
- **Height**: The height of a tree is the depth of the depest node in the tree plus 1.



Different Representations of Trees

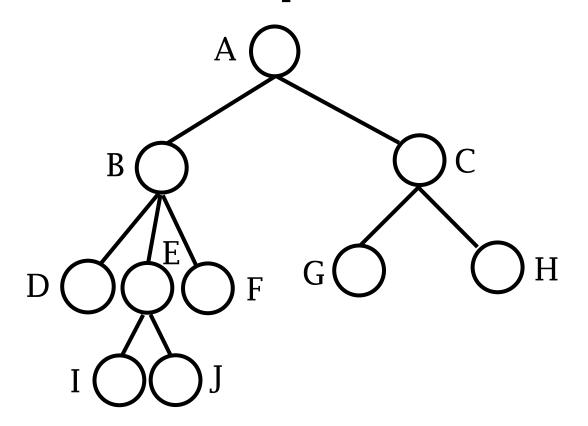
- Classic node-link representation
- Formal (set theory) representation
- Venn diagram representation
- Outline representation

8

Chapter 6

• Nested parenthesis representation

Node-Link Representation



Trees

6.1 General Definitions and Terminology of Tree

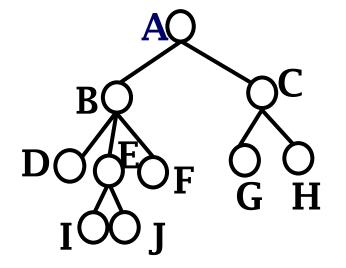
Formal Representation

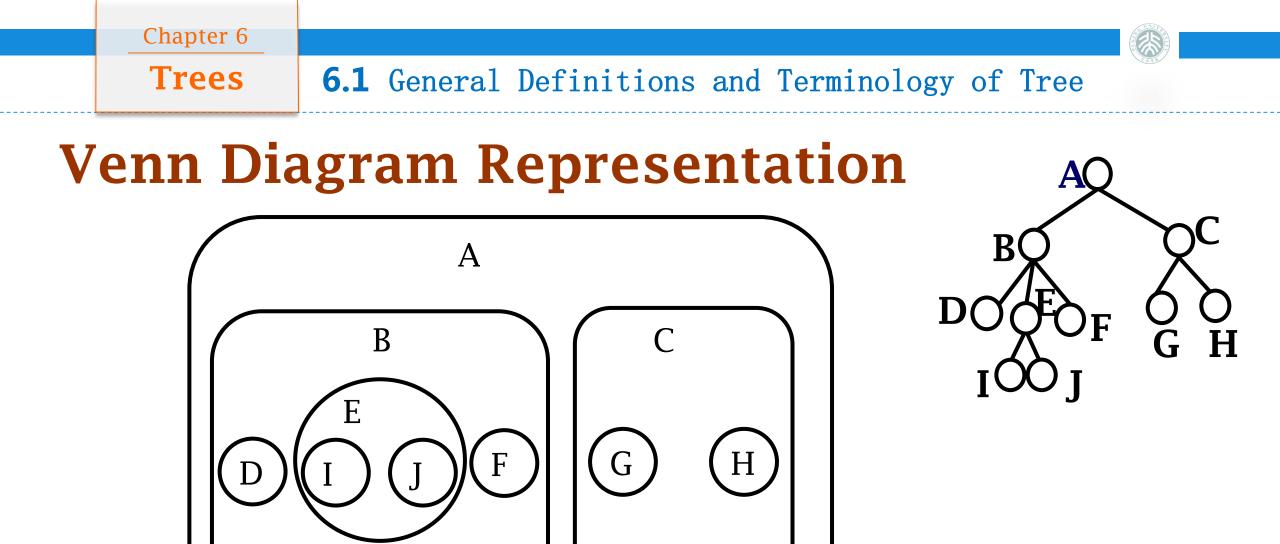
The logical structure of a Tree is: Node set:

$$K = \{A, B, C, D, E, F, G, H, I, J\}$$

The relation on K:

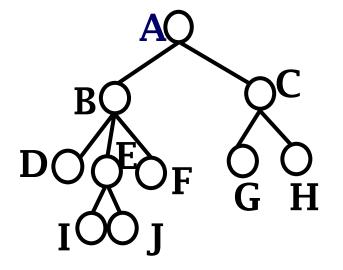
N = {<A, B>, <A, C>, <B, D>, <B, E>, <B, F>, <C, G>, <C, H>, <E, I>, <E, J>}





