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21 cm Line of Atomic Hydrogen and its Use in Astrophysics

MikeS1
(Dated: June 10, 2019)

The 21 cm line has its origin in the hyperfine splitting of the 1S state of Hydrogen whereby the
magnetic dipole moment of the nuclear proton couples to the spin magnetic moment of the orbiting
electron. The present paper will give a brief history of the discovery of this splitting AE and its
overriding importance to astrophysics before moving on to the derivation of the expression using
perturbation theory for the energy splitting (time-independent theory) and the expression for the
magnetic dipole transition rate (time-dependent theory) between the relevant states. Comparison of
the magnitude of AFE to that of the fine structure will be made as well as discussion of the significance

of the small magnitude of the transition rate.

I. INTRODUCTION

The advent of radio astronomy in the late 1930s and
throughout the 1940s opened the first major window on
the electromagnetic spectrum beyond the visible range.
H.C. van de Hulst [1] predicted that a hyperfine transition
in the ground state of Hydrogen should be detectable in
the cold interstellar gas clouds within the Milky Way
Galaxy. This was finally detected in 1951 by H. Ewen
and E. Purcell [2][3].

Hydrogen accounts for ~ 75% of the baryonic mass of
the universe. Because of its ubiquity it is a major tracer
of the universe’s observed structure. In environments
where hydrogen is in its atomic form, i.e. un-ionized, the
21cm line can be observed. The precise shape and relative
strength of the spectral line (”line profile”) as well as its
Doppler shift away from 21cm gives detailed information
about the radiating source and its line-of-site motion.
Soon after its initial discovery the line was observed in
the Magellanic Clouds and other extragalactic sources [3].

This transition continues to be a powerful tool in the
studies of astrophysical radiation sources from helping
to determine the nature of the interstellar medium to
mapping out the Galaxy’s spiral structure. In the present
century it remains an important tool in modern precision
cosmology|[4][5].

Using non-relativistic quantum mechanics both the
energy splitting and the transition rate between the two
relevant ground state sublevels will be calculated in the
present paper. The perturbation to the exact Hydrogen
proton-electron Hamiltonian Hj is the coupling between
the spin states of the proton and electron

6H = —ni, - B (1)

where 17, is the magnetic moment of the electron and
B is the magnetic field of the proton resulting from its
magnetic moment. (We ignore any internal structure
of the proton and treat it as a point charge).This is a
magnetic dipole transition and will be fully developed in
SeclI and III.

In the classical electromagnetic multipole expansion
of the vector potential[6] for the radiation field, there
is also an electric dipole moment contributing to a pos-
sible transition. Schematically, the expansion goes as

exp (ikr) = 1 + ikr 4+ ... where r is the characteristic
size of the source and k is the wavenumber of the radi-
ation. In the regime where kr < 1 which corresponds
tor K A = 2%, the size of the expansion terms falls
off rapidly. We also assume that the observation point,
Tobs > A. These approximations (collectively known as
“the far zone”) are trivially satisfied for astronomical
objects at almost all wavelengths where observed. The
first term of the expansion corresponds to electric dipole
radiation. In the present case of interest (electron-proton
system) this term would be governed by the electric dipole
moment which we can write as

d=er (2)
where quantum mechanically 7 is the position operator
representing the classical vector from proton to electron
and e is the electronic charge. (J is the electric counterpart
of m,. above). Since 7 is an odd parity operator (¥ — —7)
and the ground state [¢) is a parity eigenstate it follows
that under the parity transformation

W7 |¢) = W[ P (PFP) Py) = = (| T[¢) =0 (3)

where P is the usual parity operator, P? = 1, and has
eigenvalues £1. In an incoherent radiation field with
frequencies wy, and with the electric field given by

-

Ey(t) = Eo(k) cos (wit) rik, (4)

the square of the matrix element of the electric dipole
2

, is averaged over all space

—

Hamiltonian ‘<¢| er - E(t) )
[7] with the result

rzo (5)

R 2 E? -
|wler- Bl )| = =2 |(wld1v)
and so electric dipole transitions are ruled out for the
present system.

The next term in the multipole expansion (~ kr) gives
the magnetic dipole radiation term (and an electric
quadrupole term which won’t be relevant for the present
paper). This term will be much smaller than the typical
electric dipole radiation term and we will see the effect
that this has on quantum mechanical transition rates
and lifetimes.



II. DERIVATION OF THE 1S HYPERFINE
SPLITTING

We can rewrite the Hamiltonian Eq.(1) in terms of
magnetic moments only as [8]

S (6)

where 17, is the proton magnetic moment, §3(7) is the
3 dimensional § function and r is the proton-electron
separation. We can get an order of magnitude estimate
of the splitting by taking

|me|‘mp|

3
Qg

~ 10 %V

where a¢ is the Bohr radius. We already anticipate that
the result of our calculation will be a very small fraction
of the ground state energy of 13.6eV

Both particles are spin % so that the state of the
electron-proton system is given by

W) = [¥) © [ms), @ [ms),, (7)

where mg = i% are the up/down components of the two
s = % spin states and 1 is the usual hydrogen ground
state given in position space by

1
P(r) = —— e /a0 8
(r) el (8)

The s = % index has been suppressed in the spin kets.
(Technical note- Eq.(7) emphasizes that we are working
with a space that is a tensor product of 3 spaces: 1) that
of the hydrogen atom without spin, 2) the electron spin,
and 3) the proton spin. To avoid cumbersome notation
the tensor product symbols will be suppressed for the
corresponding operators.)

Let’s consider the expectation value of the square brack-
eted term in Eq.(6) in the state |¥). When integrating
over solid angle d€2 the first bracketed term must evaluate
to an expression linear in both n7. and m7), and must also
be a scalar. The only suitable scalar in the problem is
M, - Mp. Therefore,

< (e - 7)(MipF) >aa= (e - ) (9)
where 7 is a constant independent of m7. and m),. To
evaluate 7 we can take any two constant vectors and
the calculation is best performed using two identical unit
vectors parallel to the z direction. The scalar products
are each equal to cos(f) in this case so that

n= /cos (0)dQ = 27‘(‘/0 cos” () sin(9)dd = 471'/3(.10)

The second bracketed term integrated over solid angle
simply evaluates to 47 (. - M) so the entire bracketed
term vanishes. Therefore, for the position space part of
the electron-proton state we have

8

(W|6H W) = ~=F < (T, - 17,) > (0
= —333 < (il - miTy) > (11)

where the full three dimensional position space integral
has been done leaving the spin contribution still to be
evaluated.

