
Data Structures
and Algorithms（11）

Instructor: Ming Zhang
Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao

Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook)

https://courses.edx.org/courses/PekingX/04830050x/2T2014/

Ming Zhang "Data Structures and Algorithms"

2

目录页

Ming Zhang “Data Structures and Algorithms"

Chapter 11

Indexing

Chapter 11 Indexing
• Basic Concepts

• 11.1 Linear Indexing

• 11.2 Static Indexing

• 11.3 Inverted Indexing

• 11.4 Dynamic Indexing

• 11.5 Bit Indexing

• 11.6 Red-Black Tree

Indexing

Ming Zhang “Data Structures and Algorithms"

Entry-Sequenced File

•Entry-sequenced file
– Storing the records in the order when they enter the system
– Entry-sequenced file is like an un-ordered linear list on disk

Thus it does not support efficient access.

目录页

Chapter 11

Indexing Indexing

Ming Zhang “Data Structures and Algorithms"

Primary Key

• Primary key represents each record in the
database uniquely
– e.g., primary key of a company staff system

could be the id card number.

– If there is only primary key, access would be
inflexible.

目录页

Chapter 11

Indexing Indexing

Ming Zhang “Data Structures and Algorithms"

Secondary Key

• Secondary key ： keys that could appear
repeatedly in the database
•Secondary key indexing associates a
secondary key with primary keys of records
that contain this secondary key

– Most indexing is accomplished using
secondary key.

目录页

Chapter 11

Indexing Indexing

Ming Zhang “Data Structures and Algorithms"

Indexing
• Indexing associates a key with the locations where

the corresponding data is stored.
– (key, pointer)
– Pointers point to full record in the database.

• Index file is the type of files that keeps track of
such association.

• Indexing is crucial in constructing large-size
database.
– Efficient access
– Insertion, update, deletion

目录页

Chapter 11

Indexing Indexing

Ming Zhang “Data Structures and Algorithms"

Index File

• A main file can have several index files
– Each index file usually supports one key

– Do not need to re-sort the main file

• One can access key values in the main file
efficiently by using index file.

目录页

Chapter 11

Indexing Indexing

Ming Zhang “Data Structures and Algorithms"

Dense Indexing vs Sparse Indexing

• Dense indexing: construct an entry for each record

– Main file is not sorted by keys.

• Sparse indexing: construct an entry for each group of records.

– Records are stored in the order of keys.

– Records are divided into groups (blocks)

Indexing pointer points to the starting location of a group of

records (a block).

目录页

Chapter 11

Indexing Indexing

Ming Zhang “Data Structures and Algorithms"

11.1 Linear Indexing

• Basic Concepts
• Pros & cons
• Secondary Linear Indexing

目录页

Chapter 11

Indexing Indexing

Ming Zhang “Data Structures and Algorithms"

Linear Indexing File
• Sort by keys.

• Pointers in indexing file point to the starting location in which records are stored, or the
starting location in which the primary keys are stored.

92 73 37 55

Records in the

Database

Linear Indexing File

目录页

Chapter 11

Indexing Indexing

11Ming Zhang “Data Structures and Algorithms"

Problems of Linear Indexing

• Linear indexing is too large, and needs to be stored on the disks

• One indexing process may involve several disk accesses, thus slows
down the indexing.

–Secondary linear indexing

• Updating linear indexing

–When inserting or deleting records in the database.

11.1 Linear Indexing目录页

Chapter 11

Indexing

Ming Zhang “Data Structures and Algorithms"

Secondary Linear Indexing
• e.g., each block in the disks is 1024 bytes, each (key, pointer) entry

needs 8 bytes.
• 1024 / 8 = 128

• Each block can store 128 such entries.

– Suppose data file consists of 10000 records.
– Dense main linear indexing consists of 10000 records.

– 10000/128 = 78.1

– Thus main linear indexing takes up 79 blocks.

– Accordingly, secondary linear indexing file consists of 79 entries.

– This secondary linear indexing file can be stored on a single block.

11.1 Linear Indexing目录页

Chapter 11

Indexing

Ming Zhang “Data Structures and Algorithms"

An Example of Secondary Linear Indexing

• Key is the same as the one of the first record in the corresponding disk.

• Pointer points to the starting location of the corresponding disk.

secondary index

main index

11.1 Linear Indexing目录页

Chapter 11

Indexing

Disk block

目录页

Ming Zhang “Data Structures and
Algorithms"

第十一章

索引

• 索引

第十一章

e.g., find record with key of 2555

1. Read secondary index file into memory.

2. Find the location of the main index containing the largest key no larger than

2555 by bisection method--------record with key of 2003

3. Find the disk in which the secondary index file is stored

according to the pointer of record 2003, and read the

corresponding disk into memory.

4. Determine the location by bisection method.

5. Read the record into the memory and thus finish one indexing access.

pointer with key of 2555

record with key of 2555

Ming Zhang “Data Structures and Algorithms"

11.2 Static Indexing
Static Indexing
•constructed when records are read
•is stable once constructed through the whole process of system
running (inserting/deleting records)
•is allowed to be altered only when file re-orgainzation

Multiway Tree
•We usually use multiway tree instead of binary tree when organizing
indexing
•reduce visit time of external memory significantly

Indexing目录页

Chapter 11

Indexing

16

目录页

Ming Zhang “Data Structures and
Algorithms"

第十一章

索引

• 索引

第十一章binary tree converted to

multiway tree

visit indexing block twice

visit external memory once

Ming Zhang “Data Structures and Algorithms"

ISAM

•Index Sequential Access Method
– designed for disk accessing

– use multi-level indexing

• main index

• cylinder index

• track index

•Before using B+ tree based VSAM (Virtual Storage
Access Method), IBM used to use ISAM generally.

