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15.053x, Optimization Methods in Business Analytics 

Fall, 2016 

October 4, 2016 

A glossary of notation and terms used in 15.053x 

Weeks 1, 2, 3, 4, 5 and 6. 

(The most recent week's terms are in blue). 

 

 

NOTATION AND TERMINOLOGY 

The purpose of this document is to provide a glossary of notation and terminology relevant to 

15.053x. We will add notation and terminology throughout the semester, and we will update 

this document once a week.   If you would like terms or notation added, contact the TA, Khizar 

Qureshi. 

For a comprehensive (and mathematically advanced) glossary of mathematical terms used in 

optimization, see the Math Programming Glossary, which was developed by Harvey Greenberg. 

 

 

 

MATHEMATICAL NOTATION 

•  = The sum of xi where the sum is over all indices i in the set S.  We refer to this type 

of notation as summation notation. 

• |x|= the absolute value of x.  (This assumes that x is a single variable.) 

• ⎣ x ⎦ = the floor of x.  That is, x rounded down to the nearest integer.  For example, ⎣ 2.3 ⎦ = 2;  

⎣ -1.1 ⎦ = -2; ⎣ x ⎦ = x if x is an integer. 

• ⌈ x ⌉  = the ceiling of x.  That is, x rounded up to the nearest integer.  For example, ⌈ 2.3 ⌉  = 3;  

⌈ -1.1 ⌉ = -1; ⌈ x ⌉ = x if x is an integer. 

• x+ =  max {0, x}.  This is often referred to as the positive part of x. 

• x− =  min {0, x}.  This is often referred to as the negative part of x. 

xiiÎSå

http://glossary.computing.society.informs.org/ver2/mpgwiki/index.php?title=Main_Page
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• ":" The symbol ":" is often used to mean "such that."  For example, consider  

{(x, y) :  1 ≤ x ≤ 2, x + y ≥ 0}.   This is interpreted as "The set of points (x, y) such that x 

and y satisfy the following conditions:  1 ≤ x ≤ 2  and x + y ≥ 0}.   Usually the conditions 

that need to be satisfied are separated by commas, but occasionally they would be 

separated by semicolons (";"). 

• (2, 4]:   this is the set of real numbers x such that 2 < x ≤ 4.  When describing intervals over 

the reals, the parenthesis is used for an "open interval".  That is, if a parenthesis is used, 

the interval does not contain the endpoint.   A bracket -- "[" or "]" -- is used to indicate a 

closed interval.   That is, the endpoint is included.   

• B(S, x’, ε):  The ϵ-ball in S centered at x'.  See "ϵ-ball" below. 

 

 

TYPES OF OPTIMIZATION MODELS. 

By an optimization model (or optimization problem) we mean a problem in which there is a 

single objective function (max or min) subject to constraints.  An alternative term that is 

commonly used is mathematical program.  We also refer to them as maximization problems or 

minimization problems. 

• Linear Program: an optimization model in which the objective is linear and the constraints 

are linear. 

• Mixed Integer Linear Program:  an optimization model in which the objective is linear and the 

constraints are linear, and some (or all) of the variables are constrained to be integer 

valued. It is called a Pure Integer Program if every variable is required to take on an 

integer value. It is called a Binary Integer Program (or a 0-1 Integer Program) if every 

variable is required to be 0 or 1. 

• Nonlinear Program. This is the common name that refers to any possible optimization model. 

Remember that nonlinear programs include linear programs as a special case. 

 

OTHER TERMINOLOGY 

• 100% rule:  This is a rule used in LP sensitivity analysis when more than one cost coefficient 

changes or when more than one RHS coefficient changes.   If K coefficients change, one 

can determine allowable increases and decreases by dividing all of the allowable 

increases and decreases of the report by K.  (There is a more general version of this rule 

in Applied Mathematical Programming.) 
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• Allowable decreases or increases.   In the LP sensitivity report for cost coefficients, the 

allowable increase (resp., decrease) is the maximum increase (resp., decrease) in a 

single cost coefficient, with all other data being unchanged, such that there is no change 

in the optimal solution.  In the LP sensitivity report for RHS coefficients, the allowable 

increase (resp., decrease) is the maximum increase (resp., decrease) in a single RHS 

coefficient, with all other data being unchanged, such that there is no change in the 

shadow prices. 

