edX Robo4 Mini MS – Locomotion Engineering

Week 6 – Unit 2
Raibert Vertical Hopper
Video 7.1

Segment 6.2.1
Hybrid Systems Model

Daniel E. Koditschek
with
Wei-Hsi Chen, T. Turner Topping and Vasileios Vasilopoulos
University of Pennsylvania
July, 2017
Initial Approach to Vertical Hopper

- Model Continuous time flows
 - each mode of contact
 - governed by different VF
- Model natural guard conditions
 - physical event interrupts mode
 - locomotion: typically LO/TD
- Study/Express $mode$ map
- Model $reset$ map
- Compose
 - mode map \circ reset map
 - further compose each composition in turn
- End up with return map

\[
p_{lo} = f_{PRC}^{lo}(p_{et}) \]
\[
x_{td} = f_{BF}^{td}(x_0) \]
\[
p_{bot} = f_{PRC}^{bot}(p_{td}) \]

$\mathbf{x}_{et} = \mathbf{x}_{bot} + \mathbf{x}_t$

Vertical Hopper as Hybrid System

- Physical system doesn’t “know” about modes
- But users must: e.g., control of hopping height
 - Raibert: fixed duration constant thrust
 - different duration yields different behavior

Simulation credit: Jeffrey Duperret
Vertical Hopper as Hybrid System
Reset from Flight to Compression

• Need to “hand-off” state
 ▪ from touchdown
 \[x_{td} = \mathcal{F}_{BF}^{td}(x_0) \]
 ▪ to compression
 \[p_{bot} = \mathcal{F}_{PRC}^{bot}(p_{td}) \]

• Use CC as reset
 \[p_{td} = h_{PRC}(x_{td}) \]
 \[=: \nu_{td}^{PRC}(x_{td}) \]

• Yields mode map
 \[m_{FLT} := \nu_{td}^{PRC} \circ \mathcal{F}_{BF}^{td} \]
Reset from Compression to Decompression

- **Thrust** $\Phi_{\text{ref}}(t) \equiv \tau$
 - timed: $t \in [t_b, t_b + \Delta \tau]$
 - not event driven
 - so plays the role of a reset

- **To “hand-off” state**
 - from compression
 $$p_{bot} = f_{\text{PRC}}^{\text{bot}}(p_{td})$$
 - through thrust
 $$x_{et} = x_{bot} + x_t$$
 - to decompression
 $$p_{lo} = f_{\text{PRC}}^{\text{lo}}(p_{et})$$

- **Use appropriate CC**
 $$p_{et} = h_{\text{PRC}}(h_{\text{PRC}}^{-1}(p_{bot}) + x_t)$$
 $$=: \nu_{\text{bot}}^{\text{et}}(p_{bot})$$

- **Yields compression mode map**
 $$m_{\text{CMP}} := \nu_{\text{bot}}^{\text{et}} \circ f_{\text{PRC}}^{\text{bot}}$$
Reset from Decompression to Flight

- To reach flight mode map \(m_{\text{FLT}}(x_{lo}) := r_{\text{td}}^{\text{PRC}} \circ f_{\text{BF}}^{\text{td}}(x_{lo}) \)
- From liftoff
 \[
p_{lo} = f_{\text{PRC}}^{\text{lo}}(p_{et})
 \]
- Use CC as reset
 \[
x_{lo} = h_{\text{PRC}}^{-1}(p_{lo})
 =: r_{\text{PRC}}^{\text{lo}}(x_{td})
 \]
- Yields mode map
 \[
m_{\text{DCMP}} := r_{\text{PRC}}^{\text{lo}} \circ f_{\text{PRC}}^{\text{lo}}
 \]
Moving Ahead

• Finally have mode maps
 - express the physics
 - of each mode
 - and compose properly

• How to use them?
 - fear: infinite regress?
 - hope: what can they reveal?
edX Robo4 Mini MS – Locomotion Engineering

Week 6 – Unit 2
Raibert Vertical Hopper
Video 7.2

Segment 6.2.2
Hybrid Systems Model

Daniel E. Koditschek
with
Wei-Hsi Chen, T. Turner Topping and Vasileios Vasilopoulos
University of Pennsylvania
July, 2017
Where We Are Going

