Chapter 2

Entanglement

What are the allowable quantum states of systems of several particles? The
answer to this is enshrined in the addendum to the first postulate of quan-
tum mechanics: the superposition principle. In this chapter we will consider
a special case, systems of two qubits. In keeping with our philosophy, we
will first approach this subject naively, without the formalism of the formal
postulate. This will facilitate an intuitive understanding of the phenomenon
of quantum entanglement — a phenomenon which is responsible for much of
the ”"quantum weirdness” that makes quantum mechanics so counter-intuitive
and fascinating.

2.1 Two qubits

Now let us examine a system of two qubits. Consider the two electrons in two
hydrogen atoms, each regarded as a 2-state quantum system:

Since each electron can be in either of the ground or excited state, clas-
sically the two electrons are in one of four states — 00, 01, 10, or 11 — and
represent 2 bits of classical information. By the superposition principle, the
quantum state of the two electrons can be any linear combination of these
four classical states:

[9) = @00 |00) + o1 |01) + aqg [10) + @11 [11)

where a;; < C, >, |ozl-j]2 = 1. Of course, this is just Dirac notation for the
unit vector in C*:
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Measurement

As in the case of a single qubit, even though the state of two qubits is specified
by four complex numbers, most of this information is not accessible by mea-
surement. In fact, a measurement of a two qubit system can only reveal two
bits of information. The probability that the outcome of the measurement is
the two bit string = € {0,1}2 is |az|?. Moreover, following the measurement
the state of the two qubits is |z). i.e. if the first bit of z is j and the second
bit k, then following the measurement, the state of the first qubit is |j) and
the state of the second is |k).

An interesting question comes up here: what if we measure just the first
qubit? What is the probability that the outcome is 07 This is simple. It
is exactly the same as it would have been if we had measured both qubits:
Pr{lIst bit =0} = Pr{00} + Pr{01} = |ago|? + |ao1|> Ok, but how does
this partial measurement disturb the state of the system?

The answer is obtained by an elegant generalization of our previous rule
for obtaining the new state after a measurement. The new superposition is
obtained by crossing out all those terms of [¢)) that are inconsistent with the
outcome of the measurement (i.e. those whose first bit is 1). Of course, the
sum of the squared amplitudes is no longer 1, so we must renormalize to obtain

a unit vector:
ago |00) + apq |01)

\/ |eoo|® + |aor|?
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Entanglement

Suppose the first qubit is in the state 3/5|0)+4/5 |1) and the second qubit is in
the state 1/v/2|0)—1/v/2|1), then the joint state of the two qubits is (3/5|0) +
4/5|1))(1/v/2(0)—1/3/2[1)) = 3/5v/2|00)—3/5+/2|01)+4/5/2 [10)—4/5+/2 | 11).

More generally, if the state of the first qubit is ag |0) + @1 |1) and the state
of the second qubit is By |0) + 81 |1), then the joint state of the two qubits is
oS ‘00> + apP ’01> + a1 5 ’10> + o151 ’11>.

Can every state of two qubits be decomposed in this way? Our classical
intuition would suggest that the answer is obviously affirmative. After all
each of the two qubits must be in some state a|0) + 3 |1), and so the state
of the two qubits must be the product. In fact, there are states such as
1) = % (|00) 4 |11)) which cannot be decomposed in this way as a state
of the first qubit and that of the second qubit. Can you see why? Such a
state is called an entangled state. When the two qubits are entangled, we
cannot determine the state of each qubit separately. The state of the qubits
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has as much to do with the relationship of the two qubits as it does with their
individual states.

If the first (resp. second) qubit of |®1) is measured then the outcome is
0 with probability 1/2 and 1 with probability 1/2. However if the outcome is
0, then a measurement of the second qubit results in 0 with certainty. This is
true no matter how large the spatial separation between the two particles.

