Last Module Recap ("Bandits")

- Bandits:
 - Epsilon-greedy
 - Regret
 - UCB
 - Thompson Sampling
- Contextual Bandits:
 - LinUCB

The Reinforcement Learning Problem

ROLAND FERNANDEZ

Researcher, MSR AI Instructor, AI School

Fundamental Challenges

- Representation
- Generalization
- Exploration
- Temporal Credit Assignment

- The Agent-Environment Interface
- Goals, Rewards, Returns
- The Markov Property
- The Markov Decision Process
- Value Functions
- Optimal Value Functions
- Optimality and Approximation

- The Agent-Environment Interface
- Goals, Rewards, Returns
- The Markov Property
- The Markov Decision Process
- Value Functions
- Optimal Value Functions
- Optimality and Approximation

The Agent-Environment Interface

- $A_t \in \mathcal{A}(S_t)$ Action
- Reward $R_{t+1} \in \mathcal{R} \subset \mathbb{R}$
- Policy • π

•

- General interface for all RL problems
- Used by Open AI Gym

Environment / Agent Separation

- RL problem design
 - Set of: states, rewards, actions + state-transition probabilities (model)
- Common separation:
 - Agent is the decision making entity
 - Environment is everything else
- Robot:
 - Body is part of Environment
 - Enables Agent to learn to sense and operate the body
 - Enables RL problem where Robot's body defines goals/rewards

RL Problem: Broad Scope

- State:
 - low level sensors, symbolic descriptions of objects, memory of events
- Actions:
 - Motor controls, UI design choices, buy/sell stock

- The Agent-Environment Interface
- Goals, Rewards, Returns
- The Markov Property
- The Markov Decision Process
- Value Functions
- Optimal Value Functions
- Optimality and Approximation

Goals and Rewards

- Rewards:
 - Defined by Task designer to abstract the goal
 - A real number delivered on each timestep by the Environment
 - Should reflect what **has** been achieved (not how)
- Reward Hypothesis:
 - Goals & purposes can be well represented thru the maximization of a cumulative sum of the reward signal
- Reward signal has proven to be effective and flexible

• Return is the long-term accumulation of reward starting from time t

 $G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$

- A simple return function could be the sum of the rewards
- What about continuing tasks?

Returns

• Introduce *discounted return*, using a discount factor, γ ([0,1]):

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$
$$= \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

• Key concept for RL: recursive relationship

$$G_{t} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots$$

= $R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4} + \dots)$
= $R_{t+1} + \gamma G_{t+1}$

Unified Notation

- How to unify episodic and continuing tasks?
- Absorbing state for episodic:

• Unified notation:

$$G_t \doteq \sum_{k=t+1}^T \gamma^{k-t-1} R_k, \quad T = \infty \text{ or } \gamma = 1 \quad (\text{but not both})$$

- The Agent-Environment Interface
- Goals, Rewards, Returns
- The Markov Property
- The Markov Decision Process
- Value Functions
- Optimal Value Functions
- Optimality and Approximation

The Markov Property

- State:
 - Some set of values that define the current situation
 - Provide basis for agent selecting action from its policy
 - Immediate or processed sensations
- If state representation is as effective as having a full history, it is said to have the Markov Property
- Examples:
 - Tic-tac-toe
 - Space Invaders

- The Agent-Environment Interface
- Goals, Rewards, Returns
- The Markov Property
- The Markov Decision Process
- Value Functions
- Optimal Value Functions
- Optimality and Approximation

The Markov Decision Process (MDP)

- Markov Decision Process
 - A RL problem that satisfies the Markov property
- Finite MDP:
 - Finite members: $\{S, A, R\}$
 - Dynamics defined by state-transition probabilities: $p(s', r|s, a) \doteq Pr\{S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a\}$
 - From these probabilities, we can compute anything about the MDP we might need

Example: Recycling Robot

- Goal: collecting empty soda cans in cafeteria
- Has on-board recycling bin
- Actions:
 - Go to home base to recharge battery
 - Search for cans
 - Wait for someone to bring it a can

Example: Recycling Robot

- MDP Task:
 - States: {low, high}
 - Actions:
 - A(low) = {search, wait, recharge}
 - A(high) = {search, wait}
 - Rewards: {-3, 0, 1}

 $\begin{array}{rl} r_{wait} & \mbox{Expected $\#$ of cans while waiting} \\ r_{search} & \mbox{Expected $\#$ of cans while searching} \\ \alpha & \mbox{Probability of high $->$ high on search} \\ \beta & \mbox{Probability of search cycle on low battery} \end{array}$

Example: Recycling Robot

Transition Probabilities & Expected Rewards (Task Model)

 S	a	s'	p(s' s,a)	r(s,a,s')
high	search	high	α	$r_{\tt search}$
high	search	low	$1 - \alpha$	$r_{\texttt{search}}$
low	search	high	1-eta	-3
low	search	low	β	$r_{\tt search}$
high	wait	high	1	$r_{\tt wait}$
high	wait	low	0	$r_{\tt wait}$
low	wait	high	0	$r_{\tt wait}$
low	wait	low	1	$r_{\tt wait}$
low	recharge	high	1	0
low	recharge	low	0	0.