• Have mode maps!
• What can they reveal?
 ▪ gait stability properties
 ▪ parameter influence
 ▪ gait control affordance
• How to get there
 ▪ Insight, Data
 ▪ Models
 ▪ Analysis
 ▪ Synthesis

figures from
Steady state gait representation

- Periodic hopping orbit
 - a cycle in steady state limit
 - called limit cycle
 - “parallel” direction to flow
 - very little change
 - per flow box theorem

- Behavior summarized by
 - one dimensional section
 - “transverse:” flow cuts across
 - “return:” flow brings section back
 - no unique choice of section
 - stance bottom state
 - flight apex state
 - touchdown state
 - liftoff state
 - flow takes one section to next
 - represented by mode maps
 - each a CC between sections (uniqueness)

figure from
The (Poincare’) Return Map

• Strategy
 - fix a section (bottom)
 - define coordinates (energy, \(\rho \))
 - compose mode maps
 - to get return map

\[
\rho_{RVH} := m_{DCMP} \\
\circ m_{FLT} \quad (1) \\
\circ m_{CMP}
\]

• Study discrete dynamics

\[
\rho_{k+1} = \rho_{RVH}(\rho_k)
\]

figure from
Physical Meaning of Bottom Coordinates

• Polar RC coordinates include vertical total energy

 ▪ showed in Seg.2.3

 \[
 \rho = e_1^T p = e_1^T h_P(y) = e_1^T h_{PRC}(x)
 \]

 \[
 = \eta_{HO}(x) = \frac{1}{2}m\ddot{x}^2 + \frac{1}{2}kx^2
 \]

 ▪ express same equivalence using GLH parameters

 \[
 \rho = e_1^T p = e_1^T h_P(y) = e_1^T h_{PRC}(x)
 \]

 \[
 \rho = \eta_{GLH}(x) = \dot{x}^2 + 2\beta \dot{x}\omega x + (1 + \beta^2)\omega^2 x^2
 \]

• Total energy at bottom represents spring potential

 ▪ recall bottom event guard \(\gamma_{comp}(x) = \dot{x} \)

 ▪ hence bottom coordinates \(\rho_b = \omega^2(1 + \beta^2)x^2_b \)

 ▪ represent spring potential (equivalently, extension)
Decompression & Flight Mode Map Derivation

• Showed (Seg.6.1) polar RC bottom
 - since $\tilde{\gamma}_{comp}(p) = \gamma_{comp} \circ h_{PRC}^{-1}(p) = \sqrt{1 + \beta^2 \rho \sin \phi}$
 - occurs at $\phi = n\pi$ – we’ll take $n = 0$

• Show (Exrs): $y_{et} = y_b + y_t = \begin{bmatrix} \psi_b \\ \psi_t \end{bmatrix}$

 \[\Rightarrow p_{et} = \begin{bmatrix} \rho_{et} \\ \phi_{et} \end{bmatrix} = \begin{bmatrix} \psi_t - \sqrt{\rho_b} + \frac{\psi_t^2}{\psi_t - \sqrt{\rho_b}} \\ -\pi + \arctan\left(\frac{\psi_t}{\sqrt{\rho_b - \psi_t}}\right) \end{bmatrix} \]

• Showed (Seg. 6.1+Exrs) reduce PRC VF to 1 dim

 \[\frac{d\rho}{d\phi} = \frac{d}{dt} \rho/\frac{d}{dt} \phi = -\frac{2\beta \omega \rho}{-\omega} =: \tilde{f}_{PRC}(\rho) \]

 \[\Rightarrow \rho_{lo} = \tilde{f}_{PRC,\phi_{et}}(\rho_{et}) = e^{2\beta(\phi_{lo} - \phi_{et})} \rho_{et} \]

• Flight is lossless (total energy conserved): $\rho_{td} = \rho_{lo}$

• Touchdown angle – use symmetry:

 $\chi_{td} = \chi_{lo} = 0 \Rightarrow \dot{\psi}_{td} = -\dot{\psi}_{lo} \Rightarrow \phi_{td} = \phi_{lo} - \pi$
Bottom Return Map Derivation