Considering the full state |¥) we have a fourfold de-
generacy whose source is exclusively from the spin con-
tribution. We must use degenerate pertubation theory
to determine the first order energy shift. Rather than
diagonalizing a 4x4 matrix in the uncoupled |m), [ms),
basis we can proceed by analogy with the treatment of the
spin-orbit coupling in the fine structure of the hydrogen
atom. In the present spin-spin coupling we first note that

8 , L, 8 €Je ~ egp
503 e 1) = 50a (2MecSe) <2M cS) (12)

where we have expressed the magnetic moments in terms
of their spin operators. M., M, are the electron, proton
masses respectively and g, g, their respective g-factors.
e is the electronic charge (—e for the electron). We form
the total angular momentum § = S, + S;, so that the
interaction term becomes

5.8, =5 (#8575 (13)

The sum of two spin % angular momenta gives one spin-0
state and three spin-1 states which can be written as
|00), (the singlet state) and |1 — 1),]10),|11), (the triplet
states). In terms of the uncoupled basis:

00) = —= (11/2), @ =1/2), = (=1/2), © |(1/2)},)
1

(14)
10) = —= (11/2),  1=1/2), + |(=1/2). @ [(1/2),

(15)
1) =11/2), ®[1/2), (16)
-1y = -1/2), @ -1/2), a7)

where the notation for the uncoupled basis follows Eq.(7).
It’s clear that the coupled basis states are eigenstates of
the interaction term and independent of S,. The eigen-
values themselves are easily evaluated:

JEN h2

Se - Sp |>tm’plet = Z (18)
. _3p2

Se - Sp |>singlet = T (19)



Since the coupled basis vectors are orthonormal the per-
turbation is diagonal and we can immediately calculate
the energy corrections from Eqs.(11),(12),(18),(19).

1 /2 M.,
E, = 1 (3 (Mc?) o (M ) gegp>
p

-3 /(2 M,
= (5 e ot (55 ) o)

where E is the shift for the triplet states and E_ for the
singlet state. We've expressed the physical constants in
terms of the fine structure constant o and the electron
rest energy to facilitate comparison to the fine structure
shifts. These latter are of the order of (M.c?)a* so the
hyperfine split of the ground state is about 1800 times

smaller or a factor of (%) The full energy shift is
AE=FE, —E_.

(20)

E_

(21)

(22)

(b)
e

Figure 2. Two magnetic current loops (a) a finite distance
apart; (b) at contact adapted from [8]).

This is in contrast to two small electric dipoles that if
initially parallel will flip to anti-parallel as the distance
tends to zero at contact. See Figure3. On the other

PR
Ly

2 M,
AFE = 3 (MeCQ) at (M ) Gelp

p

Putting in the values[9] (including g. = 2.00 and g, =

5.59) we find that AE = 5.89 x 10~%eV = 4.33 x 10~ "Ry.

This shift corresponds to frequency v = 1420MHz and
wavelength A = 21.1cm. The shifts from the unperturbed
level are shown schematically in Figurel

triplet

unperturbed <

AE

\___singlet

Figure 1. Energy shift due to spin-spin coupling of the pro-

ton and electron in the ground state of the Hydrogen atom
(adapted from [8]).

It is interesting to note that the singlet state, with
anti-parallel spins, is the state of lower energy despite the
fact that the magnetic dipoles of the two particles are
parallel. This contrasts with the case of two macroscopic
bar magnets where the moments will line up antiparallel
on closest approach. This traces directly back to the
existence of the delta function term in Eq.(6) which gives
us a contact interaction. (Indeed, without this term
there would be no hyperfine splitting.) If we look at
two small current loops, moments that line up parallel
while at a finite distance will remain that way as the
distance tends to zero since the currents are parallel and
attract. Therefore parallel magnetic moments are the
energetically favorable configuration, all the way down to
point of contact. See Figure2.

-
. .

(k)

Figure 3. Two electric dipoles (a) at a finite distance apart;
(b) at contact (adapted from [8]).

hand, two macroscopic bar magnets, having finite extent,
can never merge to a r = 0 limit. Therefore there is no
effective contact. The energetically favorable configura-

tion will be for the moments to be anti-parallel at closest
possible approach.

III. DERIVATION OF THE SPONTANEOUS

TRANSITION RATE

To get the spontaneous transition rate A and associated
lifetime we use time dependent perturbation theory to
calculate the rate of stimulated emission, and then use the
relation between the Einstein A coefficient for spontaneous
emission and B coefficient for stimulated emission.

hwi)’o
m2c3 (23)
where
_ AFE _ 2 o 4 [ Me
wio = = = a7 (Mec )a (Mp> Gelp (24)

is the emission frequency from one of the triplet states
(S=1) to the singlet state (S=0). It will turn out that the
relevant matrix elements from each triplet — singlet are

identical.



We assume electromagnetic radiation impinging on the
hydrogen atom in its ground state. The magnetic field
component is given by

B(t) = 2By cos (wt) 1 (25)

ext

(This is similar in approach to the electric dipole case
treated in [7]. Also, see [10]). The radiation interacts
with the magnetic moments of both the electron and
proton but since |m,| < |m.| we can neglect the proton
magnetic moment in what follows([10]). The perturbing
Hamiltonian is then

§H = —ni, - B(t)

ext
= 2H’ cos (wt) (26)
where
’_ egeBo (. e
i = 2M.c (n Se) (27)

We recognize the radiation is not coherent and will be

a superposition of many modes w(k) with By(k) and 7.

The general expression for the transition probability from
one of the triplet states to the singlet will then be

|H'(k)1o|* sin® (#1075¢)

P()(—l( ) hz (%)2
_EgB3(k) (. g, \|?sin® (ereet)
= Tz | (- (5w ()
(28)

where (S )10 is the relevant matrix element between the
hyperfine states. In exact analogy with the treatment of
electric dipole radiation (see discussion following Eq.(4);

- 2
also [7]), we average the term ’(ﬁk . (Se)lo)‘ over all space

so that the transition probability per unit time becomes

2 2B2(

2 gin? (7“’1027‘*”C t)
4AM?2c2h? 3’ ¢ 10‘

P(i—l(t) = (wm*wk)Q (29>
Ll

Now the energy density of the external magnetic field is
given by

(2B (K))*

o cos?(wyt) (30)

up =

which we can replace by its time average Bo(k)* . Since the
energy density of the magnetic and electric fields in the
waves are equal, the total energy density in each mode is
given by

u(wy) = 302(7]:)2

We can now express the transition probability in terms
of the energy density

(31)

meg2u(w

k) |, o 2 sin? (7”102_“’%)
6M2c2h? ‘( ‘

Se)lo) (w102—wk)2

P(fel(t) = (32)

To get the total transition probability we need to sum
over all modes k. Similar to the argument in [7] this is
equivalent to replacing the right side of Eq.(32) by an
integral over dw

§ SlIl UJ102 Wi t) g
10 ’ wlo Wi )2 -

(33)

7T€ ge

Poca(t) = 6M2c2h2

Over long times we can take the energy density out of the
integral and evaluate it at wig. The remaining integral
evaluates to 27t so that

m2e?g2u(wio)

2
3M2c2h? ’

Poca(t) = [(5e)so)

t (34)
The matrix elements to be computed are with the states
given in Eqs.(14) to (17). The three possible initial states
|1) are the triplets and the state |0) is the singlet. (Implicit
in these calculations is the fact that the electron spin
operator is in a tensor product with the identity operator
in the proton spin space). Writing the matrix elements
explicitly in component form gives

(1] 5. [00) = (222\%0) (35)
(10| S, [00) = (0,0, Z) (36)
(1 - 1/.]00) = (2% 2%0) (37)

At a glance it is seen that the squared norms of these
2

vectors are the same and equal to %. Putting this result

into Eq.(34) yields

m2e?g2u(wio)

P t) = 38
bea(t) = 12M2¢2 (38)
Identifying the transition rate
P
Ror () = ot (39)
with Bu(wig) gives
m2e2g?
B=_—2>¢ 40
12M2c? (40)