The state |®T), which is one of the Bell basis states, has a property which
is even more strange and wonderful. The particular correlation between the
measurement outcomes on the two qubits holds true no matter which rotated
basis a rotated basis |v), |v1) the two qubits are measured in, where [0) =
alv)+ 8 }vl> and |1) = —f|v) + « ’Ul>. This can bee seen as,
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EPR Paradox:

Everyone has heard Einstein’s famous quote “God does not play dice with the
Universe”. The quote is a summary of the following passage from Einstein’s
1926 letter to Max Born: ”Quantum mechanics is certainly imposing. But an
inner voice tells me that it is not yet the real thing. The theory says a lot,
but does not really bring us any closer to the secret of the Old One. I, at any
rate, am convinced that He does not throw dice.” Even to the end of his life,
Einstein held on to the view that quantum physics is an incomplete theory
and that some day we would learn a more complete and satisfactory theory
that describes nature.

In what sense did Einstein consider quantum mechanics to be incomplete?
Think about flipping a coin. For all common purposes, the outcome of a coin
toss is random — heads half the time, and tails the other half. And this
lines up exactly with our observations, but we know that randomness isn’t
the whole story. A more complete theory would say that if we knew all of the
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initial conditions of the coin ezactly (position, momentum), then we could use
Newton’s laws of classical physics to figure out exactly how the coin would
land, and therefore the outcome of the coin flip. Another way to say this is
that the coin flip amplifies our lack of knowledge about the state of the system,
and makes the outcome seem completely random. In the same way, Einstein
believed that the randomness of quantum measurements reflected our lack of
knowledge about additional degrees of freedom, or ”"hidden variables,” of the
quantum system.

Einstein sharpened this line of reasoning in a paper he wrote with Podolsky
and Rosen in 1935, where they introduced the famous Bell states. The EPR
argument works like this. For Bell state |®T) = %(\Om + |11)), when you

measure first qubit (in the bit basis), the second qubit is determined (in the
bit basis). What is even more remarkable is that if you measure the first
qubit in the sign basis, the second qubit is determined in the sign basis. You
should verify that in the sign basis (|+),|—)), the state |®*) can be written
as |®T) = %(|OO) +[11)) = %(H—-H + |——)). It follows that knowledge of
the sign of one qubit completely determines the other.

Now lets suppose the qubits are very far apart, say one light-second. If
we measure qubit 1 in the standard basis, then measure qubit 2 a half second
later in the same basis, the two measurements must agree. Then qubit 2 must
have been in a definite state for a half second before it was measured: from
the instant we measured qubit 1, we knew qubit 2. But the qubits couldn’t
have communicated any information in that time.

What if we had measured the first qubit in the |+),|—) basis instead?
Then similarly for half a second before we measure qubit 2, it was in a definite
state in the |+),|—) basis. But qubit 2 could not possibly know which basis
qubit 1 was measured in until a full second after we measure qubit 1! This
is because we assumed that light takes a one second to travel from qubit 1
to qubit 2. This appears to contradict the uncertainty principle for |+) and
|0) , ketl states says that there is no definite |+) state that is also a definite
|0),|1) state.

FEinstein, Podolsky, and Rosen concluded that since qubit 2 cannot have
any information about which basis qubit 1 was measured in, its state in both
bit and sign bases is simultaneously determined, something that quantum
mechanics does not allow. EPR therefore suggested that quantum mechanics
is an incomplete theory, and there is a more complete theory where “God does
not throw dice.” Until his death in 1955, Einstein tried to formulate a more
complete ”local hidden variable theory” that would describe the predictions
of quantum mechanics, but without resorting to probabilistic outcomes.
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But in 1964, almost three decades after the EPR paper, John Bell showed
that properties of Bell (EPR) states were not merely fodder for a philosoph-
ical discussion, but had verifiable consequences: local hidden variables! are
not the answer. He described an experiment to be performed on two qubits
entangled in a Bell state such that a local hidden variable theory would dis-
agree with quantum mechanics about the outcome. The Bell experiment has
been performed to increasing accuracy, originally by Aspect, and the results
have always been consistent with the predictions of quantum mechanics and
inconsistent with local hidden variable theories.