11.2 Static Indexing目录页

Chapter 11

Indexing

18Ming Zhang “Data Structures and Algorithms"

main index

cylinder index

track index

basic area

spilling area

11.2 Static Indexing目录页

Chapter 11

Indexing

Ming Zhang “Data Structures and Algorithms"

track index

basic area

spilling area

track index

basic area

spilling area

11.2 Static Indexing目录页

Chapter 11

Indexing

Ming Zhang “Data Structures and Algorithms"Ming Zhang “Data Structures and Algorithms"

Ming Zhang “Data Structures and Algorithms"

Discussion

• Under what circumstances is secondary indexing needed?

• How to set the size of multiway tree?

11.2 Static Indexing目录页

Chapter 11

Indexing

21

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 11

Indexing

Contents

• Basic Concepts

• 11.1 Linear Indexing

• 11.2 Static Indexing

• 11.3 Inverted Indexing

• 11.4 Dynamic Indexing

• 11.5 Bit Indexing

• 11.6 Red-Black Tree

Indexing

Ming Zhang “Data Structures and Algorithms”

11.3 Inverted Indexing

• 11.3.1 Attribute based inverted indexing
– Require that certain attribute meet certain conditions (do not

search by keys)

– Construct index according to attribute

• 11.3.2 Text based inverted indexing
– Construct index according to words in the text

目录页

Chapter 11

Indexing Indexing

Ming Zhang “Data Structures and Algorithms”

Table of Teacher database

EMP# NAME
Departmen

t
Profession Specialty Address

0155 Alice Math Prof Algebra C105

0421 Bob Language TA English E310

0208 Cathy Physics TA Mechanics C211

0211 Danny Physics Lecturer Atomic Physics D508

0132 Eddie Math TA Geometry E220

0119 Frank Math Lecturer Algebra B102

0330 Gary IT Prof Software A108

0455 Henry Language Lecturer French A225

0310 Irene IT Lecturer English B423

0341 Jack IT TA Computer Science F406

……

目录页

Chapter 11

Indexing 11.3 Inverted Indexing

Ming Zhang “Data Structures and Algorithms”

11.3.1 Attribute based inverted indexing

• Construct index according to attribute, i.e., inverted
indexing.

• (attr, ptrList)
– （attribute,pointers pointing to records of such attribute）

– pointers could be key, or locations of records

• Reverse the order of the records, thus called inverted indexing

• Attribute are usually discrete
– use B tree instead for continuous indexing

• Inverted file: file with inverted indexing

目录页

Chapter 11

Indexing 11.3 Inverted Indexing

Ming Zhang “Data Structures and Algorithms”

Inverted Table of Teacher Database

Department list EMP#

Math

Physics

IT

Language

0155, 0132, 0119

0208, 0211

0330, 0310, 0341

0421, 0455

Profession list EMP#

Prof

Lecturer

TA

0155, 0330

0211, 0119, 0455,

0310

0421, 0208, 0132,

0341
Specialty list EMP#

Algebra

Geometry

Mechanics

Atomic Physics

Software

English

French

0155, 0119

0132

0208

0211

0330, 0341

0421, 0310

0455

目录页

Chapter 11

Indexing 11.3 Inverted Indexing

Ming Zhang “Data Structures and Algorithms”

Pros and Cons

• Pros:
– Search can be performed efficiently by attribute

based searching

• Cons:
– more storage cost

– slow down the updating operation

目录页

Chapter 11

Indexing 11.3 Inverted Indexing

Ming Zhang “Data Structures and Algorithms”

11.3.2 Text based inverted indexing

• Text Indexing means "constructing an index to
search text efficiently"

• Approaches

– word index

– full-text index

目录页

Chapter 11

Indexing 11.3 Inverted Indexing

Ming Zhang “Data Structures and Algorithms”

Word Index

• Basic Idea

– Treat the text as a set of words and symbols, extract
keywords from it, and construct an index for fast
indexing by using these keywords.

• Suitable for many types of text, especially those that could
easily be parsed to a set of words

– English

– Oriental languages like Chinese require segmentation.

目录页

Chapter 11

Indexing 11.3 Inverted Indexing

Ming Zhang “Data Structures and Algorithms”

Full-Text Index

• Basic idea:
– Treat the text as a long string

– Store the starting locations of substrings in the index

– Searching can be performed for every substring

• Construct index for each character and indexing are not
limited to key words

• More space required

目录页

Chapter 11

Indexing 11.3 Inverted Indexing

Ming Zhang “Data Structures and Algorithms”

Word index is the most common used among inverted index

• Word index is the most common used

• A sorted list of keywords

– Each keyword points to an inverted index posting list）

• points to the document set in which the keyword appears

• locations in the documents

目录页

Chapter 11

Indexing 11.3 Inverted Indexing

Ming Zhang “Data Structures and Algorithms”

Examples of Inverted Indexing

Text: consists of 6 documents, each of which is a long string

Pease porridge hot, please porridge cold,

ID Content

1

Pease porridge in the pot,

Nine days old.

Some like it hot, some like it cold,

Some like it in the pot,

Nine days old.

