Last Module Recap (“Bandits”)

 Bandits:
 Epsilon-greedy

* Regret

« UCB

« Thompson Sampling
» Contextual Bandits:
* LiInUCB

== Microsoft

Gl
LY
N .

The Reinforcement ng

Learning Problem ="

\\;
- ' . A

ROLAND FERNANDEZ

Researcher, MSR Al
Instructor, Al School

Fundamental Challenges

* Representation
* Generalization
* Exploration

 Temporal Credit Assignment

Outline

* The Agent-Environment Interface
 Goals, Rewards, Returns

* The Markov Property

* The Markov Decision Process

* Value Functions

* Optimal Value Functions

« Optimality and Approximation

Outline

* The Agent-Environment Interface
* Goals, Rewards, Returns

* The Markov Property

* The Markov Decision Process

* Value Functions

* Optimal Value Functions

» Optimality and Approximation

The Agent-Environment Interface

* Notation:
* Time step ¢
- State S, €S8
« Action Ay € A(SY)
* Reward R,.ieRCR

 Policy m

reward
R,

Rr+1
S.. | Environment

iﬂl—

* General interface for all RL problems

* Used by Open Al Gym

Environment / Agent Separation

*RL problem design

 Set of: states, rewards, actions + state-transition probabilities (model)

« Common separation:
« Agent is the decision making entity

* Environment is everything else

* Robot:
 Body is part of Environment
* Enables Agent to learn to sense and operate the body

« Enables RL problem where Robot's body defines goals/rewards

RL Problem: Broad Scope

o State:

* low level sensors, symbolic descriptions of objects, memory of events

* Actions:

* Motor controls, Ul design choices, buy/sell stock

Outline

* The Agent-Environment Interface
 Goals, Rewards, Returns

* The Markov Property

* The Markov Decision Process

* Value Functions

* Optimal Value Functions

» Optimality and Approximation

(Goals and Rewards

*Rewards:
 Defined by Task designer to abstract the goal
* A real number delivered on each timestep by the Environment
« Should reflect what has been achieved (not how)

* Reward Hypothesis:

« Goals & purposes can be well represented thru the maximization of a cumulative
sum of the reward signal

*Reward signal has proven to be effective and flexible

Returns

*Return is the long-term accumulation of reward starting from time t

Gt = Rt_|_1 + Rt_|_2 + Rt_|_3 + ...t RT

A simple return function could be the sum of the rewards

* What about continuing tasks?

Returns

e Introduce discounted return, using a discount factor, y ([0,1]):

Gy = Ris1+YRis2 + 7V Risg + -

(s =
&
= Z Y Rkt
k=0

Key concept for RL: recursive relationship

Gy =Ry + 7R + "If"?RtJrS T
= Rit1 +Y(Ris2 + YReps + 7V Riza + ...

=R +7Gi

Unified Notation

* How to unify episodic and continuing tasks?

* Absorbing state for episodic:

. R =+l S R,=+1 3 R;=+1 .OE;E

e Unified notation:

T
G, = Z ’}’E_L_IR;E, T = 0o or v = 1 (bUt not bOth)

k=t+1

Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017

Outline

* The Agent-Environment Interface
* Goals, Rewards, Returns

* The Markov Property

* The Markov Decision Process

* Value Functions

* Optimal Value Functions

» Optimality and Approximation

The Markov Property

o State:

« Some set of values that define the current situation
 Provide basis for agent selecting action from its policy

* Immediate or processed sensations

*|f state representation is as effective as having a full history, it is said to
have the Markov Property

* Examples:
 Tic-tac-toe

« Space Invaders

Outline

* The Agent-Environment Interface
* Goals, Rewards, Returns

* The Markov Property

* The Markov Decision Process

* Value Functions

* Optimal Value Functions

» Optimality and Approximation

The Markov Decision Process (MDP)

 Markov Decision Process

« A RL problem that satisfies the Markov property
*Finite MDP:
 Finite members: {S,A,R}

« Dynamics defined by state-transition probabilities:
p(s',rls,a) = Pr{S; = s',R; = r|S;_.1 = s, Ay_1 = a}

« From these probabilities, we can compute anything about the MDP we might need

Example: Recycling Robot

« Goal: collecting empty soda cans in cafeteria
*Has on-board recycling bin

* Actions:
* (o to home base to recharge battery
 Search for cans

« Wait for someone to bring it a can

Example: Recycling Robot

* MDP Task:
» States: {low, high}
» Actions:
. A(low) = {search, wait, recharge}
« A(high) = {search, wait}
« Rewards: {-3, O, 1}

Twait Expected # of cans while waiting
T'search Expected # of cans while searching
& Probability of high -> high on search

3 Probability of search cycle on low battery

Example: Recycling Robot

Transition Probabilities & Expected Rewards (Task Model)

s a s’ p(s'|s,a) | r(s,a,s’)
high search high | « T'search
high search low l -« I'search
low search high | 1 -7 —3
low search low | 3 I'search
high wait high | 1 Twait
high wait low 0 Twait
low wait high | 0 Twait
low wait low 1 Twait
low recharge high | 1 0

low recharge 1low 0 0.