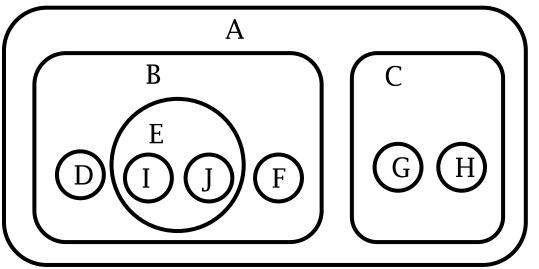
Nested Parenthesis Representation

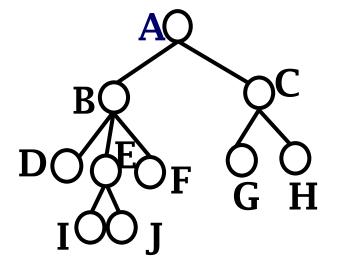
Chapter 6



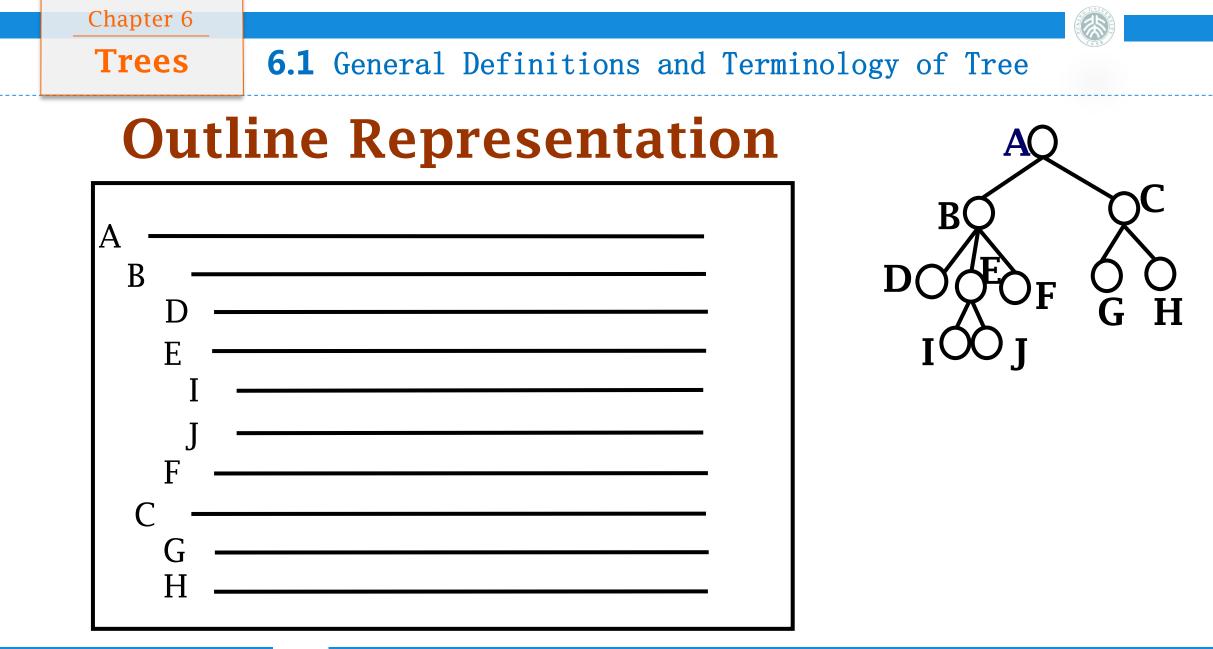
(A(B(D)(E(I)(J))(F))(C(G)(H)))

The conversion from Venn diagram to nested parenthesis





(A(B(D)(E(I)(J))(F))(C(G)(H)))



Trees

6.1 General Definitions and Terminology of Tree

Book catalogue, Dewey representation

6 Trees

6.1 General Definitions and Terminology of Tree

- **6.1.1** Tree and Forest
- **6.1.2** Equivalence Transformation between a Forest and a Binary Tree
- **6.1.3** Abstract Data Type of the Tree **6.1.4** General Tree Traversals

6.2 Linked Storage Structure of Tree

- **6.2.1** List of Children
- **6.2.2** Static Left-Child/Right-Sibling representation
- 6.2.3 Dynamic representation
- 6.2.4 Dynamic Left-Child/Right-Sibling representation
- **6.2.5** Parent Pointer representation and its Application in Union-Find Sets

6.3 Sequential Storage Structure of Tree 6.3.1 Preorder Sequence with rlink representation

- 6.3.2 Double-tagging Preorder Sequence representation6.3.3 Postorder Sequence with Degree representation
- 6.3.4 Double-tagging Levelorder Sequence representation
- **6.4** K-ary Trees
- **6.5** Knowledge Conclusion of Tree

Trees6.1 General Definitions and Terminology of Tree

Equivalent Transformation between a Forest and a Binary Tree

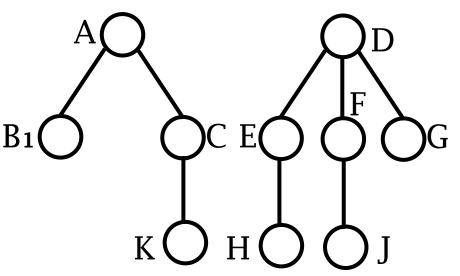
Forest: A forest is a collection of one or more disjoint trees. (usually ordered)