2

3

4

5

6

目录页

Chapter 11

Indexing 11.3 Inverted Indexing

目录页

Ming Zhang “Data Structures and
Algorithms”

第十一章

索引

• 索引

第十一章 Inverted Index

1

2

3

4

5

6

7

8

9

10

11

12

13

ID Word （doc id，loc）

cold

days

hot

in

like

nine

old

pease

porridge

it

pot

some

the

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

Deal with the words

in each document

in turn

（2,1）

Ming Zhang “Data Structures and Algorithms”

Constructing Inverted Index File

1. Divide the text into several documents.

Division depends on requirements of programs

Fixed length of blocks, paragraghs, or even a set
of documents

目录页

Chapter 11

Indexing 11.3 Inverted Indexing

Ming Zhang “Data Structures and Algorithms”

Constructing Inverted Index File

2. Assign a group of keywords to each record

Extract keywords from records

manually or automatically
Stopwords

Stemming

Segmentation

目录页

Chapter 11

Indexing 11.3 Inverted Indexing

Ming Zhang “Data Structures and Algorithms”

Chinese Segmentation

我知道你不知道我知道你不知道我知道你不知道

•我知道，你不知道。我知道，你不知道我知道，你不知道

•我知道你，不知道我。知道你不知道我，知道你不知道

•我，知道你不知道我知道。你，不知道我知道你不知道

目录页

Chapter 11

Indexing 11.3 Inverted Indexing

36

目录页

Ming Zhang “Data Structures and
Algorithms”

第十一章

索引

• 索引

第十一章

Ming Zhang “Data Structures and Algorithms”

Constructing Inverted Index File

3. Constructing inverted index and inverted index file

Construct the set of keywords

Construct inverted index for each keyword

Write all the inverted indexes into files

目录页

Chapter 11

Indexing 11.3 Inverted Indexing

38Ming Zhang “Data Structures and Algorithms”

Searching keywords

• First, search the word in the inverted index file
• Second, if the keyword is found, then get the corresponding

inverted table and finally get the record.

• Usually other indexing structures(such as dictionary) are used

to index on keywords efficiently.

– Trie

– Hash

目录页

Chapter 11

Indexing 11.3 Inverted Indexing

Ming Zhang “Data Structures and Algorithms”

Pros and Cons

• Efficient indexing, suitable for text database system

• Indexing type that it supports is limited

– Key value (only can be keywords of documents)

– Inverted index might not be efficient

– High space cost

目录页

Chapter 11

Indexing 11.3 Inverted Indexing

Ming Zhang “Data Structures and Algorithms”

Discussion

• How to organize inverted index effectively?

• If a keyword appears more than once in the same

document, is it ok to merge its entries in the

inverted index?

目录页

Chapter 11

Indexing 11.3 Inverted Indexing

41Ming Zhang “Data Structures and algorithms"
Algorithms”

Content
• Basic concepts

• 11.1 Linear Indexing

• 11.2 Static Indexing

• 11.3 Inverted Indexing

• 11.4 Dynamic Indexing

– 11.4.1 B tree

– 11.4.2 Analysis of B tree

– 11.4.3 B+ tree

– 11.4.4 Comparison of B tree and B+ tree
• 11.5 Bit Indexing

• 11.6 Red-Black tree

目录页

Chapter 11

Indexing 11 Indexing

Ming Zhang “Data Structures and algorithms"
Algorithms”

Basic Concepts

• Structure of dynamic indexing
– The structure would change when

inserting/deleting records

• Objective
– Maintain high efficiency

• e.g. high searching efficiency

目录页

Chapter 11

Indexing 11.4 Dynamic Indexing

Ming Zhang “Data Structures and algorithms"
Algorithms”

• A type of Balanced Tree

11.4.1 B tree

B tree of order 3  2-3 tree

 18 33

12 23 30 48

24 20 21 31 10 15 45

47

50

52

目录页

Chapter 11

Indexing 11.4 Dynamic Indexing

Ming Zhang “Data Structures and algorithms"

Structure of m-rank B tree

 18 33

12 23 30 48

24 20 21 31 10 15 45

47

50

52

目录页

Chapter 11

Indexing 11.4.1 B Tree

Ming Zhang “Data Structures and algorithms"
Algorithms”

Properties of B tree
(1) The tree is balanced, and all leaves are on the same level.

(2) Each key value is unique, and the key values in a node are

divisions of its children.

(3) B tree puts (key value) related records on the same page,

making use of locality.

(4) It is guaranteed that certain proportion of the B tree is

occupied.

– Thus improve the memory utilization.

– Reduce disk visiting times when indexing and updating.

 18 33

12 23 30 48

24 20 21 31 10 15 45

47

50

52

目录页

Chapter 11

Indexing 11.4.1 B Tree

Ming Zhang “Data Structures and algorithms"
Algorithms”

Structure of nodes in B tree
A node with j key values and j+1 pointers in a B tree

is usually structured as below：

•Ki is key value, K1<K2<…<Ki，

•Pi is a pointer pointing to children nodes with key
values between Ki and Ki+1 .

•Other pointers?

 P0， K1， P1， K2， P2， …， Pj-1， Kj， Pj

目录页

Chapter 11

Indexing 11.4.1 B Tree

Ming Zhang “Data Structures and algorithms"
Algorithms”

(18,a1) (33,a2)

(10,a7) (15,a8) (20,a9) (24,a10) (31,a11) (45,a12) (50,a13)

(12,a3)
(23,a4) (30,a5)

(48,a6)

(key value, address of the inside file page)

Main File

Pointers are implied in B tree

目录页

Chapter 11

Indexing 11.4.1 B Tree

Main File

Ming Zhang “Data Structures and algorithms"”

2-3 tree = B tree of order 3

18 33

12 23 30 48

10 15 20 21 24 31 45 47 50 52

目录页

Chapter 11

Indexing 11.4.1 B Tree

Ming Zhang “Data Structures and algorithms"
Algorithms”

Search in a B tree

• 2 steps are performed alternately

– 1. Read the key values of the root, such as K1, …, Ki,
then search the key value in them

• if it isfound, then the search is completed

– 2. otherwise, if the key value is between Ki and Ki+1,
search in the node that pi points to.