• Compression to next bottom
 ▪ via reduced PRC
 \[\rho_{b,next} = e^{2\beta(\phi_{b,next} - \phi_{td})} \rho_{td} \]
 \[= e^{-2\beta \phi_{lo}} \rho_{lo} \]
 ▪ and symmetry

• Compose with preceding decompression mode map

\[
\rho_{b,next} = e^{-2\beta \phi_{lo}} \rho_{lo} \\
= e^{-2\beta \phi_{lo}} e^{2\beta(\phi_{lo} - \phi_{et})} \rho_{et} \\
= e^{-2\beta \phi_{et}} \rho_{et}
\]

• Finally compose with reset from previous bottom

\[
\rho_{b,next} = \exp \left(-2\beta \left[-\pi + \arctan \left(\frac{\psi_t}{\sqrt{\rho_b - \psi_t}} \right) \right] \right) \\
\cdot \left[\psi_t - \sqrt{\rho_b} \right]^2 + \psi_t^2 \tag{3}
\]

\[\Rightarrow: \rho_{RVH}(\rho_b)\]
Moving Ahead

• We’ve now written out return map
• In bottom coordinates: $\rho_{k+1} = \mathcal{P}_{RVH}(\rho_k)$
 ▪ total energy at “next” bottom
 ▪ as a function of total energy at “previous” bottom
• What can it reveal?
 ▪ gait stability properties
 ▪ parameter influence
 ▪ gait control affordance
• First introduce discrete dynamical systems
edX Robo4 Mini MS – Locomotion Engineering

Week 6 – Unit 3
Raibert Vertical Hopper
Video 7.3

Segment 6.3.1

Return Map Analysis - Coordinates

Daniel E. Koditschek
with
Wei-Hsi Chen, T. Turner Topping and Vasileios Vasilopoulos
University of Pennsylvania
July, 2017
Raibert’s Original Hopping Analysis

• control system delivers fixed thrust each stance
 ▪ causing bouncing to come to equilibrium
 ▪ at hopping height for which energy injected
 ▪ just equals energy lost (to friction and unsprung leg mass)

• because mechanical losses are monotonic with hopping height
 ▪ a unique equilibrium hopping height
 ▪ exists for each fixed value of thrust
 ▪ and greater thrust results in greater height

paraphrase of Raibert’s ’86 MIT Press book passage from
Graphical Portrayal of Raibert’s Analysis

• Energy added and lost each stance

\[p(\rho) \approx \rho + a(\rho) - l(\rho) \]

\[a(\rho) := \text{energy gained} \quad (1) \]

\[l(\rho) := \text{energy lost} \]

• Monotonic mechanical losses
 - a unique equilibrium hopping height
 - exists for each fixed value of thrust
 - and greater thrust results in greater height

• Potential complications
 - \(a \) must fall off power limits
 - might fall off “early”

figures from
D. E. Koditschek and M. Bühler
Discrete Scalar LTI System

- Exr: vertical stance hopper
 - add fixed energy, E_b, at bottom
 - but not enough to achieve liftoff

$$\rho_{k+1} = e^{-2\pi \beta} \rho_k + E_b =: \rho_{VSH}(\rho_k)$$ (2)

- Gives return map of the graphical form in eqn (1)
- Gives practice with discrete dynamical systems
 - LTI discrete theory mimics that of continuous time
 - stability of FP \(\rho^* = \frac{E_b}{1 - e^{-2\pi \beta}} \)
 - from eigenvalues of magnitude less than 1
Change of Coordinates to ET Section

- To simplify the return map expression
 \[p_{RVH}(\rho) = \exp\left(-2\beta \left[-\pi + \arctan\left(\frac{\dot{\psi}_t}{\sqrt{\rho - \psi_t}}\right)\right]\right) \left[\psi_t - \sqrt{\rho}\right]^2 + \dot{\psi}_t^2 \]