- The Agent-Environment Interface
- Goals, Rewards, Returns
- The Markov Property
- The Markov Decision Process
- Value Functions
- Optimal Value Functions
- Optimality and Approximation

Value Functions

- Value Functions:
 - One of the most fundamental concepts in RL
 - Functions of state (or state-action pairs)
 - Estimate how good it is to be in a state, or take some specific action in a state (expected *return*)
- Policies:
 - A mapping from state to probability of selecting each available action: $\pi(a|s)$
 - RL methods specify how agent's policy changes with experience

Value Functions

• State-value function for policy π :

 $v_{\pi}(s) \doteq \mathbb{E}[G_t | S_t = s]$

- Action-value function for policy π : $q_{\pi}(s, a) \doteq \mathbb{E}[G_t | S_t = s, A_t = a]$
- Value functions can be *learned* from experience

Value Functions (important)

• Satisfy recursive relationships similar to G_t

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s] \\ = \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s] \\ = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) \Big[r + \gamma \mathbb{E}_{\pi}[G_{t+1}|S_{t+1} = s'] \Big] \\ = \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a) \Big[r + \gamma v_{\pi}(s') \Big], \text{ for all } s \in \mathbb{S},$$

 \rightarrow Bellman Equation for v_{π}

Bellman Equations

- Express the value of a state in terms of the value of successor states
- Defined for state-value function and action-value function
- Why important?
 - Form the basis for *calculating, approximating, and learning* v_{π}

Backup Diagram

- Backup diagram for v_{π}
- Relationships between states, actions, next states, ...
- Used to graphically illustrate many RL algorithms

Gridworld Example

- Rewards:
 - -1 if try to move off edges
 - +10 from A
 - +5 from B
 - 0 otherwise
 - $\gamma = .9$
- Continuing task

Gridworld Example

Value function of each state under policy π

- The Agent-Environment Interface
- Goals, Rewards, Returns
- The Markov Property
- The Markov Decision Process
- Value Functions
- Optimal Value Functions
- Optimality and Approximation

Optimal Value Functions

- What does it mean to solve an RL task?
 - Finding a policy that achieves a lot of reward in the long term
- Value functions define a partial ordering over policies
 - Policy π is defined to be better or equal to π' if $v_{\pi}(s) \ge v_{\pi'}(s)$ for all s

Optimal Value Functions

• For any task, there is a least one policy that is >= all other policies:

- This policy is an *optimal policy* for the task, denoted by π_*
- All optimal polices share the same *optimal state-value function*: $v_*(s) \doteq \max_{\pi} v_{\pi}(s)$
- All optimal polices share the same *optimal action-value function*:

 $q_*(s,a) \doteq \max_{\pi} q_{\pi}(s,a)$

Solving Gridworld

Compute optimal value function using bellman equation

• Choose greedy policy

Solving RL Problems

- Can we use this approach on all RL Problems?
 - Usually not it requires:
 - Accurate knowledge of Environment dynamics (model)
 - Sufficient computation for something like an exhaustive search
 - Task have the markov property
 - We explore a variety of methods for approximating the bellman equations in subsequent modules

- The Agent-Environment Interface
- Goals, Rewards, Returns
- The Markov Property
- The Markov Decision Process
- Value Functions
- Optimal Value Functions
- Optimality and Approximation

Optimality and Approximation

- Optimality
 - Rarely achieved for real world RL tasks (model, computation/memory, markov)
 - Has role in organizing and understand of learning algorithms
- Approximation
 - Often works quite well for real world tasks
 - On-line nature of RL:
 - More learning for frequently encountered states
 - Results in better performance on those states

Summary

- The Agent-Environment Interface
- Goals, Rewards, Returns
- The Markov Property
- The Markov Decision Process
- Value Functions
- Optimal Value Functions
- Optimality and Approximation

Further Reading

• Chapter 3 of "Reinforcement Learning: An Introduction" (2018)