• If pi is pointing to an external void node, then the
searching process is failed.

18 33

12 23 30 48

10 15 20 21 24 31 45 47 50 52

目录页

Chapter 11

Indexing 11.4.1 B Tree

50Ming Zhang “Data Structures and algorithms"
Algorithms”

Insertion in a B tree
• Need to maintain the properties of B tree, (rank, balance)

– 1) insert at the lowest level

– 2) if the current node overflows, then the node needs
to be split, and the intermediate key and new pointers
are inserted into the father node

– 3) if the father node also overflows, then the father
node also needs to be split

• Splitting might be transfered to the root (thus
increasing the height of the tree)

目录页

Chapter 11

Indexing 11.4.1 B Tree

目录页

Ming Zhang “Data Structures and
algorithms" Algorithms”

第十一章

索引

• 索引

第十一章
Insertion in a B tree

• External void node (failed searching) is

on the I th level, and the inserted key

value is on the I-1 th level

B tree of order 3: insert 14

18 33

12 23 30 48

10 20 21 24 31 45 47 50 5215

14

I th level

I-1 th level

Ming Zhang “Data Structures and algorithms"
Algorithms”

m=3, insert 55

18 33

12 23 30 48

10 14 15 20 21 24 31 45 47 50 5250 52

55

目录页

Chapter 11

Indexing 11.4.1 B Tree

Ming Zhang “Data Structures and algorithms"
Algorithms”

m=3, the leaf node split, raise 52 to its father node

18 33

12 23 30 48

10 14 15 20 21 24 31 45 47 50 5250 55

目录页

Chapter 11

Indexing 11.4.1 B Tree

Ming Zhang “Data Structures and algorithms"
Algorithms”

insert 19, causing the root of the B tree of order 3 to split

18 33

12 23 30 48 52

10 14 15 20 21 24 31 45 47 50

19

19 20 21 55

目录页

Chapter 11

Indexing 11.4.1 B Tree

Ming Zhang “Data Structures and algorithms"
Algorithms”

m=3, the leaf splits

18 33

12 23 30

10 14 15 24 31 19 20 21 19 21

23 30

20

48 52

45 47 50 55

目录页

Chapter 11

Indexing 11.4.1 B Tree

Ming Zhang “Data Structures and algorithms"
Algorithms”

m=3, the node on the second level splits

19 21

18 33

12

10 14 15 24 31

20 23 303020

18 33

23 48 52

45 47 50 55

目录页

Chapter 11

Indexing 11.4.1 B Tree

Ming Zhang “Data Structures and algorithms"
Algorithms”

m=3, the root splits

30

19 21

12

10 14 15 24 31

20

2318 33

48 52

45 47 50 55

目录页

Chapter 11

Indexing 11.4.1 B Tree

58Ming Zhang “Data Structures and algorithms"
Algorithms”

Access time of external memory of B tree

• continuously insert 14, 55, 19, suppose all data accessed have
been cached

• read disk 7 times（a,b,f; d,k; c,g）

• write disk 11 times（f; k,k’,d; g,g’,c,c’,a,a’,t）

18 33

12 23 30 48

10 20 21 24 31 45 47 50 5214 15

23

3318

30

19 21

12 48 52

10 14 15 24 31 45 47 50

20

55

a

e
f

g
h i

t

b
c

a’

g’

c’ d

j k k’

a

e f g h
i

b
c d

j k

目录页

Chapter 11

Indexing 11.4.1 B Tree

59Ming Zhang “Data Structures and algorithms"
Algorithms”

Deletion in a B tree
• If the key value to be deleted is not a leaf, exchange it with its

intermediate successor (guaranteed to be a leaf).
• The key value to be deleted is a leaf.

– if the number of remaining key values after deletion is no less
than , delete it directly

– otherwise,
• if the number of key values of a brother is not equal to

– move some of the brother's key values to the current node.
(key values in the father should be changed accordingly)

• otherwise,
– merge

/ 2 1m   

/ 2 1m   

目录页

Chapter 11

Indexing 11.4.1 B Tree

Ming Zhang “Data Structures and algorithms"
Algorithms”

e.g. Deletion in a B tree of order 5

a

c

ed f g h

b

i

11 15 35 43 61 65 70 81 85 86

90

94 95 97 98

92 96

80

25 50

目录页

Chapter 11

Indexing 11.4.1 B Tree

Ming Zhang “Data Structures and algorithms"
Algorithms”

To delete 92, exchange the node with a successor, borrowing

a key from its left neighbor

96
25 50

80

a

c

ed f g h

b

i

11 15 35 43 61 65 70 81 85 86 95 97 98

92

94

exchange with a

successor

delete 92, h overflows

borrow a key from left

neighbor

90 95 95

94

e.g., Deletion in a B tree of

order 5

目录页

Chapter 11

Indexing 11.4.1 B Tree

Ming Zhang “Data Structures and algorithms"
Algorithms”

90
25 50

80

c

ed f
g

h

b

i

11 15 35 43 61 65 70 81 85 86 94 95 9897

96

delete 96

exchange with a

successor

delete 96, i overflows

borrow a key from left neighbor

fail to borrow,then merge h and i

9894 95

a

e.g., Deletion in a B tree of

order 5

目录页

Chapter 11

Indexing 11.4.1 B Tree

Ming Zhang “Data Structures and algorithms"
Algorithms”

92
25 50

80

c

e g h’

b

11 15 35 43 61 65 70 81 85 86 94 95 97 98

merge h and i into h’

c overflows, borrow a key from its left neighbor

fail to borrow, merge b and

c

92
25 50

a

25 50 80 92

a’

d f

e.g., Deletion in a B tree of

order 5

目录页

Chapter 11

Indexing 11.4.1 B Tree

Ming Zhang “Data Structures and algorithms"

