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Control of Affine Systems

State = Rn

Input
u e R™

State equations

z = f(z)+ g(x)u
Output
y € R™

y = h(z)
e Penn

Y Y Engineering Property of University of Pennsylvania, Vijay Kumar



Lie Derivative

Function T2
f:R"—> R
Vector Field "X, () 1
X(x) = Xa(2)
X (2)_
Lie derivative of falong X _ %_
Lxf=X-Vf [
of

R4

P Penn X1 Xo .. X,
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Lie Derivative

Lie derivative of falong X [ Of ]
i
£Xf — [Xl X9 ... Xn} Qw2
of
Example: n=2
_ T2
X = [—% sin(azl)] - L2
—4 sin
f = —lcosx

. [ si
Lxf = [:1:2 — %smxl] [ 813561]

Tol sin

QW!J
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Example: Controlling a Single Output

Output = R

Want . L q
Y-y +k(y—y)=0
or

i — 9 + k1 (9 — 99°°) + ka(y — y?) =0

Need derivative of the output function

. Oh 8h
y__g;— () + g(z)u)

ox

Lie Derlvatlves /
c‘?h

th——f ()

!lw!J
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Single Input, Single Output, First Order Dynamics

State equations

T = fz) +g(z)u

y = h(z)
Rate of change of output
y=Lsh+ (,Cgh) (v

Output

Control law if L h # 0O

1
£

Closed loop system behavior Error exponentially

, N N converges 1o zero
g — 99 + k(y —y?) =
P Penn
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U — [ffh + ydes + k( des y))
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Input Output Linearization

new system

y=uv
Nonlinear feedback transforms the original nonlinear system to a new linear system

Linearization is exact (distinct from linear approximations to nonlinear systems)
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Affine, Single Input Single Output

State x xr € R"
Input u u € R
State equations z = f(z)+g(z)u
Output y = h(x) € R Rate of change of output
y=Lrh+ (Lgh)u
Control law |
. des des
if £ h #£ 0 u= g (CL 4 R —y)
if £ gh =0 y =L f h  (rate of change of output is independent of u)
Explore higher order derivatives of output nonzero?
w i =LrLrh+(LyLrh)u
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Affine, Single Input Single Output

State x

Input u

State equations
Output

Control law

if L,h # 0

if L,h =0

r e R"

T = fz) + g(z)u

y = h(x) € R Rate of change of output
Y = ﬁfh + (Egh) (7
1 des des
u = £h( Leh+ 97 + k(y™ —y))

Y = L f h  (rate of change of output is independent of u)

if (LoLph) # 0

u =

R4
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Affine, Single Input Single Output

State x r € R”

Input u ueR

State equations z = f(z)+g(x)u

Output y=h(zr) eR Rate of change of output

Y = ﬁfh + (Egh) (7
Control law
1

LLh (=L L+ 9% + k1 (99 — ) + k2 (y? — y))
g

u =

Closed loop system behavior

i — 9 + k1 (9 — 99°°) + ka(y — y?) =0

Error exponentially converges to zero

QW!J
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Affine, Single Input Single Output

State x
Input u
State equations

Output

Relative degree, r

Loh, LoLh, LoL5h, ..

_JW!_I

B Penn
& Engincering

r e R"

u e R

The index of the first nonzero term in the sequence
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/
L2h = Ls(Lrh)

~

Lih =Ly (Ly(Lsh))

.

j

p—— r=k+1

L LgLhh, .

11
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Example 1. Single degree of freedom arm

1
ml?§ + =mglsing = 7 T = Fl] = [q]
2 ) q
+ [i] u h = L1
ml?
g(z)
,th — I9
# ,C?ch — —% sin I
r=2

R4

2 Penn
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Affine, SISO

Linear control,
model independent

—1 1
— - des des
U= ﬁ—gh (—Lsh+ 1{ T k(?{ - ?)) [ feed forward
T feedback
=2
1
u = ££h+ydes+k1(ydes )+k(des Y
£y i — — )
=3
1 3 w des - des e - des . des
U= (—th+ YA R (G = §) + k(97 = 9) + Ka(y —y))
ﬁgﬁfh A A 4 A 4 A 4
| | l | | | |
General form of control law u = afx) + [B(x)v
e Penn
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Single degree of freedom arm

1
ml?§ + =mglsing = 7 T = [331] = [q]
2 L2 q
. o 0 _
v [—% sin(am)] " [m] voohmm
f(z) g(@)
1 9 g .
£g£fh:W ,th:_jsnlxl
1 . + des . €8
u= oy (CLALh P G = )+ k(™ )

& Penn.
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Input Output Linearization
Single Input, Single Output, Relative degree r

new System
O N

Nonlinear feedback transforms the original nonlinear system to a new linear system

Linearization is exact (distinct from linear approximations to nonlinear systems)
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Multiple Input Multiple Output Systems

State x rcR"

Input u u e R™ ZE — f(aj) —I_ g(x)u

n x 1 nXxXm
Output y = h(.fl?) c R™
Assume each output has relative degree r
Nonlinear feedback law
—1
. r—1 r
= (£,L57'h)  (~Ljh+v)
m X m
leads to the equivalent system
("“) _
m x1 m X 1

QW!J
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Fully-actuated robot arm
(n joints, n actuators)

M(q)G+ C(q,4)q+ N(q) =

Dynamic model
» M 1is the positive definite, n by n inertia matrix

» C(q, q)q is the n-dimensional vector of Coriolis and centripetal
forces

» N is the n-dimensional vector of gravitational forces
» 7 1is the n-dimensional vector of actuator forces and torques

L
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Fully-actuated robot arm (continued)

M(q)q + C(q, )q+N( ) =

Zl?
€T — 1 p— q
L2 4q.
u=T1€cR"

y=q € R"
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Fully-actuated robot arm (continued)

L2

flz) = — M (z1) Y (N (z1) + C(x1,x2)x2)J 9(z) = [M(a?l)_ll

Loh =0, Lol # 0

Relative degree 1s 2

h(x) = x;

= (LyLyh) ™ (=L LR T + k(39 — 9) + k2 (y7 — v))

M L1
. =M (1) (N (21)

Control law

= 0(331, 332)262)

u= (C(x1,x2)r2 + N(x1)) + M (21)

(ydes + k ( -des y) + kg( des y))

Method of computed torque Inverse dynamics approach to

_JW!_I

P Penn (Paul, 1972) control (Spong et al, 1972)
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R4

4 Penn
'0’ Engineering

Under Actuated Systems

The number of inputs is smaller than the number
of degrees of freedom!
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Kinematic planar cart

State equations, inputs 2 inputs, 3 degrees of

X =vcosH . cosf 0 freedom
. . X = [sinf O [U]
y =vsin0 w

0 1
O=w ,
X =9X)u
Outputs
rzp| |z + Lcosd
yp| |y+ Lsinf

P
o
y
e
& 2
A 4y
‘f

y = h(z) = [:13 + Lcos@]
y+ Lsing Relative degree is 1
_ |cos® —Lsinf| |v
= Penn. Y= lsin® Lcosh | |w 2
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Planar Quadrotor

] —— ]
0 —--sing 0
—g| + | 5cosg O
o] | O ol

2 inputs, 3 degrees of
freedom

T o ) -
0 0
0 0
Tl-Lsing 0
Lcos¢gp 0

| U

& Engmeerlng Property of University of Pennsylvania, Vijay Kumar



Penn
Engincering

Three-Dimensional Quadrotor

4 inputs, 6 degrees of
freedom
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