Finally, putting this into Eq.(23), substituting our previ-
ous result for wyg from Eq.(24), and simplifying, we get
the spontaneous emission rate

2 M2 5 5 (Mecc?
A= ﬁal?’ (M ) gegg( W ) (41)
p

This is the rate for transition from any one of the
triplet states. Substituting numerical values[9] gives
A =2.89 x 10~ '%sec™! which implies a lifetime 7 = & =
3.45 x 10'sec = 1.09 x 107yr. These values agree to

those quoted in the literature, e.g., see [11],[12]



IV. DISCUSSION

The extremely long lifetime of the triplet state is char-
acteristic of many magnetic dipole transitions and is ex-
pected based on the discussion of the radiation multipole
expansion given earlier. From [10] typical ratios of mag-
netic dipole radiation rates to those of electric dipole
radiation are of the order of

R tic dipol
magnetic dipole ag (42)
Relectric dipole

in the hydrogen atom. The 2lcm transitions actually
observed are mainly the result of stimulated emission.
One of these processes is collisional excitation and de-
excitation. In the typical interstellar environments where
atomic hydrogen is found this rate[12] is on the order of
~ 400yr~! which is very fast compared to the spontaneous
transition rate.

The ground state of the atom is also overwhelmingly
likely to find itself in the higher triplet state. Assuming
thermodynamic equilibrium the number of atoms, ny, in
the higher energy state, is related to the number, ng, in
the lower energy state by

ny —hwg
o 4
- 3exp ( T ) (43)

where T}, is the kinetic temperature of the gas with the
factor of 3 owing to the degeneracy of the higher energy
state. Note that the typical energy of CMB photons at
Tomp = 3K is = 2.6 x 10%eV. The interstellar medium
will be at a temperature T}, higher than this, typically[13]
T} ~ 10 to 100K, so that

hwig = 5.9 x 107 %V < kpTy (44)
will hold implying Z—; ~ 3, even at the 7' = 10K end of the

scale. The process of collisional emission rapidly followed
by collisional absorption is one of the ways that ensures
that the spectral line will likely be observed.

The second major process involving stimulated emission
relates to Lyman-a radiation[14][15]. The atom is pumped
to the first excited state (n = 2) from one of the hyperfine
levels and then transitions to the ground state’s other
hyperfine level. See Figure4. Each of the fine structure
n=2 levels is split into hyperfine levels (S = J &+ %) Only
allowed transitions that couple both ground state levels
are shown.

This process is known as the Wouthuysen—Field cou-
pling and is particularly important in the intergalactic
medium where the gas densities may be too small for
thermodynamic equilibrium (Eq.(43)) to hold. It is also
of great importance in modern studies of cosmology in
the reionization era[5]

To cope with the differing temperatures (including that
of the background CMB) a convenient parameter known
as the spin temperature [15][5] has been defined:

M _ 3exp < L ) (45)

1o Tspin

Figure 4. Allowed transitions from n=2 to n=1 hyperfine
levels. Notation: gL ;.

where

_ Twio
kg

T, ~ 0.0681K (46)

is the effective temperature of the ground state hyperfine
transition. It’s a parameter that determines the occu-
pation ratio of the two states and encodes the effects of
CMB, kinetic and Lyman-« contributions:

7 _ Toms + yeTh + yaTh
o 1+ Yk + Ya

(47)

where yi and y, are kinetic and Lyman-a coupling
terms respectively whose values will depend on the
specific environment of the hydrogen gas. Predictions
and comparison to observations often involve estimating
these coupling terms. In Field’s original (pre-CMB)
formulation there was also a background Lyman-o
temperature T, which in modern applications is simply
set equal to Ty, [5].

21CM physics is a vast subject and the current paper
only covers the basic physics and immediate implications.
Doing justice to its applications is far beyond this paper’s
scope. Current research is heavily focused on cosmological
applications particularly in the onset of reionization and
the first generation of stars and galaxies [4][5]. Both of
these references, particularly[5] give detailed accounts
(and extensive references) and are good starting points
for interested persons. We also recommend [16] as a good
starting point for YouTube presentations/ lectures.
Additional Note following from [17]. In this paper we have
adhered to standard treatments of the hyperfine structure
of hydrogen which use the nonrelativistic hydrogen ground
state wavefunction. As is well known [18], the relativistic
hydrogen atom ground state wavefunction that follows
from the Dirac Equation contains a singularity at the
origin. At small distances r < ag/2 the Dirac wavefuncion



behaves as

~ 1(0) exp (;oﬂ In (‘;;))

which becomes infinite at the origin. This is a very mild
singularity. To get the factor multiplying our ¥(0) to
be as large as 1.001 would require 7 «~ 1072"m. This
would be deep inside the proton (radius «~ 1071°m). The
underlying issue here is the assumption, in both our non-
relativistic calculation and the calculation using the Dirac
wavefunction [19], that the proton is a point particle. This
is clearly not the case and the point charge approximation

breaks down at the order of the proton radius irrespective
of the wavefunction (nonrelativistic versus relativistic)
used in the computation. One must take into account
relativistic corrections as well as corrections from QED
and proton-structure contributions [20], particularly in
the regime where r is of the order of the proton radius or
less. So we are justified in making a cutoff at the lower
limit in the radial integral of the Dirac wavefunction at
the level of the point charge approximation. A calculation,
to lowest order in «, using the Dirac wavefunction gives
an identical result as our Eq.(22) [19].
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The 21-cm Line of Hydrogen and its Role in Astrophysics
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Abstract The neutral hydrogen atom has a hyperfine transition of the 1S state due to the energy difference
between the nucleus spin (proton) and the electron spin being either parallel or antiparallel. The radiation
associated with this transition is at 21-cm (1.42 GHz). The transition is forbidden and so has a very narrow
spectral line. On Earth, hydrogen normally exists as a diatomic molecule and so this radiation is not easily
seen but in the very tenuous interstellar medium, single neutral hydrogen atoms can exist. The existence and
detection of this 21-cm line has been very important in astrophysics. This article will explain the quantum
mechanics of the transition in the 1S neutral atom and discuss its uses in astrophysics and cosmology.

1 Introduction

Astrophysics is the application of physics to the struc-
ture and evolution of our universe. Astrophysical theo-
ries developed from the physics cannot be tested in the
usual way by performing scientific experiments on the
subject in a controlled environment. Instead, astro-
physics and astronomy have to rely on making obser-
vations that infer the theory being tested. Historically,
these observations have been based on what can be
seen with our eyes and so have been of the optical light
arriving at the Earth. More recently, say the last 80
years, observations have extended to the full range of
the electromagnetic spectrum. Further, observations
have now been made of subatomic particles arriving
at Earth from astronomical events and, most recently,
gravitational waves from merging black holes.

Interpretation of these observations requires a thor-
ough understanding of the physics, both of the pro-
cesses that created the radiation and the way in which
the radiation propagates through the intervening space.
This paper discusses one such source of radiation; the
21-cm radio waves that originate from a hyperfine tran-
sition in atomic, neutral hydrogen. Finally, two im-
portant examples of the role of the 21-cm line in as-
trophysics are discussed. A knowledge of the contents
of the course MITx 8.06[1] is assumed — and it is ref-
erenced at several points in the text — but all the as-
trophysics is presented at an introductory level. The
units used throughout are cgs.