11.4.2 Analysis of B tree
• A B tree with N key values

– has N+1 external null nodes

– suppose external null nodes are on level k

• number of nodes on each level

– level 0 is root, level 1 has at least 2 nodes

– level 2 has at least nodes,

– level k has at least nodes,

  ,2/21
1


k

mN  )
2

1
(log1 2/




N
k m

239

240

279

008

040

052

110

135

142

212

045

112

236

目录页

Chapter 11

Indexing 11.4.2 Analysis of B tree

Ming Zhang “Data Structures and algorithms"
Algorithms”

Examples
• N=1,999,998, m=199

– k=4

– visit 4 levels at most for searching once

 )
2

1
(log1 2/




N
k m

目录页

Chapter 11

Indexing 11.4.2 Analysis of B tree

Ming Zhang “Data Structures and algorithms"
Algorithms”

Times of splitting
• Suppose there are N keys (N+1 void pointers), p

internal nodes

so,

• In the worst case, each inserting involves splitting

(except the first one), i.e., each node is formed by

splitting, then the average number of nodes split when

inserting a key is:

 N m p   1 2 1 1(/)()

 
p

N

m
 




1

1

2 1/

   
s

p

N

N

m N m







 




1 1

2 1

1

2 1(/) /

239

240

279

008

040

052

110

135

142

212

045

112

236

目录页

Chapter 11

Indexing 11.4.2 Analysis of B tree

Ming Zhang “Data Structures and algorithms"

Discussion
• 1. Is there a B tree of order 2 that conforms to definitions

of B tree? Is it of any pratical use? Why?

• 2. When deleting a node from an B tree, we consider
borrowing before merging, so why not consider giving keys
to brothers before splitting?

• 3. In the definition of B tree, degree ranges from to , is
it possible to alter this?

目录页

Chapter 11

Indexing 11.4.2 Analysis of B tree

68Ming Zhang “Data Structures and Algorithms”

Content
• 11.1 Linear Indexing

• 11.2 Static Indexing

• 11.3 Inverted Indexing

• 11.4 Dynamic Indexing
– 11.4.1 B Tree

– 11.4.2 Analysis of B Tree

– 11.4.3 B+ Tree

– 11.4.4 Comparison of B Tree and B+ Tree

• 11.5 Bit Indexing

• 11.6 Red-Black Tree

目录页

Chapter 11

Indexing Indexing

Ming Zhang “Data Structures and Algorithms”

11.4.3 B+ tree
• A variant of B tree, stores information in leaves

– all key values appear in leaves

– key values of each node are copies of the largest (or smallest)
key values of the corresponding nodes in the next level

40 90

8050 6020 30 40

5 10 20 25 30 35 40 45 47 50 55 60 65 70 75 85 9080

9070

70

目录页

Chapter 11

Indexing Indexing

70Ming Zhang “Data Structures and Algorithms”

Structure of B+ Tree
m-rank B+ tree is structured as below:

(1) Each node has at most m children

(2) Each node (other than the root) has at least children

(3) The root has at least 2 children

(4) A node with k children has k key values.

/ 2m  

40 90

8050 6020 30 40

5 10 20 25 30 35 40 45 47 50 55 60 65 70 75 85 9080

9070

70

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

71Ming Zhang “Data Structures and Algorithms”

An example of a B+ tree of order 3 (usually rank >= 3)

• Searching in B+ tree
– Keep searching until the expected key value is found

– Move downward along pointers to the key value in the leaves

40 90

8050 6020 30 40

5 10 20 25 30 35 40 45 47 50 55 60 65 70 75 85 9080

9070

70

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

72Ming Zhang “Data Structures and Algorithms”

Insertion in a B+ Tree

• Insertion – splitting
– Similar to that of B tree

– The father node must have the largest (or smallest) key
values of these two nodes

40 90

8050 6020 30 40

5 10 20 25 30 35 40 45 47 50 55 60 65 70 75 85 9080

9070

70

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

Ming Zhang “Data Structures and Algorithms”

Insert 15 into a B+ Tree of order 3

b

e
f

g h k l

d

i j

c

50 60 70 80 90

75 80 85 9065 7055 6048 5035 4025 30

15

5 10 2010

20 30 40

a

40 70 90

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

Ming Zhang “Data Structures and Algorithms”

After inserting 15, the height of the tree increases by one

40

a’

b

e f g h k l

d

i j

c

50 60 70 80 90

75 80 85 9065 7055 6048 5035 4025 305 10 15 20

10 20 30 4020

70 90

40 90

t

a

m

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

Ming Zhang “Data Structures and Algorithms”

Deletion in a B+ Tree
• When overflows, adjust it with brothers (maybe even merge them)

• When a key is deleted in a leaf, its copy in the upper level can be retained, as a
"division key".

– or substituted with the new largest (or smallest) key.