• Big M method.   In integer programming, this is a method that is used for modeling (i) logical 

constraints such as constraints involving "OR" or "IF-THEN."   The big M method is also 

used for modeling fixed charges in the cost function.   In practice, one needs to use a 

numerical value of M.  In those cases, it helps to select a minimal value, that is, the 

smallest value of M which is guaranteed to work. 

 

Within linear programming the same term is used for a very different approach that 

helps to solve an LP when no initial feasible solution is known. 

• Bounded feasible region.   We say that a feasible region is bounded if there is some positive 

number M such that every decision variable is guaranteed to be between -M and M.   If 

a feasible region is not bounded, we say that it is unbounded. 

• CBC.  The solution algorithm that is freely available and is commonly used in conjunction with 

OpenSolver to solve linear programs and integer programs. 

• Concave function.   Suppose f is a function in which the domain D is a convex set.  Then f is 

concave if the function -f(x) is convex.  That is, for every two points (x, f(x)) and (y, f(y)) 

on the "curve", the line segment joining these two points lies on or below the curve.  

Equivalently, for every two points x, y ∈ D, f((1 - λ) x + λ y) ≥ (1 - λ) f(x) + λ f(y). 

• Concave maximization problem.  This is an optimization problem in which the objective is to 

maximize a concave function, and the feasible region is a convex set.  A local maximum 

for a concave maximization problem is guaranteed to be a global maximum. 

• Constraints: Inequalities (or equalities) to impose limitations on the decision variables. 

• Convex function.   Suppose f is a function in which the domain D is a convex set.  Then f is 

convex if for every two points (x, f(x)) and (y, f(y)) on the "curve", the line segment 

joining these two points lies on or above the curve.  Equivalently, for every two points x, 

y ∈ D, f((1 - λ) x + λ y) ≤ (1 - λ) f(x) + λ f(y).  The function f is called strictly convex if for 

every two distinct points x, y ∈ D, f((1 - λ) x + λ y) < (1 - λ) f(x) + λ f(y).   

• Convex minimization problem.  This is an optimization problem in which the objective is to 

minimize a convex function, and the feasible region is a convex set.  A local minimum for 

a convex minimization problem is guaranteed to be a global minimum. 
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• Convex set.  A set S is convex if for every two points p1, p2 ∈ S, the line segment joining p1 to 

p2 is also in S.  Equivalently, for all λ ∈ [0,1], the point (1 - λ) p1 + λ p2 is in S.   

Note:  the feasible region of a linear program is always convex. 

• CPLEX.   A great commercial solver for linear programs and integer programs.  It was 

originally created by Bob Bixby (See Gurobi), and is now owned by IBM.  It is free for 

students at accredited universities.   

• Decision variables.   The variables that represent the decisions or choices to be made.   If you 

are using spreadsheet optimization, these variables are the values in Changing Cells or 

Changing Variable Cells.  

• Edge of the feasible region.  A line segment on the boundary of the feasible region that joins 

two extreme points.  These extreme points are adjacent.  (Every two extreme points can 

be joined by a line segment.  For the two extreme points to be adjacent, the line 

segment must be on the boundary of the feasible region.)  

• ϵ-ball:   Suppose that S is a convex set and that x' ∈ S.  Then the ϵ-ball in S centered at x', 

denoted as B(S, x’, ε), is the set of all points in S that are within a distance of ε from x’. 

• Euclidean norm.   Suppose that y = y1, y2, …, yk is a vector.  Then the Euclidean norm of y is 

    

• Excel Solver.   The optimization software that is included with Microsoft Excel.  (With Google 

Sheets, the free software is called Solver.)  It can be used to solve linear programs 

(simplex method) or integer programs (simplex method) or nonlinear programs (GRG 

Nonlinear). 

• Extreme point (also called corner points).  In two dimensional LPs, these are feasible points 

where two different constraints hold with equality. If we are solving a linear program 

with non-negativity constraints, and if there is some optimal solution, then there is an 

extreme point that is optimal.  More general definition:  A feasible point x of an LP is an 

extreme point if x is not the midpoint of two other feasible points. 

Two extreme points are adjacent if they are joined by an "edge," which is a line segment 

on the boundary of the feasible region. 

• Extreme ray.   It is a ray whose endpoint is an extreme point, and such that the ray lies on the 

boundary of the (infinite) feasible region. 