Example: Recycling Robot

Transition Graph

1 , 'wait

-, -3

|3 , I'search
search

recharge

search

15 Twait
O, Tsearch 1—(1, T'search

Outline

* The Agent-Environment Interface
* Goals, Rewards, Returns

* The Markov Property

* The Markov Decision Process

* Value Functions

* Optimal Value Functions

» Optimality and Approximation

Value Functions

*\alue Functions:
* One of the most fundamental concepts in RL
 Functions of state (or state-action pairs)

* Estimate how good it is to be in a state, or take some specific action in a state
(expected return)

e Policies:

« A mapping from state to probability of selecting each available action:

m(als)

« RL methods specify how agent’s policy changes with experience

Value Functions

« State-value function for policy .
v-(s) = E|G|S; = s]

* Action-value function for policy Tt
QW(S, ﬂ-) = E[GJ;S} =s A = a.]

*VValue functions can be learned from experience

Value Functions (important)

» Satisfy recursive relationships similar to G,
vr(s) = Ex |Gy | Sp=s]
= Ex|Ri41 +7Gi41 | Se=s]

— Z m(als) Z Zp(s’, r|s,a) [’r + YEAG11]Si41=45"]

— Zﬂ'(a|3) Zp(s’,ﬂs,a) [fr + '}/vﬂ(s")], for all s € 3,

- Bellman Equation for v,

Bellman Equations

* Express the value of a state in terms of the value of successor states
* Defined for state-value function and action-value function
* Why important?

« Form the basis for calculating, approximating, and learning vx

Backup Diagram

* Backup diagram for v,

* Relationships between

states, actions, next states, ...
 Used to graphically illustrate p\"
/

many RL algorithms OO OO O Os

Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017

Gridworld Example

e Rewards:
A B -1if try to move off edges
\ +5 * +10 from A
+10) B' « +5fromB
/ * 0 otherwise
Actions .y
A"(n vy=2.9

 Continuing task

Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017

Gridworld Example

Al |B 3.3/8.8/4.4/53|15
+5 15(3.0[23[19/05
+1o) B 0.1/0.7/0.7| 0.4|-0.4
/ . 1.0[-0.4/-0.4/-0.6-1.2

r'e Actions
Al T 1.9-1.3]-1.2]-1.42.0

Value function of each
state under policy Tt

Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017

Outline

* The Agent-Environment Interface
* Goals, Rewards, Returns

* The Markov Property

* The Markov Decision Process

* Value Functions

* Optimal Value Functions

» Optimality and Approximation

Optimal Value Functions

*\What does it mean to solve an RL task?

 Finding a policy that achieves a lot of reward in the long term

*Value functions define a partial ordering over policies

 Policy Tt is defined to be better or equal to 1 If v«(s) 2 vx(s) for all s

Optimal Value Functions

*For any task, there is a least one policy that is >= all other policies:
* This policy is an optimal policy for the task, denoted by .
« All optimal polices share the same optimal state-value function:
Vy(5) = max Vr($)
« All optimal polices share the same optimal action-value function:

¢+(5, @) = max ¢« (s, a)

Solving Gridworld

A

N

B

22.0

24 .4

22.0

19.4

17.5

+5

19.8

22.0

19.8

17.8

16.0

+H0

B'I'

17.8

19.8

17.8

16.0

14.4

16.0

17.8

16.0

14.4

13.0

AT‘/

14.4

16.0

14.4

13.0

11.7

Gridworld

U

« Compute optimal value function using bellman equation

* Choose greedy policy

> o [<
13 [e [
| P P P
Lt|Jd|d
L o O s
Tl x

Solving RL Problems

« Can we use this approach on all RL Problems?

 Usually not — it requires:
 Accurate knowledge of Environment dynamics (model)
« Sufficient computation for something like an exhaustive search

« Task have the markov property

« We explore a variety of methods for approximating the bellman equations in
subsequent modules

Outline

* The Agent-Environment Interface
* Goals, Rewards, Returns

* The Markov Property

* The Markov Decision Process

* Value Functions

* Optimal Value Functions

« Optimality and Approximation

Optimality and Approximation

* Optimality
» Rarely achieved for real world RL tasks (model, computation/memory, markov)

« Has role in organizing and understand of learning algorithms

* Approximation
« Often works quite well for real world tasks

 On-line nature of RL:

« More learning for frequently encountered states

» Results in better performance on those states

summary

* The Agent-Environment Interface
 Goals, Rewards, Returns

* The Markov Property

* The Markov Decision Process

* Value Functions

* Optimal Value Functions

« Optimality and Approximation

Further Reading

 Chapter 3 of "Reinforcement Learning: An Introduction” (2018)