40 90

8050 6020 30 40

5 10 20 25 30 35 40 45 47 50 55 60 65 70 75 85 9080

9070

70

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

76Ming Zhang “Data Structures and Algorithms”

40 90

8050 6020 30

40

5 10 20 25 30 35 40 45 47

50

55 60 65 70 75 85 9080

9070

7060

Delete 75, overflow occurs, the remaining key 80

merges with its right neighbor to a new node（80，
85，90), 80 is deleted in the father node

Father node overflows

Borrows keys from its left neighbor, and

both share keys

Division key 70 in the root is changed

to 60

Delete 75 in a B+ Tree of order 3

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

Ming Zhang “Data Structures and Algorithms”

Another type of B+ Tree
• The number of key values in the leaves is not the same as that of non-leaves

– internal nodes construct a B tree

– rank of leaves is the same as a B+ tree

– e.g., the rank of the leaves is 5, and that of internal nodes is 4

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

Ming Zhang “Data Structures and Algorithms”

Delete a record with key of 33 from a B+ tree

33

18 23 48

10 12 15 18 19 20 21 22 23 30 31 33 45 47 48 50 52

Insufficient number of keys

merge brother nodes

The rank of leaf node is 5, the rank of the internal node is 4

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

Ming Zhang “Data Structures and Algorithms”

33

18 23

10 12 15 18 19 20 21 22 23 30 31 45 47 48 50 52

move keys from

brothers

Delete a record with key of 33 from a B
+

tree

 The rank of leaf node is 5, the rank of the internal node is 4

Insufficient number of keys

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

Ming Zhang “Data Structures and Algorithms”

3318

23

10 12 15 18 19 20 21 22 23 30 31 45 47 48 50 52

Delete a record with key of 33 from a B
+

tree

 The rank of leaf node is 5, the rank of the internal node is 4

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

Ming Zhang “Data Structures and Algorithms”

• Suppose a main file with N records, and a page can store m (key, page
addr) pairs

• Suppose each node of a B+ tree has 0.75m children in average

– Occupation ratio is (1+0.5)/2 = 75％

• So the height of this B+ tree is

 Nm75.0log

40 90

8050 6020 30 40

5 10 20 25 30 35 40 45 47 50 55 60 65 70 75 85 9080

9070

70

B+ tree actually has higher storage utilization

目录页

Chapter 11

Indexing 11.4.4 Comparison of B Tree and B+ Tree

82Ming Zhang “Data Structures and Algorithms”

• Capable of containing m (key, page pointer) pair, supposing a key

takes up the same amount of bytes as a pointer

• Capable of containing 2m/3 of a B tree's (key, implicit pointer,

page pointer) (B tree is 0.67m- rank)

• If the occupation ratio of a B tree is 75%, then each node of it has

0.5m children

• The height of B tree is  log .0 5m N
(18,a1) (33,a2)

(10,a7) (15,a8) (20,a9) (24,a10) (31,a11) (45,a12) (50,a13)

(12,a3)
(23,a4) (30,a5)

(48,a6)

(key, implicit pointer)

main file

目录页

Chapter 11

Indexing 11.4.4 Comparison of B Tree and B+ Tree

Ming Zhang “Data Structures and Algorithms”

B+ tree is used more widely
• B+ tree is more efficient, with less searching levels (relatively

shorter trees)

• Thus, B+ tree is used more widely
– primary key indexing of database system

– B+ tree based VSAM (Virtual Storage Access Method), substitutes the
multiway tree based ISAM

40 90

8050 6020 30 40

5 10 20 25 30 35 40 45 47 50 55 60 65 70 75 85 9080

9070

70

目录页

Chapter 11

Indexing 11.4.4 Comparison of B Tree and B+ Tree

84

目录页

Ming Zhang “Data Structures and
Algorithms”

第十一章

索引

• 索引

第十一章

… … …

控制域

……

控制区间

索引

顺序集

数据集

V SA M 文件结构

Organization of VSAM

85Ming Zhang “Data Structures and Algorithms”

Discussion

• 1. Is there a B+ tree of order 2?

• 2. Why is B tree less efficient, compared to B+
tree?

• 3. Refer to materials of database, and think about
the usage of B+ tree.

目录页

Chapter 11

Indexing Indexing

86Ming Zhang “Data Structures and Algorithms”

Content
• Basic Concepts

• 11.1 Linear Indexing

• 11.2 Static Indexing

• 11.3 Inverted Indexing

• 11.4 Dynamic Indexing

• 11.5 Bit Indexing

• 11.6 Red-Black Tree

目录页

Chapter 11

Indexing Indexing

Ming Zhang “Data Structures and Algorithms”

11.5 Bit Indexing
• B tree is suitable for retrieving small amount of records

• B tree has three major flaws for interactive inquiries of complex
database :

1. B tree is almost useless when dealing with data that are rarely unique.

2. Constructing and maintaining index is expensive in a database.

3. Not competent for complex inquiries with grouping demands.

目录页

Chapter 11

Indexing Indexing

Ming Zhang “Data Structures and Algorithms”

Bit Indexing for a table of a database

state=AK state=AL … state=NY

0

0

0

1

0

1

0 1

1 0

0 1

0 0

0 1

0 0

3/1

3/1

3/1

3/1

3/1

3/1

32

36

38

41

43

46

NY

AL

NY

AK

NY

AK

A

A

B

A

A

B

6

9

5

11

9

3

1

0

1

0

1

0

1

1

0

1

1

0

date store state class sales State＝NY Class=A

A set of n-dimensional bit vector (n is
the number of records)

目录页

Chapter 11

Indexing 11.5 Bit Indexing

Ming Zhang “Data Structures and Algorithms”

Signature File

Signature file

•File30: foo, bar, baz

•File40: baz, bar

•File50: foo

record bar baz foo

30

40

50

1 1 1

1 1 0

0 0 1

目录页

Chapter 11

Indexing 11.5 Bit Indexing

90Ming Zhang “Data Structures and Algorithms”

Properties of Bit Indexing

1. Storing by "columns".

2. Column data is more easier for
compressing than row data, and can save
memory by 50%.

3. Memory space needed for indexing is
smaller than that of an B tree.

目录页

Chapter 11

Indexing 11.5 Bit Indexing

Ming Zhang “Data Structures and Algorithms”

Discussion

• Investigate bit indexing in a column database.