2.2 Bell’s Thought Experiment

Bell considered the following experiment: let us assume that two particles
are produced in the Bell state |®T) in a laboratory, and the fly in opposite
directions to two distant laboratories. Upon arrival, each of the two qubits is
subject to one of two measurements. The decision about which of the two ex-
periments is to be performed at each lab is made randomly at the last moment,
so that speed of light considerations rule out information about the choice at
one lab being transmitted to the other. The measurements are cleverly chosen
to distinguish between the predictions of quantum mechanics and any local
hidden variable theory. Concretely, the experiment measures the correlation
between the outcomes of the two experiments. The choice of measurements
is such that any classical hidden variable theory predicts that the correlation
between the two outcomes can be at most 0.75, whereas quantum mechanics
predicts that the correlation is cos? 7/8 ~ 0.85. Thus the experiment allows
us to distinguish between the predictions of quantum mechanics and any local
hidden variable theory! We now describe the experiment in more detail.

The two experimenters A and B (for Alice and Bob) each receives one qubit
of a Bell state |[®T), and measures it in one of two bases depending upon the
value of a random bit r4 and rp respectively. Denote by a and b respectively
the outcomes of the measurements. We are interested in the highest achievable
correlation between the two quantities r4 x rp and a + b(mod2). We will see
below that there is a particular choice of bases for the quantum measurements
made by A and B such that P[rq xrg = a+b(mod2)] = cos? /8 ~ .85. Before
we do so, let us see why no classical hidden variable theory allows a correlation
of over 0.75. i.e. Plra x rp = a+ b(mod2)] < 0.75.

1We will describe what we mean by a local hidden variable theory below after we start
describing the actual experiment
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We can no longer postpone a discussion about what a local hidden variable
theory is. Let us do so in the context of the Bell experiment. In a local hidden
variable theory, when the Bell state was created, the two particles might share
an arbitrary amount of classical information, x. This information could help
them coordinate their responses to any measurements they are subjected to
in the future. By design, the Bell experiment selects the random bits 74
an rp only after the two particles are too far apart to exchange any further
information before they are measured. Thus we are in the setting, where A
and B share some arbitrary classical information x, and are given as input
independent, random bits x4 an xp as input, and must output bits ¢ and b
respectively to maximize their chance of achieving r4 x rg = a + b(mod2).
It can be shown that the shared information z is of no use in increasing this
correlation, and indeed, the best they can do is to always output a = b = 0.
This gives P[ra X rg = a + b(mod2)] < .75.

Let us now describe the quantum measurements that achieve greater cor-
relation. They are remarkably simple to describe:

e if r4 =0, then Alice measures in the standard |0) / |1) basis.

e if 74 = 1, then Alice measures in the 7/4 basis (i.e. standard basis
rotated by m/4).

e if g = 0, then Bob measures in the 7/8 basis.

e if rp =1, then Bob measures in the —7/8 basis.

The analysis of the success probability of this experiment is also beautifully
simple. We will show that in each of the four cases r4 = rg = 0, etc, the
success probability P[ra x rg = a + b(mod2)] = cos® 7 /8.

We first note that if Alice and Bob measure in bases that make an angle
f with each other, then the chance that their measurement outcomes are the
same (bit) is exactly cos? . This follows from the rotational invariance of |®*)
and the following observation: if the first qubit is measured in the standard
basis, then the outcome is outcome is an unbiased bit. Moreover the state of
the second qubit is exactly equal to the outcome of the measurement — |0) if
the measurement outcome is 0, say. But now if the second qubit is measured
in a basis rotated by 6, then the probability that the outcome is also 0 is
exactly cos? 4.

Now observe that in three of the four cases, where x4 - xp = 0, Alice and
Bob measure in bases that make an angle of 7/8 with each other. By our
observation above, Pla +b =0 mod 2] = Pla = b] = cos® /8.
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In the last case x4 -xp = 1, and they measure in bases that make an angle
of 3m/8 with each other. So, Pla+b =0 mod 2] = Pla # b] = cos?37/8 =
sin?(7/2 — 37 /8) = sin®n /8. Therefore, Pla+b =1 mod 2] = 1 —sin®7/8 =
cos? /8. So in each of the four cases, the chance that Alice and Bob succeed
is cos® /8 ~ .85