2 Hyperfine Splitting

Any undergraduate textbook on quantum mechanics
will develop the theory that describe the behaviour of
an electron in the simplest of atoms, i.e hydrogen.[2]
The starting model for this atom is a single electron
in a % Coulomb potential. The result of this gives a
complete set of eigenstates for the electron which are
enumerated by n (principal quantum number), 1 (to-
tal angular momentum), m; (z component of angular
momentum) and m; (electron spin). The electron spin

does not form part of the model but is tacked on to give
the required number of states. The eigenenergies of the
electron are dependent only on n and are distributed

thus 13.6
FE, = -

=——-2¢éV
n2

(1)
Each energy level has degenerate states labelled by 1,
my and my.

This simple model can be refined using the Dirac equa-
tion which is relativistically correct and incorporates
electron spin. The Dirac equation adds terms to the
Hamiltonian of the hydrogen atom which represent a
relativistic correction, the coupling between the orbital
angular momentum of the electron L and its spin S (L-
S coupling), and a term called the Darwin correction.
These terms are all of the order o smaller than the
binding energy of the atom, where « is the fine struc-
ture constant (1/137). These perturbations are there-
fore about 10~* smaller than the base energy levels
Eq.(1) and represent small shifts in the energy levels
of the hydrogen atom. These shifts break some, but
not all, of the degeneracies noted above and are called
the fine structure of the hydrogen atom.

There is yet another element missing from this model of
the hydrogen atom. The atomic nucleus of hydrogen,
a single proton, has a spin and therefore a magnetic
moment. Adding this to the model of the hydrogen
atom results in the hyperfine splitting of the energy
spectrum.

The magnetic moment of a proton is given by

gpe
Hp = o1 (2)

N 2mpc
where g, is the gyromagnetic ratio and I is the proton
spin. Because the proton is made from 3 quarks and
has structure, the value of g, is 5.59 instead of ~2, as
for the electron. The magnetic field produced by the
proton couples to the electron spin in a similar way to
the L-S coupling of the fine structure, but note that
pp has the proton mass my, in the denominator. This
makes the magnetic field due to the proton z; smaller
and so the energies in hyperfine splitting are ~1/1800
times smaller than the already small fine structure.




The magnetic field due to the proton is given by [3]

1 8
B = < (3(kp - 1)r = p1y) + 5 1,0°(r)

- 3)

This equation has two parts. The first part is what
would be expected from classical electromagnetism. It
is correct but it has an issue of a singularity at r = 0.
By considering an infinitesimal sphere with a magnetic
dipole, it is possible to show that the field has a con-
stant value inside the sphere which then gives the value
at r = 0 [3]. This value appears as the second term
with the 0 function. Given this B field, the Hamilto-
nian for the electron is

th = —HMe - B
1
=50 ) (pe ) —pe-pp)  (4)
8T
= He  pd°(7)
This Hamiltonian represents a small perturbation of
the main Hamiltonian. The first order energy shift
due to Hpy can be obtained from perturbation theory
[1] and to first order is

AE = (| Hy ). (5)

3 Application to the 1S Hydro-
gen Atom

The 1S ground state of an hydrogen atom is

Yo = e/ @ |s) (6)

Ve

where the spin states have been included through a
tensor product. This state has no 6 or ¢ dependence
and is spherically symmetric; as are all [ = 0 states.
Consider the first term in Eq.(4). Assuming the spins
are aligned with the z-axis — without loss of generality
— the integral for this term becomes, after expanding
the dot products

1
/ ——36_2”“0“67?(300529 — 1)r?sinfdrdfds (7)
v Tag, r

where 6 is the spherical polar coordinate between r
and the z-axis, i.e z = rcosfl. Because of the lack of
angular dependence of the ground state Eq.(6), the
part of this integral evaluates to zero making the whole
integral zero Now consider the second term of Eq.(4).
The ground state Eq.(6) is non-zero at » = 0 and so
integration with the § function of Eq.(4) returns a non-

zero result.

AE = (¢po|Hng|to)
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The minus is removed from the last equation because
He = — QﬁjcS . This then leaves the expectation value
for S - I. This is another spin-spin coupling and so
it can be treated the same as L-S coupling. The z
components of S and I do not commute; it is the sum
of the spins F' = S+ 1 that are diagonalisable and ST
can be obtained in the usual way [1].

F?2=1>1+82+28-1

9)

The basis states that diagonalise F2, F,, S? and I? are
given by [4]

S-I:%(FQ -S5%-1?

1

U =1t) (=0

1

U1t =1 (10)
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The eigenvalues f from F? are in brackets. The matrix
elements for S - I in this basis can be evaluated using

Eq.(9).
(51S.11s) = SA(f(F +1)

—s(s+1)—i(i+1)) (11)
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1
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for f=1,s= 3t=35 triplet state

The singlet state is shifted down and the triplet states
are shifted up. The total shift is &2 and so the energy
shift between the two levels is given by Eq.(8) as
8t 1% €%gpge
A= T _Co0e
3 may dmpmec?

=5.884 x 10 %V

(12)

The corresponding photon for this energy difference
has a frequency (using AE = hv) of 1422.8 MHz and
a wavelength of 21.07cm. It is this radiation that is
referred to as the 21-cm line and which has such im-
portance in astrophysics.



4 Transition Rate and Line Width

The hyperfine splitting of the 1S energy levels in hydro-
gen can be traced to the orientation of the spin of the
proton and the electron. Changes to these spin states
have no effect on the distribution of charge in the atom
and so the dominant interaction with the electromag-
netic field, i.e. through the electric field, does not affect
these transitions. The 21-cm transition is therefore for-
bidden. Transitions can still happen through the mag-
netic field interaction (and the quadrupole interaction)
but these are much less likely; the magnetic field for
an electromagnetic wave is 1/c smaller. Derivations
of the transition rate are sparse in the literature and
textbooks but here are two [5][6].

The transition is mediated through the magnetic in-
teraction. The Hamilton for the electron’s interaction
is

HB = —Me B

ge€
= S
2mec

(13)

The interaction between the nuclear spin and the mag-
netic field can be ignored because it will be m./m,
smaller. The B-field is taken as a sinusoidal oscilla-
tion.

B = By pcoswt (14)

The quantity p is a unit vector specifying the polar-
isation of the electromagnetic wave. It is necessary
to include this because the interaction with a dipole is
polarization dependent. Applying time-dependent per-
turbation theory to the Hamilton gives the transition
probability to go from initial state (¢) to final state (f)
as [1]

geeBy \* sin?((w — wyi)t/2)
2mech (w—wg;)?
15)

where wy; = (Ef — E;)/h. This probability must be
summed over all the final states. There is only a single
final state for the electron, i.e. the singlet state of the
ground state. Not so the photon. It is necessary to
sum over all the final photons state. To achieve this
we apply box regularisation[1]. This involves a summa-
tion over a large but finite sized volume with periodic
boundary conditions. Before doing this, it is neces-
sary to address two parts of Eq.(15), i.e. the matrix
elements and the value of Bg.

