Ming Zhang “ Data Structures and Algorithms *

Data Structures
and Algorithms (3)

Instructor: Ming Zhang
Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao

Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook)
https://courses.edx.org/courses/PekingX/04830050x/2T2014/

https://courses.edx.org/courses/PekingX/04830050x/2T2014/
https://courses.edx.org/courses/PekingX/04830050x/2T2014/

Chapter 3 Stacks and Queues

- Stacks

- Application of stacks

- Implementation of Recursion using
Stacks

- Queues

Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and
.............. | Queues

Transformation from recursion to non-recursion

- The principle of recursive function
- Transformation of recursion

- The non recursive function after

optimization

Ming Zhang “Data Structures and Algorithms”

_QEGLUENy

Stacks and - . -
-------------- oueues |- The-principle of recursive function

Another study of recursion

. Factorial fm)= {“ xf (1” -D "= é
. Exit of recursion

- End condition of recursion is when the
minimal problem is solved

- More than one exits are permitted
- Rule of recursion

(Recursive body + bounded function)

- Divide the original problem into sub
problems

- Ensure that the scale of recursion is more
and more closer to the end condition

e 4 Ming Zhang “Data Structures and Algorithms”

_EEclEay

Stacks and - . -
—The principle of recursive function.—————————

“““““““ Queues
Non recursive implementation of recursive algorithm
I nxf(n—1) n=1
A { 1 n =0

- Non recursive implementation of factorial

- Establish iteration
- Transformation from recursion to non-recursion

- How about the problem of Hanoi Tower?

e s Ming Zhang “Data Structures and Algorithms”

_EEclEay

Stacks and - . -
-------------- oueues |- The-principle of recursive function

Recursion program for Hanol tower problem

http://www.17yy.com/f/play/89425.html
- hanoi(n,X,Y,Z) ‘

A B C

- Move n disk
- Move the disk from pillar X to pillar Z

- X. Y. Z can be used to place disks temporarily
- Big disks cannot be put on small disks

- Such as hanoi(2, ‘B’, ‘C’, ‘A’)
- Move 2 disks from pillar B to pillar A
_ 6 Ming Zhang “Data Structures and Algorithms”

http://www.17yy.com/f/play/89425.html

_ Chapter 3

Stacks and 3.1.3 Transformation from recursion to non-recursion
______________ Queues I L

void hanoi(int n, char X, char Y, char Z) {
if (n <=1)
move(X,Z);
else {
// don’ t move the largest disk on X and move the left n-1 diskto Y
hanoi(n-1,X,Z,Y);
move(X,Z); //move the largest disk on X to Z
hanoi(n-1,Y,X,Z); // move the n-1 diskon Y to Z
}
}

void move(char X, charY)
// move the disk on the top of pillar x to pillar Y

{

cout << "move" << X << "to" <<Y << endl

}

e Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and 3.1.3 Transformation from recursion to non-recursion

“““““““ Queues
Operating diagram of Hanoi recursive subroutine
pop \ push
HHL%§ Ki+1
. Stack t K,
hanoi(n...) aeeeb .
K,
Stack bottom—— ko

Execute the instructions of Hanoi program
Exchange information with subroutine via stack

e s Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and
Queues

Call subroutine
Call subroutine

‘ move(A,C)

recursivel

<

return move(A,B)

return Q 0 Call subroutine

[
mOVE(A,C) return ‘ mOVE(C,B)

Call subroutine
recurswely

@ Call subroutine

2 ‘ move(B,A)

\ return
‘ return \move(B,C)
\ 0 Call subroutine

return
‘ move(A,C)

A

_ 9 Ming Zhang “Data Structures and Algorithms”

3.1.3 Transformation from recursion to non-recursion

e Call subroutine G

recursively

Call subroutine

move(A,C)

Call subroutine

. Call subroutine
recursively

Return move(C,B)

move(A,C)

9 Call subroutine

H
H , p oA ‘move(B,A)
B,A,C /T \n(Ixe0

Call subroutine

H move(A,C)
A,B,C

return

_ Chapter 3

Stacks and 3.1.3 Transformation from recursion to non-recursion
QUeUES |7 T

The status of stack when the recursion is executed

hanoi(1,A,B,C)
hanoi(1,B,C,A)
hanoi(2,B,A,C)
hanoi(1,C,A,B)
hanoizl,A,B,C;
hanoi(2,A,C,B
hanoi(3,A,B,C)

Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and 3.1.3Transformation from recursion to non-recursion
___________ Queues

A recursive mathematical formula

fuln) = 4

n+l when n<?2

ruln/2)xru(n/al) n=2

Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and 3.1.3 Transformation from recursion to non-recursion

“““““““ Queues 15
Example for recursive function
int f(int n) {)

n+l1 when n<?2

if (n<2) fu(n) = <
return n+1;)

else
return f(n/2) * f(n/4);

rulln/2)krun/al) n=2

Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and 3.1.3 Transformation from recursion to non-recursion
QUGS |77 7 T T oo oo

Example for recursive function(change a little)

void exmp(int n, int& f) {
Int ul, uz;

if (n<2) (a4l when n<2
A , fuln) = <
f=n+1; (2) rulln/2)xrun/4]) n=2
else {)

exmp((int)(n/2), ul);
exmp((int)(n/4), u2);
f=ul*u2;

Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and 3.1.3 Transformation from recursion to non-recursion
QuUeeU S |

Dynamic memory allocation when the function is executed

. Stack is used for data that match last-in
and first-out after allocated
- Such as call function

Code region

- Heap is used for data which | staic region

doesn’t match LIFO stack

- Such as the distribution of the v

space that the pointer points to Frei Pl
stack

Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and | 3.1.3 Transformation fremrecursion to non-recursion

“““““““ Queues
Function call and the steps of returjn
. —] =
. Function recall funcion|(fundtion
T —
- Save call information (parameter , \,
return address)
- Distribute data area (Local variable) //
- Control transfers to the exit of the fu n(tion]
function called B
\
- Return
- Save return information
- Release data area

- Control transfers to a superior functioan'n Procegss
(the main call function)

_ 16 Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and

Queues

3.1.3 Transformation from recursion to non-recursion

n+1 when n<2
Diagram for the process of executing function £ u(n) = fulln /2)kruln/4]) n=2

Exmp(7,&f) f=ul*u2=

ul=f=2 u2=f=2
f=ul*u2=2 [Exmp(3,&f)] [Exmp(1,&f)| f=2
ul=f=2 u2=f=1
f=2 [Exmp(1,&f)] |Exmp(0,&f) | =1

_ 17 Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and 3.1.3 Transformation from recursion to non-recursion
QuUeeU S |

Simulate the process of recursion call by stack

Last call , first return (LIFO) , so stack is used vo!dtexinp(zint n, int& f) {
int ul, u2;

if (n<2) f=n+1;

else {
exmp((int)(n/2), ul);
exmp((int)(n/4), u2);
f = ul*u2;

}

rd=3: n=7 f=? ul=2 u2=2

Ming Zhang “Data Structures and Algorithms”

Chapter 3 |

Stacks and
Queues

Question

- For following function , please draw

the recursive tree when n=4 case, and
use stack to simulate the process of
recursive calls with the stack

- The factorial function
f0=]., f1=]., fl’l = 1N fl’l-].

- 2 order Fibonacci function
f0=0, f1=]., fl’l - fl’l-1+ fn_z

_ 19 Ming Zhang “Data Structures and Algorithms”

Ming Zhang “ Data Structures and Algorithms *

|

Data Structures
and Algorithms

Thanks

the National Elaborate Course (Only available for IPs in China)
http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/

Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)