• Facility location problem.  A combinatorial problem in which there is a set of customers and 

also a set of locations where facilities may be located.   A solution is feasible if it assigns 

facilities to locations (subject to some additional constraints) and if it assigns customers 
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to facilities (possibly subject to some additional constraints).  The objective is to 

minimize the combined costs of locating the facilities and assigning the customers.  

• Feasible.   A point is said to be feasible if it satisfies all of the constraints of the optimization 

model.   (A point represents the assignment of values to each of the decision variables.)  

The feasible region is the set of all feasible points.  

• Fixed charge.  This refers to a cost function f( )  of the following form:  f(0) = 0.   

f(x) = d + cx if x > 0.   We refer to d as the fixed charge.  This type of cost function arises 

when there is a cost of initiating an activity, and a linear cost thereafter. 

• Free.  A decision variable x is called free if it can be either positive or negative.  If a variable is 

free, we also say that it is unconstrained in sign. 

• Forcing constraint.  A forcing constraint is a constraint of an integer program that forces a 

binary variable to be 1 when some specified condition is satisfied.  For example, if   

0 ≤ x ≤ 100, and if y is binary, then the constraint  x ≤ 100 y (equivalently, y ≥ x/100) is a 

forcing constraint.  The variable y is forced to be 1 whenever x > 0.  

• Geometric method.  This refers to a method for solving a linear program in two dimensions.  

An isoprofit line is drawn on the graph.  Then the line is moved parallel to itself in a way 

to improve the objective function.  It is moved as far as possible while still having at 

least one feasible point. 

• Global minimum.  Suppose that P is the problem min{ f(x) : x ∈ S}.  We say that x’ is a global 

minimum for the problem P if  (i)  x’ ∈ S, and (ii) f(x') ≤ f(y)  for all y ∈ S. 

• Graph coloring problem.  This is a combinatorial problem based on coloring the vertices of a 

graph G = (V, E).  A coloring of the vertices of V is feasible if adjacent vertices receive 

distinct colors.  The objective is to find a feasible coloring that uses the fewest number 

of colors. Map coloring is a special case in which one wants to assign colors to the 

regions of a map so that regions that share a common border have different colors. 

• Infeasible.  A point is said to be infeasible if it violates one or more constraints of the 

optimization model.  An optimization model is said to be infeasible if there are no 

feasible points (equivalently, there are no solutions).  

• Integrality constraint.   A constraint stipulating that one or more variables of a model are 

required to be integer valued. 

• Knapsack Problem.   An integer program (usually binary) with a single linear constraint.  The 

problem has been used to model the problem of putting items in a knapsack subject to a 

weight constraint, or selecting projects subject to a budget constraint, or selecting 

prizes at a game show (15.053 application). 
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• Level set of a function f.   If f is a function, then the level set of f(x) at α is: {x : f(x) ≤ α }.  If f is a 

convex function, then the level set of f(x) at α is a convex set. 

• Local minimum.  Suppose that P is the problem min{ f(x) : x ∈ S}.  We say that x’ is a local 

minimum for the problem P if  (i)  x’ ∈ S, and (ii) f(x') ≤ f(y)  for all y ∈ B(S, x', ϵ), where 

B(S, x', ϵ) is the ϵ-ball in S centered at x'. 

• Non-negativity constraints.  The constraints that constrain variables to be greater than or 

equal to 0. 

• Objective Function.   In an optimization model, the goal is to either minimize or maximize the 

objective function.   

• One hundred percent rule:   See 100% rule (at beginning of Glossary) 

• OpenSolver.   Spreadsheet modeling software that can be used to set up an optimization 

problem and call an algorithm to solve it.  OpenSolver is freely available on the web at 

www.OpenSolver.org.  OpenSolver can, in principle, be used to model and solve 

optimization problems with any number of variables.   (Excel Solver is limited to 200 

variables.)  In reality, extremely large problems may take up more memory than is 

available in your computer, and they may require too  much time to solve.  In 15.053x, 

we typically use CBC to solve linear and integer programs.  In addition, OpenSolver 

works with other optimization software such as CPLEX and Gurobi. 