Py = (/1S - pli)]? (

The matrix element contains a reference to p. Setting
this up as a unit vector at an angle 6 to the z-axis and
in the z-x plane, without loss of generality, gives

S - p=S,cos0 + Sysind (16)

The electron transitions from an initial triplet state to
a final singlet, ground state, see Eq.(10). Choosing the

P1

Figure 1: The arrangement of polarisation vectors and
photon momentum vector.

actual initial state as | 1) gives
1

<f|S~1D|i>:<\/§

(41 [ = (14 )] Szcosf + Spsind| 11)
(17)

The initial and final states are eigenstates of S, and
are orthogonal. The S, part is therefore zero. Noting
that S, only works on the first arrow in the bras and
kets and applying S, to the spins states leads to

1
V2
h
= ——=sinf
2V2
The value of By can be found from a semi-classical
argument by asking what would the B-field be for a
single photon. A proper handling of this would require

quantisation of the electromagnetic field. The total B-
field energy in a volume V is given by

(F1S - pli) = —= (11 |Sasind| 11)

(18)

B2 1
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The first term is taken from classical electromagnetism.
The second is because the field is oscillating and so we
actually need the root-mean-square value. The final 2
is because there is the same amount of energy in the
E-field. If we have a single photon (n = 1) this can be
rearranged to give B3. The probability of a transition,
Eq(15), then becomes

2 o
Thw <gee> sin?((w — wyi)t/2) in0

4V \ ' mec (w—wy;)?

Pr = (20)
To proceed from here requires the summation of P
over all photon directions k and both polarisations,
p1 and p2. The polarisations enter Py through sin?0.



Consider the arrangement of vectors in Fig 1. The k
vector is at an angle 6y to the z-axis. The new angle
05 will be the variable used to sum the k vectors. po
is then defined to lie in the x-y plane and, as it should
be, is normal to k. It’s angle to the z-axis 6o is 7/2.
The third vector is normal to both ps and k and is at
an angle 1 = m/2 — 0, to the z axis. The summation
of these polarisation can then be reduced to

Z 5in?0; = sin® (7 /2 — Oy) + sin®(7/2)
i=1,2

= cos’0; + 1 (21)
We can now sum over all the photon vectors k. The
values of k are discrete in the large volume V used
in box regularisation. As the volume goes to infinite,
these become a continuum Wi;ﬁh the number of state
per unit volume given by ‘g‘igk [1]. The probability
integral then becomes

sin?((w — wy;)t/2)
P= / r d (cos®0 +1)dVi,  (22)
Vi (w—wyi)? (
where
r— Lwhw ge€ 2
T 8w 4V \mec
AV = dk k? sinf,d0dy, (23)

Vi is the volume in k-space. Note that the infinite
volume V used for box regularisation cancels on the
top and bottom. This integral can then be solved using
the arguments from Fermi Golden Rule [1], i.e as t gets
larger, the main contribution comes from the central
lobe of the sinz/x? distibution and so w ~ wy;. This
makes k in Eq.(23) a constant equal to wy;/c. The
integral of the sin?z/z? part becomes

/°° sin?((w — wy;)t/2) dw _ mt
0

(w—wg;)? ¢ 2

(24)

Pulling all these results together gives the Einstein co-
efficient A for the transition rate as

A=Pjt= V whimhwyi (gee )" w167
813 2 4V \mec) 2¢ 3
B ggw?iheQ (25)
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where the last fraction comes from the integration of
the 0), terms. The transition rate can now be calculated
as 2.85 x 10~s~! This is a very small transition rate
and corresponds to a lifetime of the triplet state of
7 =1.1 x 107 years.

This very long lifetime has an effect on the natural
line width of the radiation. A radiation process with
a large uncertainty in the time that it will happen §t
has a correspondingly small uncertainty in the energy

OF of the transition. These are related through the
Heisenberg uncertainty principle.

h
0F = 5 (26)
hév = E (27)
T

Using the value of 7 from above gives a frequency un-
certainty of 107'° Hz. This represents a very small line
width resulting in a very precise frequency of the radi-
ation from hydrogen. Astonishingly, the frequency of
this radiation has been determined as 1420.4057517667
MHz. This is one of the most precisely known physical
values.

5 Importance in Astrophysics

The 21-cm line radiation is rarely produced on Earth
because of the slow transition rate and the fact that
hydrogen normally exists as a diatomic molecule. An
exception to this is the hydrogen maser [7]. In space,
where gas densities can be measured as several atoms
per cubic metre, it is possible for isolated, neutral hy-
drogen atoms to exist. The slow transition rate of
these atoms is balanced by the amount of hydrogen;
75% of the normal matter in the universe is hydrogen.
The 21-cm line was observed in the 1930s and was the
first step out of the optical part of the electromagnetic
spectrum for astronomers. The 21-cm line observations
have an advantage over optical observations. Not only
does it pass though the Earth’s atmosphere (1.4 GHz
is a frequency used in satellite communication) but it
also passes through the dust and gas in the universe
that obscure large parts of the sky, particularly for our
galaxy.

Observations of the 21-cm line radiation from neutral
hydrogen (usually referred to as HI) have made a huge
contribution to astrophysics. It is the properties noted
earlier, i.e. precise frequency and long life of the state,
that make the transition so useful. We consider two
important examples of this.

5.1 Mapping the Dynamics of Hydro-
gen Gas in Galaxies

Radiation from a source that is moving is Doppler
shifted. This is very familiar when listening to the
tone of a passing vehicle lowering as it drives by. A re-
ceding object has an observed lowering of its frequency
and visa versa for an approaching object. The same
thing happens to light but the velocities required to
produce a measurable shift are much higher. The fre-



Figure 2: A contour map showing the line of sight ve-
locities of the HI gas in the galaxy NGC5055. [9]

quency shift for light can be quantified using [8]

(i)
1+ 2
Galaxies have typical recession velocities of 100’s km
s~1. A recession velocity of 100 km s~! would produce
a frequency shift of about 1 MHz on 21-cm radiation at
1.4GHz. The very precise frequency of the 21-cm line

makes measuring the accurate Doppler shifts of the HI
gas in galaxies a possibility.

(28)

Galaxies are broadly categorised as either spiral or el-
liptical. The elliptical galaxies are gas poor and so
are not candidates for observation. On the other hand,
spiral galaxies have large amounts of neutral hydrogen.
Fig 2 shows a typical contour map of the observed line
of sight velocities of HI gas for a spiral galaxy. The
pattern of the contours is consistent with a flat, rotat-
ing, disc galaxy viewed at an angle.[9] The velocities
in the central contours are about 510 km s~! and this
is the velocity at which the galaxy is receding. On one
side of this there is an area where the velocities are
smaller than the recessional velocity due to the motions
in the rotating disc projected towards the observer. On
the other side the reverse happens. These observations
have provided an invaluable tool in studying the inter-
nal motion of spiral galaxies.

One of the most important discoveries from these ob-
servations of spiral galaxies was that the rotation curves
— the variation of the rotation velocity of the disc with
radius — showed that the speed of rotation was approx.
constant out to very large radii. It was expected that
the velocities would fall away based on the distribution
of matter that could be seen. This was the first indi-
cation that there was a large amount of unseen, dark
matter. At the time it was speculated that this was

just cold, ordinary matter. It is now thought these ro-
tation curves indicate the presence of exotic dark mat-
ter which forms a large part of the universe and has a
central role in its evolution. The nature of dark mat-
ter is still unknown and its study links straight back to
quantum physics.