- It’s convenient to rewrite in ET-coordinates
 \[\phi = h_{bet}(\rho) := e_2^T \mathbf{r}_{bot}^{et}(\rho) = \arctan\left[\frac{\dot{y}_t}{\sqrt{\rho_b - y_t}}\right] \]
 \[\Rightarrow h^{-1}_{bet}(\phi) = \left[\frac{\dot{y}_t}{\tan\phi} + \psi_t\right]^2 \]

- Where, recall (Seg.6.2),
 \[\mathbf{p}_{et} = \begin{bmatrix} \rho_{et} \\ \phi_{et} \end{bmatrix} = \mathbf{r}_{bot}^{et}(\mathbf{p}_{bot}) := h_{PRC}(h^{-1}_{PRC}(\mathbf{p}_{bot})) \]
 \[= \begin{bmatrix} \psi_t - \sqrt{\rho_b} \end{bmatrix}^2 + \dot{\psi}_t^2 \]
 \[-\pi + \arctan\left(\frac{\dot{\psi}_t}{\sqrt{\rho_b - \psi_t}}\right) \]

figure from
D. E. Koditschek and M. Bühler,
The (Poincare’) Return Map in ET Coords

• New ET coordinate return map representation

\[\tilde{\rho}_{RVH}(\phi) := h_{bet} \circ \rho_{RVH} \circ h^{-1}_{bet}(\phi) = \tilde{g}_{RVH} \circ g_{RVH}(\phi) \]

\[\tilde{g}_{RVH}(u) := \arctan \left(\frac{u}{1 + \alpha_t u} \right) ; \quad \alpha_t := \frac{\psi_t}{\dot{\psi}_t} \quad (4) \]

\[g_{RVH}(\phi) := \sin \phi \cdot e^{\beta(\pi - \phi)} \]

• Next: study discrete dynamics \(\phi_{k+1} = \tilde{\rho}_{RVH}(\phi_k) \)
 - by finding FP
 - and their linearized dynamics

• Simpler, but not simple
edX Robo4 Mini MS – Locomotion Engineering

Week 6 – Unit 3
Raibert Vertical Hopper
Video 7.4

Segment 6.3.2
Return Map Analysis - Stability

Daniel E. Koditschek
with
Wei-Hsi Chen, T. Turner Topping and Vasileios Vasilopoulos
University of Pennsylvania
July, 2017
Recap: One Dimensional Discrete Dynamics

- Goal: stability of limit cycle
 - conditions for convergence
 - to isolated periodic orbit
 - from all nearby ICs
- Ingredients of Analysis
 - section
 \[\gamma_{\text{comp}}^{-1}[0] := \{ \mathbf{x} \in \mathbb{R}^2 : \gamma_{\text{comp}}(\mathbf{x}) = 0 \} \]
 \[\gamma_{\text{comp}}(\mathbf{x}) := \dot{\mathbf{x}} \]
 - specification using one equation
 - in two variables \(\mathbf{x} := [x, \dot{x}] \)
 - yields a one dimensional set of ICs
- Poincare’ (“return”) map

figure from
Meaning of Poincare’ (“return”) map

- What is it? Why is it helpful?
 - function specifying how
 - “next” 1 dim section crossing
 - depends upon “previous”
 - characterizing cyclic behavior
 - since value along any section
 - equivalently expresses qualitative properties
 - asymptotically (steady state)

- Choice of section
 - any “transverse” curve will do
 - e.g., liftoff $\gamma_{\text{decomp}}^{-1}[0] : = \{ x \in \mathbb{R}^2 : \gamma_{\text{decomp}}(x) = 0 \}$; $\gamma_{\text{decomp}}(x) : = \chi$
 - e.g. end-thrust points $p_{et} = h_{\text{PRC}}(h_{\text{PRC}}^{-1}(p_{bot}) + x_t) = : r_{\text{bot}}^{et}(p_{bot})$
 - all 1 dim representations
 - of the “energy” in the cycle
 - at given instant

Figure from D. E. Koditschek and M. Buhler, The International Journal of Robotics Research, 1991, op. cit.
Poincare’ Map: Bottom Coordinates