Chapter 6

- The correspondence between trees and a forests
 - Removing the root node from a tree, its subtrees become a forest.
 - Adding an extra node as the root of the trees in a forest, the forest becomes a tree.
- There is a one-to-one mapping between forests and binary trees

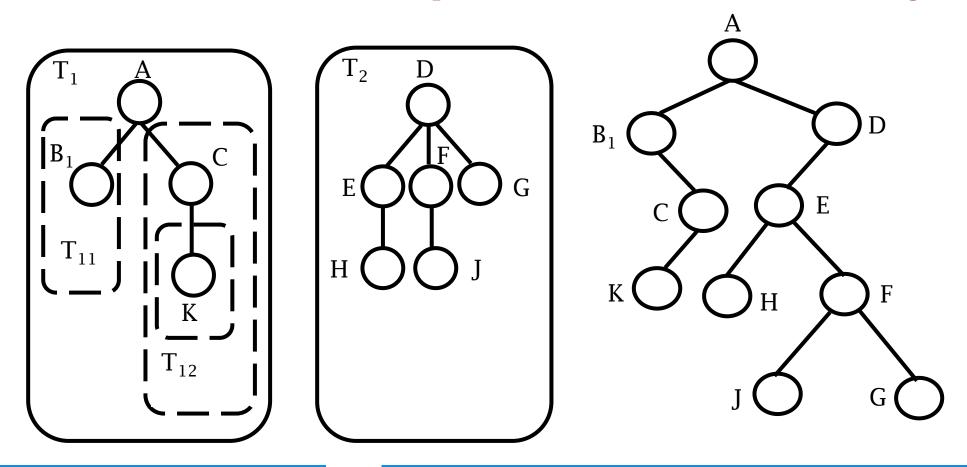
16

 So that all the operations on forests can be transformed to the operations on binary trees



Chapter 6Trees6.1 General Definitions and Terminology of Tree

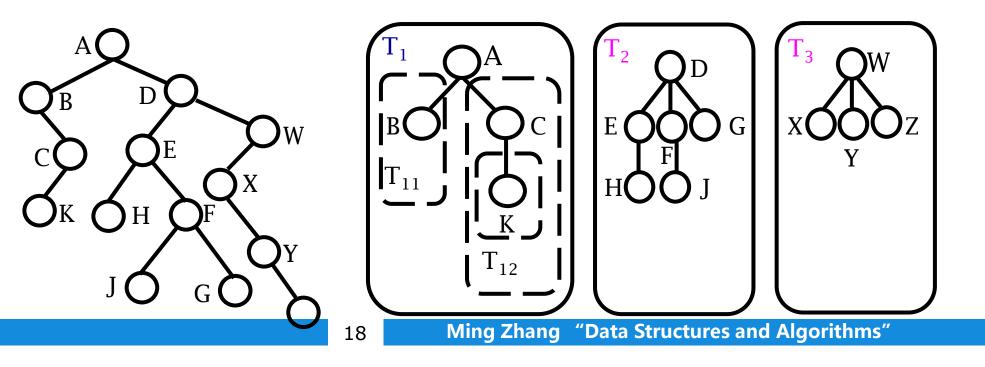
How to map a forest to a binary tree?



Trees 6.1 General Definitions and Terminology of Tree

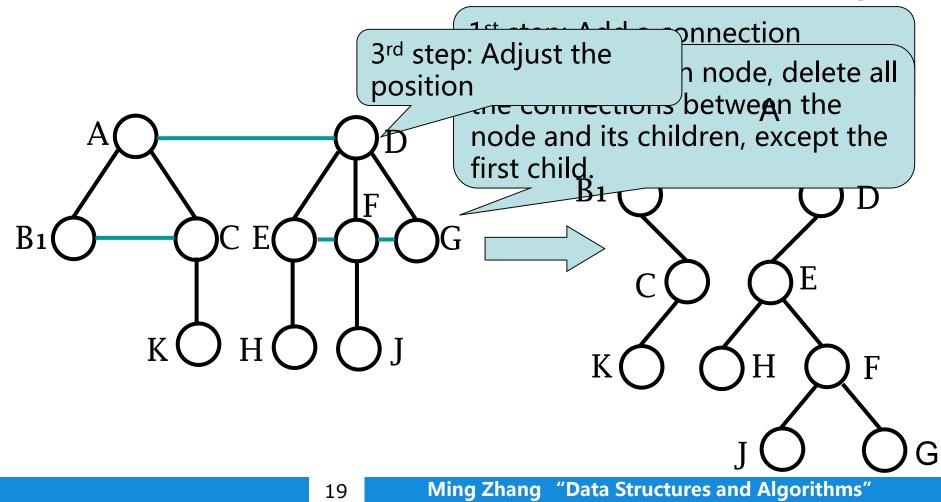
The transformation from a forest to a binary tree