目录页

Chapter 11

Indexing 11.5 Bit Indexing

92Ming Zhang “Data Structures and Algorithms”

Content
• Basic Concepts

• 11.1 Linear Indexing

• 11.2 Static Indexing

• 11.3 Inverted Indexing

• 11.4 Dynamic Indexing

• 11.5 Bit Indexing

• 11.6 Red-Black Tree

目录页

Chapter 11

Indexing Indexing

Ming Zhang “Data Structures and Algorithms”

Balance Problem of BST
• Ideal case: cost of insertion, deletion, search of an element

is O(logn)

• input 9, 4, 2, 6, 7, 15, 12, 21

• output 2, 4, 6, 7, 9, 12, 15, 21

9

154

62 12

7

21

9

15

4

6

2

12

7

21

目录页

Chapter 11

Indexing Indexing

Ming Zhang “Data Structures and Algorithms”

11.6 Red-Black Tree

• 11.6.1 Definition

red-black tree, or RB-tree for short

• 11.6.2 Properties of RB-tree

• 11.6.3 Algorithm for insertion

• 11.6.4 Algorithm for deletion

目录页

Chapter 11

Indexing Indexing

Ming Zhang “Data Structures and Algorithms”

• Color property: each node is either red or black;

• Root property: the root is always black;

• External nodes property: extended external
leaves are all null black nodes;

• Internal nodes property: children of a red node
are all black; no consecutive red nodes are
allowed;

• Path property: each path starting from the root to
an external leaf contains the same number of
black nodes.

RB-Tree: balanced, extended binary search tree

9

154

62 12

7

21

目录页

Chapter 11

Indexing 11.6 Red-Black Tree

Ming Zhang “Data Structures and Algorithms”

Rank of RB-Tree
• Rank of a node X, (also called the black height)

– The number of black nodes from it to an external node.

– X itself is not included, while the leaf node is included.

• Rank of an external node is zero

• Rank of the root is the rank of the tree

9

154

62 12

7

21

rank=2

rank=1

rank=2

目录页

Chapter 11

Indexing 11.6 Red-Black Tree

Ming Zhang “Data Structures and Algorithms”

11.6.2 Properties of RB-Tree

•(1) RB-tree is a full binary tree, when null leaves are viewed
as nodes.

•(2) The length of a simple path from the root to a leaf of a k-
rank RB-tree ranges from k to 2k

9

154

62 12

7

6

92

目录页

Chapter 11

Indexing 11.6 Red-Black Tree

Ming Zhang “Data Structures and Algorithms”

Properties of RB-Tree
•(2)’ Height of a k-rank RB-tree ranges from k+1 to 2k+1

•(3) There are at least 2k-1 internal nodes in an RB-Tree

•(4) The height of a RB-tree with n internal nodes is at most 2 log2 (n+1) +1

•Proof:
Suppose the rank is k and the height is h

from property(2)', h <= 2k+1, so k >= (h-1) / 2

from property(3), n >= 2k – 1, so>= 2 (h-1)/2 – 1

and thus h <= 2 log2 (n+1)+1

目录页

Chapter 11

Indexing 11.6.2 Properties of RB Tree 9

154

62 12

7

Ming Zhang “Data Structures and Algorithms”

11.6.3 Algorithm for Insertion

• First call the insertion algorithm for BST
– Color the new record red

– If its father is black then the insertion is completed

• Otherwise, perform the double red adjustment.

6

3 8

6

3 8

4

X

A A

X

Insert 4

目录页

Chapter 11

Indexing 11.6.3 Algorithm for Inserting

Ming Zhang “Data Structures and Algorithms”

Adjustment for Insertiong: Case 1 – Rotation

• Case1: The uncle of X is black

• Rank of each node remains the same, adjustment is
completed

X

α

Rotate its father

on a shaft of its

grandfather

A

X

B

B A

C

Cα

目录页

Chapter 11

Indexing 11.6.3 Algorithm for Inserting

Ming Zhang “Data Structures and Algorithms”

4 types of structure adjustment

• Principle: Maintaining the in-order property of BST

2

4

6

6

2

4

6

4

2

2

6

4

2 6

4

目录页

Chapter 11

Indexing 11.6.3 Algorithm for Inserting

Ming Zhang “Data Structures and Algorithms”

Adjustment for Insertion: case 2 – re-coloring

• Case 2: the uncle of X is also red

• requires further balance check

X

change color for

grandfather and X

A

X

BB

A CC

double red
check B

α
α

目录页

Chapter 11

Indexing 11.6.3 Algorithm for Inserting

Ming Zhang “Data Structures and Algorithms”

Insert 4

• Case 2 double red conflict
– father and uncle are both red

• change colors for

grandfather and X

11

2 14

1 157

85

4X

目录页

Chapter 11

Indexing 11.6.3 Algorithm for Inserting

Ming Zhang “Data Structures and Algorithms”

Insert 4
• Case 2 double red conflict

– father and uncle are both red

• change colors for

grandfather and X

11

2 14

1 157

85

4X

5

7

8

目录页

Chapter 11

Indexing 11.6.3 Algorithm for Inserting

Ming Zhang “Data Structures and Algorithms”

Insert 4

•Case 2 double red conflict
•Father and uncle are both red

change colors for grandfather and X

•Case 1 double red conflict
– Uncle is black

•Reconstruction

11

2 14

1 157

85

4

X

5

7

目录页

Chapter 11

Indexing 11.6.3 Algorithm for Inserting

Ming Zhang “Data Structures and Algorithms”

Insert 4

•Case 2 double red conflict
•Father and uncle are both red

change colors for grandfather and X

•Case 1 double red conflict
– Uncle is black

•Reconstruction
7

2 11

1 85

4

5 14

15

目录页

Chapter 11

Indexing 11.6.3 Algorithm for Inserting

Ming Zhang “Data Structures and Algorithms”

11.6.4 Algorithm for Deletion
• First call the deletion algorithm for BST

– if the node to be deleted has one or more external null pointers, then delete it directly.