5.2 21-cm Cosmology

Before discussing the 21-cm hyperfine transition in the
context of cosmology [10], it is necessary to tell a part
of the currently accepted story of the universe. The
universe began with a big bang about 1.38 x 100 years
ago. Soon after the big bang, the universe was an ex-
panding plasma of heavily interacting charged particles
and photons. After about 380,000 years the expansion
had cooled the universe to the point where electrons
could combine with protons to form hydrogen atoms.
This point is called recombination and is where mat-
ter becomes neutral allowing the photons to decouple
from the atoms. These photons are visible today as
the cosmic microwave background (CMB) which car-
ries an imprint of the structure of the universe at this
time period. The universe at this point was mainly
flat and homogeneous but with some small variations
in density. After recombination, the universe contin-
ues to cool and go dark. This is referred to as the
cosmic dark ages and lasted about 1 billion years dur-
ing which little was visible. The initial variations in
the density of the universe started to grow, driven by
gravity and assisted by dark matter. The universe then
entered the re-ionisation phase. In this phase, grav-
ity had pulled together enough matter, to high enough
densities, to start star formation in early galaxies. The
photons from these stars start to re-ionise the gas in the
universe which becomes visible again. From here, the
universe keeps expanding, stars and planets form, life
begins onward to the present day. From our current
position we look out into space and can see the his-
tory of the universe mapped out against distance from
the Earth: the further away we observe, the longer the
light has been travelling and the further back in time
we see. Also, the light from further away experiences
a cosmological redshift due to the light propagating in
space that is expanding; the wavelength increases for
light that has been travelling for longer.

The cosmic dark ages are a period of great impor-
tance because it is the missing link between the very
early universe with small density enhancements and
the modern universe with all its fully formed struc-
ture. We know very little about this period because
the universe was dark and not emitting light. This is
where the 21-cm line has become another tool for ob-
servation because of the long life of the HI state and its
precise frequency. During the dark ages, the universe
was largely made of neutral hydrogen. This hydro-
gen was illuminated by the photons from the big bang.



These photons are visible today, after being redshifted,
as the cosmic microwave background. It is possible for
the neutral hydrogen to absorb photons from the CMB
at the very precise frequency of the 21-cm line leaving
a small gap in the continuous, black body spectrum of
the CMB. This small gap, called an absorption line, is
then redshifted to lower frequencies. The amount of
redshift depends on the time during the cosmic dark
ages that the absorption happened. Current observa-
tional effort is therefore looking for a ’forest’ of these
absorption lines in the CMB. The frequency shifts in
these forests then maps out the distribution of neutral
hydrogen in time and space in the early universe and
provide a window into the cosmic dark ages. Also, the
amount of absorption is dependent on the proportion of
hydrogen atoms sitting in the singlet state; only these
unexcited atoms can absorb a photon at 21-cm. The
hyperfine transition of hydrogen has a very low energy
threshold and so the atoms can be excited to the triplet
state as a result of atomic collisions. Once excited, the
atoms can remain in this excited state for a significant
proportion of the period of the dark ages. Therefore,
the proportion of excited hydrogen atom is related to
the environment around the neutral hydrogen and so
observations of 21-cm absorption can provide informa-
tion not only about the distribution of neutral hydro-
gen but also about the conditions in the cosmic dark
ages.

6 Conclusion

This paper has shown how quantum physics has a cen-
tral role in astrophysics not only in theorising about
the particle physics of the big bang but also in allow-
ing and interpreting astrophysical observations. Much
of our understanding of the universe is grounded in
the theory and predictions of quantum physics. Fur-
ther, astrophysics provides opportunities to contribute
to our knowledge of quantum physics through, for in-
stance, the study of dark matter.
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A case of study: C'P violation in the neutral kaons system
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This work describes the neutral kaons system by choosing suitable bases, stressing how strangeness
eigenstates, CP eigenstates and mass eigenstates differ. We’ll see in particular that CP eigenstates
are almost mass eigenstates in the vacuum, thus allowing only for a small CP violation.

I. INTRODUCTION

In high energy physics particles and their antiparticles
are produced in equal amounts. The observable universe,
instead, is almost entirely made up of matter, with only
traces of antimatter: how can we reconcile these two
facts?

The Russian physicist Andrei Sacharov in 1967 stated
three necessary conditions for the universe to develop
asymmetry between matter and antimatter. The first
condition states that the universe be not in thermal equi-
librium, the second requires the violation of the baryonic
number and the third is concerned with the violation of
CP symmetry. In our understanding of particle physics
processes violating the baryonic numbers are beyond the
standard model, while processes violating C'P can be ac-
commodated in the Cabibbo-Kobayashi-Maskawa matrix,
which describes the mixing among the three generations
of quarks [1]. Up to now, however, the observed violation
of C'P symmetry is too scarce to explain the asymmetry
between matter and antimatter.

Processes where C'P is violated were observed for the
first time in the system of neutral kaons by Cronin and
Fitch in 1964. In 1972 Kobayashi and Maskawa showed
that the standard model of particles can allow for C'P
violation if there are at least three generations of quarks
(only two were known at that time); the quark bottom was
discovered in 1977 and the quark top in 1995. The search
for C'P violating processes is now well established: an
interesting sector concerns neutral mesons involving the
quark bottom, because of its higher masses and energies
with respect to the kaons, allowing perturbative methods.
Finally CP violating processes concerning leptons are
under investigation because neutrinos, whose observed
phenomenology is beyond the standard model of particles,
can account for other sources of C'P violation.

Quantum mechanics can describe the neutral kaons
system as an abstract two-states system, regardless of the
standard model of particles. C'P violation shows a rich
phenomenology (direct and indirect) and coherent and
incoherent regeneration allows for comparison with light
polarization (respectively birefringence and dichroism).

This work describes the neutral kaons system by choos-
ing suitable bases, stressing how strangeness eigenstates,
CP eigenstates and mass eigenstates differ. We’'ll see in
particular that C'P eigenstates are almost mass eigen-
states, thus allowing only for a small CP violation.

II. DISCRETE TRANSFORMATIONS IN
PHYSICS

There are three discrete transformations who play a
fundamental role in the description of microscopic interac-
tions, namely the parity P, the charge conjugation C' and
the time reversal T'. The discussion of these symmetries
will introduce us to the consequences of C'P violation.

A. Parity

Parity transformation consists in exchanging left with
right or, more precisely, consider what happen when you
reverse the spatial coordinates, letting, with standard
notation, (z,y,2) = (—x, —y, —z) or, in vector notation,
7 — —r. This transformation, as well as charge con-
jugation and time reversal, is called discrete because it
cannot be described in terms of a continuous parameter,
like spatial translations or rotations. By applying parity
transformation to a wave-function we have the equation
Py(7) = (—7). Let’s apply two times the parity trans-
formation:

P2)(r") = PPY(7) = Py(—7) = 4(7), (1)

obtaining the important result that the P2 = 1, where
1 means the identity operator. Equation (1) means that
the eigenvalues of the parity transformation are £1 and
its eigenfunctions are the familiar even (with eigenvalue 1)
and odd (with eigenvalue —1) functions. From quantum
mechanics we knows that an operator is conserved if it
commutes with the Hamiltonian; for example a spherically
symmetric potential is invariant under parity because
V() = V(r) = V(—7). The relation ¥ — —7 in spherical
coordinates provides the relations 8 — 7 — 0, ¢ — 7 + ¢.
By applying these rules to the general formula of spherical
harmonics it can be shown that

P}/lm(aﬂb) - (*1>lyvlm(07¢)a (2)

so even [ states have positive parity and odd [ states have
negative parity.