• Bottom coordinates \(\rho := \omega^2 (1 + \beta^2) \chi^2 \)
 - total energy at maximum compression
 - measures spring potential
• Poincare’ map \(\rho_{k+1} = p_{RVH}(\rho_k) \)
 - expresses next bottom energy
 - as function of previous bottom energy

\[p_{RVH}(\rho) = \exp \left(-2\beta \left[-\pi + \arctan \left(\frac{\dot{\psi}_t}{\sqrt{\rho} - \dot{\psi}_t} \right) \right] \right) \cdot \left([\dot{\psi}_t - \sqrt{\rho}]^2 + \dot{\psi}_t^2 \right) \]

id(\rho) := \rho

figure from
Poincare’ Map: Bot -> ET Coordinates

- Simplify map representation
 - by CC to ET-coordinates

\[
\tilde{p}_{RVH}(\phi) := h_{bet} \circ p_{RVH} \circ h_{bet}^{-1}(\phi)
\]

(illustrated using different parameters from previous slide)

\[
id(\phi) := \phi
\]

\[
\tilde{p}_{RVH}(\phi) = \arctan \left(\frac{\dot{\psi}_t \sin \phi \cdot e^{\beta(\pi - \phi)}}{\dot{\psi}_t + \psi_t \sin \phi \cdot e^{\beta(\pi - \phi)}} \right)
\]

figure from
First Step of Analysis: Fixed Points

- Study discrete dynamics $\phi_{k+1} = \tilde{P}_{RVH}(\phi_k)$
 - by finding FP $\tilde{P}_{RVH}(\phi^*) = \phi^* \iff \phi^* \in \{\phi_0^* := 0, \phi_1^* > 0\}$
 - and studying their linearized dynamics

- ET coordinate map can be factored
 $\tilde{P}_{RVH}(\phi) = \tilde{g}_{RVH} \circ g_{RVH}(\phi)$

 $\tilde{g}_{RVH}(u) := \arctan \left(\frac{u}{1 + \alpha_t u} \right); \quad \alpha_t := \frac{\psi_t}{\dot{\psi}_t}$

 $g_{RVH}(\phi) := \sin \phi \cdot e^{\beta(\pi - \phi)}$

- Quickly see 0 must be FP: it’s FP for both factors

- More work to ascertain existence of $\phi_1^* > 0$

Second Step: Linearization at $\phi_0^* = 0$

- Calculus
 \[\tilde{P}_{RVH}(\phi) = D\tilde{p}_{RVH}(\phi) = \tilde{g'}_{RVH}\big|_{u=g_{RVH}(\phi)} \cdot g'_{RVH}(\phi) \]
 \[\tilde{g'}_{RVH}(u) = \frac{1}{u^2 + (1 + \alpha_t u)^2} \]
 \[g'_{RVH}(\phi) = e^{\beta(\pi - \phi)} (\cos \phi - \beta \sin \phi) \]

- Implies
 \[\tilde{P}_{RVH}(0) = \tilde{g'}_{RVH}\big|_{0=g_{RVH}(0)} \cdot g'_{RVH}(0) \]
 \[= 1 \cdot e^{\beta\pi - 0} (\cos 0 - \beta \sin 0) \]
 \[= e^{\beta\pi} > 1 \]

- Hence FP at 0 is unstable
 - hopping is pumped up
 - from very low energy states
Third Step: Linearization at $\phi_1^* > 0$

- Introduce quotient map on the set $\phi > 0$

 \[q(\phi) := \frac{\tilde{p}_{RVH}(\phi)}{\phi} \]

 - know $q(\phi) > 1$ for $0 < \phi < \phi_1^*$
 - since 0 is unstable FP
 - and ϕ_1^* is unique FP on $\phi > 0$

- Know $q(\phi_1^*) = 1$ so $q'(\phi_1^*) < 0$
 - now use calculus

 \[0 > q'(\phi_1^*) = \frac{1}{\phi_1^*} [\tilde{p}'_{RVH}(\phi_1^*) - 1] \]

 \[\Rightarrow 1 > \tilde{p}'_{RVH}(\phi_1^*) \]

- More arguments show $\tilde{p}'_{RVH}(\phi_1^*) > -1$

- So linearization is asymptotically stable

\[1 > \tilde{P}_{RVH}(\phi_1^*) := D\tilde{p}_{RVH}(\phi_1^*) > -1 \]
Summary and Conclusion