• Optimal solution.  A solution refers to a feasible point.  Suppose that one is trying to solve a 

maximization problem, and that the objective function is f( ).  A solution x* is called 

optimal (or maximal) if for any other feasible solution x', f(x*) ≥ f(x').    If it were a 

minimization problem, then x* would be called an optimal (or minimal) solution if for 

any other solution x', f(x*) ≤ f(x'). 

• Parametric analysis:  measures the affect in the optimum solution and/or the optimum 

objective value as one parameter in the problem changes.  

• Piecewise linear function.  We will describe a function f( ) of one variable defined on a domain 

D = [0, U].  A (continuous) piecewise linear function has the following property:  there 

are points a1, …, aK for some K such that (i) a1 = 0, (ii) aK = U, and (iii) the function f( ) is 

linear on the closed interval [ai, ai+1] for each i = 1 to K-1.  It is also possible to define 

non-continuous piecewise linear functions in which the linear pieces do not necessarily 

share their endpoints. 

• Portfolio optimization.    A class of problems in Finance.  A manager needs to create a 

portfolio of investments so as to maximize the return of the portfolio while minimizing 

the variance of the portfolio.  A common variant of this problem is to minimize the 

variance while ensuring that the return of the portfolio meets or exceeds a threshold 

http://www.opensolver.org/
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value.   This variant of the problem is a quadratic convex minimization problem. 

• Pricing out a variable xj.   This is a method for computing the reduced cost of xj.  One 

multiplies the inner produce of the column coefficients of xj by the shadow prices, and 

subtracts this inner product from the profit of xj.   

• Reduced cost of a variable xj.   This is the shadow price of the constraint xj ≥ 0. 

• Redundant constraint.  A constraint of an optimization problem with the following property:  

if the constraint is deleted, then the feasible region does not change.  It is necessary to 

understand redundant constraints as part of the big M method for modeling integer 

programs.  

• RHS:   abbreviation for Right Hand Side. 

• Second-Order Cone Program (SOCP):  The SOCP is an optimization problem in which the 

objective function is linear, and constraints are either linear or they are of the form:   

|| y ||2 + at x ≤ b where || y ||2 is the Euclidean norm of y, and at x is a linear function of x, 

and b is a scalar. 

• Sensitivity analysis:  measures how sensitive the optimum solution and optimum objective 

value is to changes in the data.  For linear programs, there is a sensitivity analysis report 

that provides information on changes in the optimum solution when a single cost 

coefficient changes.  There is another report that provides information on how the 

optimal objective value changes when a single right hand side coefficient changes.  

• Set covering problem.  A combinatorial optimization problem in which there are n subsets of 

a set S.  A collection of subsets is feasible if the union of the subsets is S.  The objective 

is to find a minimum size feasible subset (or possibly a minimum cost feasible subset.)  

• Set packing problem.  A combinatorial optimization problem in which there are n items to be 

“packed”.  There is also a list of forbidden pairs of items.  It is not permitted to pack 

both items in any of the pairs. The objective is to find a maximum size feasible subset (or 

possibly a maximum value feasible subset.) 

• Shadow price.  The shadow price of a constraint of a linear program is the increase in the 

optimal objective value per unit increase in the RHS coefficient.   

• Simplex Algorithm.   The most commonly used method for solving linear programs.  It was 

developed by George Dantzig in 1947.  It finds an optimal solution iteratively.  It starts at 

an extreme point solution.  It then moves to an adjacent extreme point solution whose 

objective value is better.  If there is no adjacent extreme point that is better, then (1) 

there is an "extreme ray" along which the objective value improves infinitely (and thus 

the optimal solution value is infinite) or else (2) the current extreme point is optimal.  
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• Solution.   Typically a solution refers to a feasible point of an optimization model.  The term 

"infeasible solution" sounds like a paradox.  But, the term infeasible solution is widely 

used to refer to a point that is infeasible.  That is, it is not a solution. 

• Unbounded.   We say that a feasible region is unbounded if it is not bounded.   That is, for any 

positive number M, there is some feasible solution x' such that some variable of x' has 

absolute value larger than M.  We say that the optimal objective value of a maximization 

problem is unbounded from above if there is a sequence of feasible solutions whose 

objective values goes off to (converges to) ∞.  Similarly, we say that the optimal 

objective value of a minimization problem is unbounded from below if there is a 

sequence of feasible solutions whose objective values converge to -∞. 

 

 