It is an experimental fact that electromagnetic and
strong interactions preserve parity. As a consequence,
wave-functions describing particles have definite parity.
Let’s consider a electric dipole transition: the selection
rule AL = 1 holds, therefore atomic initial and final
states have opposite parity. In order to ensure parity



conservation the emitted dipole radiation, that is identi-
fied with a single photon, has value —1. In this sense we
affirm that the intrinsic parity of the photon is —1. The
reader should have guessed that parity is a multiplicative
quantum number: the parity of a composite system is the
product of the parities of each sub-system.

Weak interactions violates parity. Just consider an
electronic neutrino, a spin 1/2 particle that do not have
electromagnetic or strong interaction. If parity were pre-
served we should expect that the projection of the spin
along the direction of motion may assume :I:% values,

but only electronic neutrinos with S, = —g have been
observed. If we apply parity to such a particle we reverse
its momentum, whilst its spin remains unchanged. The
net result is a neutrino with S, = % along the direction of
motion, which simply does not exists, as far as we know.

B. Charge conjugation

Now we discuss the charge conjugation operator C:
originally it was defined by its action onto an electric
charge ¢, namely Cq = —q and, thinking of the wave-
function of a particle with electric charge ¢ we have,
C¥(q) = ¥(—q). By repeating the same steps of Eq. (1)
we conclude that the C' operator has eigenvalues £1.

More generally now we consider the operator C as
an operator transforming a particle into its antiparticle;
according to this definition C' can be applied also to
electrically neutral particles and it reverse the sign of all
the quantum numbers associated with a particle. As a
consequence, it does not preserve leptonic and baryonic
numbers, meaning that the charge conjugation is not
associated with a real physical process.

Let’s consider an example: by applying C' to a proton
we end up with an anti-proton, which has electrical charge,
baryonic number and magnetic dipole moment opposite
with respect to the proton, but it has the same spin. This
fact is in agreement with experiments so we say that
strong and electromagnetic interactions preserve C.

Weak interaction instead does not preserve C, as it
can be shown by following the same argument used for
parity violation. By applying C to an electronic neutrino
we would obtain an electronic anti-neutrino with the
same momentum and the same spin, namely an anti-
neutrino with spin anti-aligned with respect to momentum,
which does not exists. We conclude that weak interaction
violates both parity and charge conjugation, but it could
preserve C'P symmetry because if we apply both C' and
P to a neutrino, whose spin is anti-aligned with respect
to its momentum we end up with an anti-neutrino whose
spin is aligned with momentum, and this is a physical
state.

Up to the Cronin and Fitch experiment [2] the common
opinion was that weak interaction, even if it strongly
violates parity and charge conjugation, it would preserve
the combined C' P symmetry. The discovery of a small C P
violation in the neutral kaons system was a real surprise.

C. CP, T and CPT symmetries

In the description on the physical world the C PT sym-
metry is a cornerstone. It means that if in a process we
reverse the coordinates, we exchange particles with an-
tiparticles and we reverse all momenta then, by applying
CPT to a real process we should end up into another real
process.

The violation of C'P implies therefore a violation of
T, in order for C'PT to hold. The observed C'P viola-
tion could account, at least partially, for the asymmetry
between matter and antimatter that we observe in our
universe. Another consequence of the C'PT theorem is
the equality of mass and average life of a particle and
its antiparticle. If weak interaction preserved C, this
symmetry would suffice to ensure this equality, but the
violation of C' requires the more general C PT symmetry.

III. A PRIMER OF THE QUARK MODEL

At a fundamental level strong interaction concerns
quarks and gluons. There are six flavors of quark: up,
down, charm, strange, top, bottom. Gluons transmit
strong interaction and the charge associated with the
interaction is called color (just a conventional name, with-
out any reference to the ordinary colors). Each quark
flavour can exists in three different colors and gluons are
classified in eight types. Strong interaction affects the
color of the quarks, but leaves unchanged their flavour: in
order to change flavour, i.e. when a neutron decays into
a proton a quark up changes into a quark down, weak
interaction has to be taken into account.

Strong interaction produces states with definite flavor,
described in the quark model in the following way:

|K°) =|ds), |K°)=|ds) (3)
[K7) = lus) . [K=) = as). @
where the superscripts 0,4+, — refer to the electric
charge: in unit of the elementary charge, quark up has
charge 2/3 and quark down —1/3; anti-quarks, denoted
by bars, have opposite electrical charges. In particular
strong interaction preserve strangeness, a quantum num-
ber equal to 1 for the s quark and equal to —1 for the 5
quark.
Strong interaction distinguishes between |KO> and
’K 0> because they are produced by different reactions:

Kt+n—K+p (5)
K™ 4+p— KO+n, (6)

where n = |udd) is the neutron and p = |uud) is the pro-
ton. Moreover the products in Eq. (5) and (6) interacts
in different ways, for example

KOo4p-»K'+n (7)
K'+p-»n’+3%, (8)

K°+p— K" +n but
KO+ p—a"+%t but



where the meson 7° is a neutral combination of quark

uw and d and ¥ = |suu) is a baryon with strangeness
equal to —1. As said before, strong interaction preserves
strangeness, thus allowing the left reaction of Eq.(7) and
Eq. (8) but forbidding the right reaction of Eq. (7) and

Eq. (8).

IV. KAONS DECAY AND CP VIOLATION

Neutral kaons, produced by strong interaction with
definite flavor, decay through weak interaction in states
containing two or three pions. Pions are pseudoscalar
particles, meaning that the quantum numbers describ-
ing their spin j and parity P are ;7 = 0~. As neutral
mesons they are invariant under the charge conjugation
symmetry C, hence the state composed of two pions is a
CP eigenstate with eigenvalue +1 whilst the state com-
posed of three pions is a C'P eigenstate with eigenvalue
—1. If weak interaction preserved C'P symmetry only a
+1 eigenstate would decay into two pions and only a —1
eigenstate would decay into three pions.

By remembering Eq. (3) it’s clear that definite flavor
states are not C'P eigenstates:

CP|K°) =|K°) and CP|K°) =|K"), (9)
but we can express these states are linear combination of
CP eigenstates, by defining the states }K?> and ’K§> in
the following way:

1

S

|KY) (I£°) + |K°)) (10)

2
1

K8) =

([5%) = [K°)).

5

With a straightforward calculation we can express the
states ‘K0> and |K0> as linear combination of the C'P
eigenstates:

1

(K%)= == (IKY) + |K2)) (11)

(|1K7) - [K2)) -

S

2
= 1

0
R0 =

Suppose we prepare, through nuclear reactions, a pure
state of |K0>. If C'P were not violated the eigenstates
in the vacuum would be |K?> and ‘Kg> defined in Eq.
(10). Because of the narrow energy space, i.e. the mass
of three pions in slightly lower than the mass of the kaon,
the decay into three pions is suppressed with respect to
the two pion decay. As a consequence the average life for
the two pion decay is about 600 times shorter than the
average life for the three pions decay.