- **D** Ordered set $F = \{T_1, T_2, ..., T_n\}$ is a forest with trees $T_1, T_2, ..., T_n$. We transform it to a binary tree B(F) recursively:
 - □ If F is empty (i.e., n=0), B(F) is an empty binary tree.
 - □ If F is not empty (i.e., $n \neq 0$), the root of B(F) is the root W₁ of the first tree T₁ in F;
 - **u** the left subtree of B(F) is the binary tree B(F_{W1}), where F_{W1} is a forest consisting of W_1 's subtrees in T_1 ;
 - **u** the right subtree of B(F) is the binary tree B(F'), where $F' = \{T_2, ..., T_n\}$.



Trees 6.1 General Definitions and Terminology of Tree

Convert a forest to a binary tree

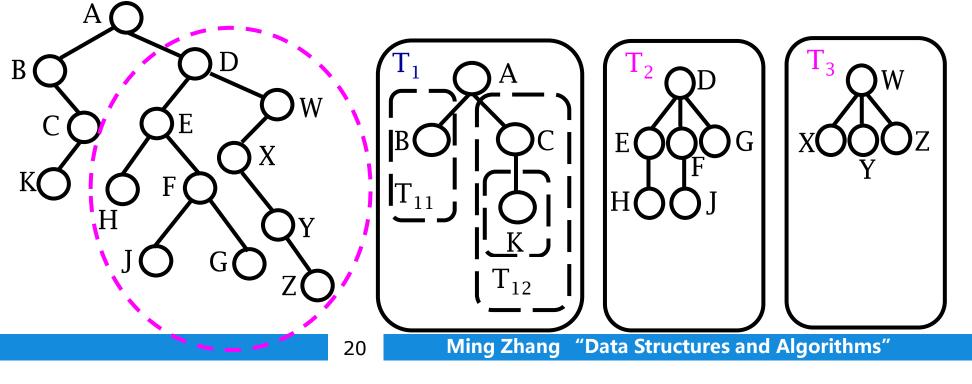


Chapter 6

Chapter 6 **6.1** General Definitions and Terminology of Tree Trees

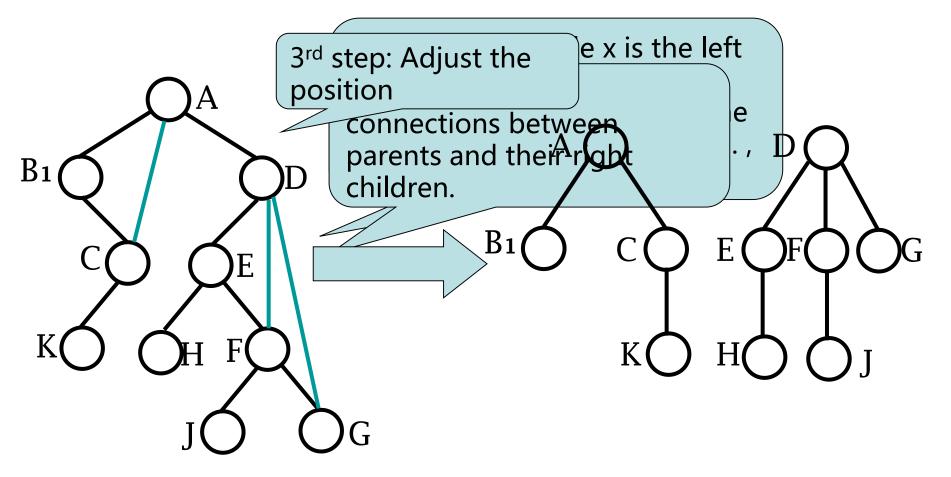
The transformation from a binary tree to a forest

- Assume B is a binary tree, r is the root of B, B_L is the left sub-tree of r, B_R is the right sub-tree of r. We can transform B to a corresponding forest F(B) as follows,
 If B is empty, F(B) is an empty forest.
 If B is not empty, F(B) consists of trees {T₁} ∪ F(B_R), where the root of T₁ is r, the subtrees of r are F(B_L) ٠



Trees 6.1 General Definitions and Terminology of Tree

Convert a binary tree to a forest



Chapter 6

Questions

1. Is a tree also a forest?

1. Why do we establish the one-toone mapping between binary trees and forests? Ming Zhang "Data Structures and Algorithms"

Data Structures and Algorithms Thanks

the National Elaborate Course (Only available for IPs in China) http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/ Ming Zhang, Tengjiao Wang and Haiyan Zhao Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)