- ET-coordinate representation of Poincare’ map
 - has two FP \(\tilde{p}_{RVH}(\phi^*) = \phi^* \iff \phi^* \in \{\phi_0^* := 0, \phi_1^* > 0\} \)
 - whose linearized dynamics
 - is unstable at \(\phi_0^* \): \(\tilde{P}_{RVH}(\phi_0^*) = e^{\beta \pi} > 1 \)
 - and asymptotically stable at \(\phi_1^* \): \(|\tilde{P}_{RVH}(\phi_1^*)| < 1 \)
- Conjugation preserves FP and linearized eigenvalues
- Hence stance energy map has same properties
 - two FP
 \(p_{RVH}(\rho^*) = \rho^* \iff \rho^* \in \{\rho_0^* := h^{-1}_{bet}(\phi_0^*) = 0, \rho_1^* := h^{-1}_{bet}(\phi_1^*) > 0\} \)
 - same stability properties \(P_{RVH}(\rho^*) = \tilde{P}_{RVH}(\phi^*) \)
edX Robo4 Mini MS – Locomotion Engineering

Week 6 – Unit 3
Raibert Vertical Hopper
Video 7.5

Segment 6.3.3

Return Map Analysis - Conclusion

Daniel E. Koditschek
with
Wei-Hsi Chen, T. Turner Topping and Vasileios Vasilopoulos
University of Pennsylvania
July, 2017
What Has Been Shown?

- Used Hooke’s law stance model of hopper
 - to show that constant thrust pumps energy
 - with a unique locally asymptotically stable limit cycle
- Additional arguments using this model give
 - essentially global basin for unique limit cycle
 - with possible “hunting” (negative slope linearization)
 - but preclude “limping” (period-two FP)
 - occurs only in physically meaningless parameter regime
 - wherein end-thrust resets directly into flight mode
Verified Much of Raibert’s Original Analysis

• control system delivers fixed thrust each stance
 ▪ causing bouncing to come to equilibrium
 ▪ at hopping height for which energy injected
 ▪ just equals energy lost (to friction)

• although mechanical losses may not be monotonic
 ▪ a unique equilibrium hopping height
 ▪ exists for each fixed value of thrust
 ▪ and greater thrust results in greater height

• however poorly chosen parameters
 ▪ may result in “hunting” (oscillatory convergence to FP)
 ▪ and closely related nonlinear model exhibits “limping”
Limping: When can it Happen?

- Simulations of pneumatic spring model
 - in physically plausible regime
 - where compression force from high prior apex
 - back-drives the pneumatic pressure chamber
 - exhibit robust “limping”
 - convergence to alternation between
 - identically repeated
 - high-long & short-low hops

- Poincare’ map analysis
 - reveals FP-destabilizing bifurcation
 - to asymptotically stable period-two orbit

- Raibert reported empirical “limping”
 - (personal comm.)
 - but seemed due to higher dof effects

figures from
D. E. Koditschek and M. Bühler,
The RVH as Dynamical Template

- Approximate RVH Poincare’ Map
- Is “anchored” in Buehler’s juggler
 - system settles down
 - to purely vertical orbits
 - whose return maps
 - have steady state properties
 - as predicted
- Introduce more formal notion soon

figures from: Property of Penn Engineering and Daniel E. Koditschek

Bifurcation Studies with Buehler’s Juggler

- Bifurcation
 - qualitative change
 - in attractor structure
 - due to systematic parameter adjustment

- Extensive theory available

Textbook reference:

figures from:
Dynamical Systems Thinking in Robotics

• We’ve encoded our tasks as dynamical attractors
• Whose basins function as abstract symbols
 ▪ regions of state space
 ▪ wherein the task is guaranteeably programmed
 ▪ and indefatigably achieved

• To be “composed”
 ▪ achieving some more complicated behavior
 ▪ from some simpler, well understood components

• Dynamical Systems Theory
 ▪ gives mathematically tractable
 ▪ physically robust and achievable
 ▪ predictive and composable symbols