– otherwise, find its successor in its right subtree and exchange values (not colors), and then delete it.

• Let v be the internal node to be deleted, w is the external node to be deleted, X is the brother of w.

– if either v or X is red, then color X black.

– otherwise, X needs to be labelled double black, and reconstruct the tree according to its brother C.

6

3 8

4

v

X w

6

3

4

X
delete 8

目录页

Chapter 11

Indexing 11.6.4 Algorithm for Deleting

Ming Zhang “Data Structures and Algorithms”

Adjustment according to C, the brother of a double blacked node X

Suppose X is a left child (the other case is symmetric)

• Case 1: C is black, and has a red child

– reconstruct and thus end deleting.

• Case 2: C is black, and has two black children

– exchange colors

– if its father node B is originally black, then further adjustment might be needed

from B upwards.

• Case 3: C is red

– exchange nodes

– C is converted to its father, and continue deleting according to case1 or case 2

目录页

Chapter 11

Indexing 11.6.4 Algorithm for Deleting

Ming Zhang “Data Structures and Algorithms”

Case 1(a) reconstruction: red nephew on the other side

• Raise its brother C

• C gets the color of its original father node

• Color B and C black, leaving the others unchanged

B

D

X
C

α

D

X

B

C

α

目录页

Chapter 11

Indexing 11.6.4 Algorithm for Deleting

Ming Zhang “Data Structures and Algorithms”

• Raise D to the father of C, and D gets the original
color of B, B is colored black

B

X

E

C

D

βα

CB

D

X
α

E

β

Case 1(b) reconstruction: red nephew on the same side

目录页

Chapter 11

Indexing 11.6.4 Algorithm for Deleting

Ming Zhang “Data Structures and Algorithms”

Case 2: brother is black, and have two black children

• Color C red, and color B black.

• If B is originally red, then the algorithm is completed.

• Else, perform double black adjustment on B.

B

X

ED

C

B

C

ED

X

might need double
black adjustment

目录页

Chapter 11

Indexing 11.6.4 Algorithm for Deleting

Ming Zhang “Data Structures and Algorithms”

Case 3: brother C is red

• Rotation

• X is still the double blacked node, and thus the case
converts to one of the two cases before

B

CX

βα
X

B

C

α

β

目录页

Chapter 11

Indexing 11.6.4 Algorithm for Deleting

Ming Zhang “Data Structures and Algorithms”

Delete 90

• Change the current node to the right black leaf of 80.

• C is black and has two black nodes: case 2

65

50

10 60

62

80

9070

B B

CX

E
ED

C

D

X

XC

B

目录页

Chapter 11

Indexing 11.6.4 Algorithm for Deleting

Ming Zhang “Data Structures and Algorithms”

80

65

50

10 60

62

80

70

B B

CX

E
ED

C

D

X

XC

70

B

Delete 90

• Change the current node to the right black leaf child

of 80.

• C is black and has two black nodes: case 2, exchange

colors.

目录页

Chapter 11

Indexing 11.6.4 Algorithm for Deleting

Ming Zhang “Data Structures and Algorithms”

Delete 70

• Red node, no need to adjust.

65

50

10 60

62

80

70

目录页

Chapter 11

Indexing 11.6.4 Algorithm for Deleting

Ming Zhang “Data Structures and Algorithms”

Delete 80

• Change the current node X to the right black leaf child of 65.

• C is red, exchange nodes according to case 3.

65

50

10 60

62

80

X

B

B C

CX

βα α

β

X
C

B

目录页

Chapter 11

Indexing 11.6.4 Algorithm for Deleting

Ming Zhang “Data Structures and Algorithms”

Delete 80 (adjustment)
• C is black, with black left child and red right child:

reconstruction according to case 1(b) .

50

10

60

62

65

X

C

DE

B

B

X

E

C

D

βα

CB

D

X
α

E

β

目录页

Chapter 11

Indexing 11.6.4 Algorithm for Deleting

Ming Zhang “Data Structures and Algorithms”

Delete 80

• Adjustment completed.

50

10 62

D

6560

B
C

X

目录页

Chapter 11

Indexing 11.6.4 Algorithm for Deleting

Ming Zhang “Data Structures and Algorithms”

Time Cost of Deletion

• Average and worst case O(log2 n)
– Bottom-up adjustment.

• Construction of RB-tree
– (data, left pointer, right pointer, color, father pointer)

• Top-down recursive insertion/deletion adjustment
– (data, left pointer, right pointer, color)

– must keep records of tracks if the process is not
recursive

目录页

Chapter 11

Indexing 11.6.4 Algorithm for Deleting

Ming Zhang “Data Structures and Algorithms”

From Red-Black Tree to 2-3-4 Tree
• Suppose each red node of a RB-Tree is absorbed to its black father,

and let its children be the children of its black father (ignore the
change of key values).

• When the red children of a black node are all absorbed, what are
its possible degrees?

– 2, 3, 4

Thus became a 2-3-4 tree.

(A B-tree in order 4)

• What about the height of its leaves?

– Leaves are on the same level.

65

50

10 60

62

80

9070

XC

B

目录页

Chapter 11

Indexing Indexing

Data Structures
and Algorithms

Thanks

the National Elaborate Course (Only available for IPs in China)
http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/

Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)

Ming Zhang “Data Structures and Algorithms”