In 1964 Christenson, Cronin, Fitch and Turlay discov-
ered that also the long life kaons can decay into two pions,
thus violating CP [2]. The states defined in Eq. (10)
are not exactly states with definite mass and average life.
Let’s call these states |Kg) and |KL), where S stand for

short and L stands for long. We can follow the same
steps that led us to define the C'P eigenstates in Eq. (10)
by expressing the definite flavor states |Ko) and |Ko),
which we consider, as far as the propagation in vacuum
is concerned, as di-chromatic waves, superposition of the
monochromatic waves |Kg) and | K ).

Likewise we can express |Kg) and |K) as superposi-
tion of the definite C'P states |K() and |K3). From an
abstract point of view we are dealing with a two states
system, so any basis composed of two orthogonal states
is legit: according to the relevant Hamiltonian one basis
is more convenient that another one. By implementing
this guideline we can write the following equations:

|Ks) =p|K°) +q|K°) (12)

|Kr) =q|K") —p|K°).
Ortho-normalization requires that [p|? + |q2| =1.Ina
similar manner we can express the definite mass states

|Kg) and |Kp) as superposition of states |K{) and |KJ)
defined in Eq. (10):

Jra I 1
0\ 0
|KL> _ |K2> 6|I(1>
1+ e

The idea behind Eq.(13) is straightforward: the observed
indirect violation of CP symmetry is embodied in the
complex parameter €, who magnitude is about 2.3 x 1073.
If CP were conserved € = 0 and p = ¢ therefore we could
identify C'P eigenstates with definite mass eigenstates.
Note that, because of the small value of €, at first order
in epsilon Eq. (13) can be simplified as

|[Ks) = | K7) +€|K3) (14)
K1) = |K3) — €|KY)

This kind of C'P violation is called indirect because
we ascribe it to the presence of a small contribution
of the CP = —1 eigenstate |KS> in the definite mass
eigenstate |Kg) and of a small contribution of the CP =1
cigenstate |KV) in the definite mass eigenstate |K). This
raise e question: what would be a direct violation of CP
symmetry? It would involve for example the CP = —1
eigenstate ’K 8> decaying into two pions. Experimentally
this can be shown by comparing the amplitudes of charge
conjugate mesons. Experiments have detect this kind of
CP violation, with even smaller amplitude.

V. TIME EVOLUTION

In order to study the time evolution of the states we
choose a basis in terms of energy eigenstates: the time
evolution is relatively simple and, for stable states, it



reduces to a phase. Kaons states are not stable and this
phenomenon can be accounted for by including complex
matrix eigenvalues.

In order to keep the algebra cleaner in this section we
set ¢ = 1 and A = 1 in order to treat with the same
footing masses and decay width, which have the units of
energy.

Let’s suppose for the sake of simplicity that C'P is not
violated by the weak interaction and analyze the following
experimental situation: at time ¢ = 0 we have produced,
through strong interaction, a pure ’KO> state, that is a
pure s = 1 state. We have already pointed out that this
state, from the point of view of weak interaction, has to
be thought as made of 50% of |K?) and of 50% of |KY),
as shown in Eq. (11). After about 102 almost all the
|K?) have decayed leaving a beam of |KJ) with intensity
half with respect to the initial one.

Consider again the strong interaction: our beam of
‘K8> can be described as a superposition of ’K0> and
‘K0> so by starting with a pure ’KO> beam we can gener-
ate |K0>. By interacting with a target the ‘K0> compo-
nent will be absorbed more with respect to ’KO> (more
reaction channels are open at low energies) enabling the
regeneration of the |K 0>. This chain of reactions is an
oscillation of strangeness because we can swap back and
forth from eigenstates with strangeness equal to 1 to
eigenstates with strangeness equal to —1.

A key feature of the formalism is the different mass
associated with different eigenstates: |K 0> and |K 0> have
the same mass because they are a particle antiparticle
couple. The C'P eigenstates ‘K ) and ’KS ) instead show
a little mass difference because their weak interaction
is slightly different. This phenomenon is similar to the
different mass of proton and neutron due to the electro-
magnetic interaction (in the latter case the difference is
much greater).

We know from quantum mechanics that an eigenstate
wave-function contain the term e~ %" [3]. In the reference
frame where the particle is at rest the energy is the rest
energy E = mc? = m. In natural units the phase factor
is reduced to e~ In addition we have to include a
term describing the decay of the particle. A standard
way consists in including a imaginary term to the mass,
thus allowing us define a complex mass M = m — i['/2
where T is related to the average life of the particle by
T= % = % in natural units. This approach reflects very
closely the relation between the refraction index and the
absorption index in classical electrodynamics [4].

Let’s apply this formalism to the C'P eigenstates sup-
posing that we have produced a pure S = —1 eigenstate
‘K 0> at t = 0. By including the time dependence into Eq.
(11) we start with

1
NG
[K9(0)) =0,

[K°(0)) = —= (|E7(0)) + [K5(0))) (15)

where we have included also |[_( 0 (0)> because we expect

to generate it.

In our approximation }K 9 > and |KS> are energy eigen-
states hence their time evolution is simple. By defining
M, = m; — z% as the complex masses of ’K?> and
My = my — i2 the states |K9(t)) and |KJ(t)) are

|KD(0)) = [KD(0)) e Mt = [K(0)) et 3

ot

|Kg(t)> = |K§(0)> e Mat — ’K?(O)> e~ imate= 5
(16)
We can now express the time evolution of |K 0> as a
superposition of C'P eigenstates:
1

7% (JKD(0)) e ™" + | K3(0)) e~ M2) .

(17)

K1) =

Equation (17) is a key one because it allows to express
a series of interference effects, among which there are the
strangeness oscillations. In order to put into evidence
this oscillation let’s evaluate the intensity of the particle
beam, which is proportional to the absolute square of the
wave function.

By defining If(t) = (K{(t)|K{(t)) and inserting Eq.
(16) we have

Iy (t) = (KY(0)|K7(0)) e, (18)

because the imaginary phases involving m; cancel out,
whilst the real phases involving I'y add up. Following the
same line of reasoning

Iica(t) = (K3(0)|K3(0)) e™"2". (19)

At this point we have all the tools to evaluate a very inter-

esting quantity, that is the ratio 2;3((8)) = <K0(t)|K0(t)>.

This ratio does not depend on the initial intensity of the

’K 0> beam so we can, without any loss of generality, put

Ito(0) = 1; as a consequence Io(0) = I%, (0) = 3.
Inserting Eq. (16) we have

Iio(t) 0 0
=(K"(t)|K"(0
S = ()R 0)
(K] + (K@) [K2(1)) + | K(1))
= (20)
V2 V2
Let’s evaluate Eq. (20) product by product:
1
(KOOED(D) = Lo
1
(KSOER(D) = Lo (21)
The remaining products are complex conjugates and, by
using the Euler identity cos(z) = “~£&— they can be
written as
(KD K5(0)) + (KS ()| KD(0)) = =5 cos((Am)t),
(22)



where Am = mg — mq.
By putting all together we have the key result

Tgo(t 1

I;I:((O)) ! (eirlt +eTet 4 gem cos((Am)t)> .
(23)

By following the same steps we evaluate also 2:3 ((6))

To(t 1

I;I:((O)) ! (e_m et gem T COS((Am)t)) :

(24)

As we said in the previous section the half-life for
decaying into two pions is 600 times shorter for the three

pion decay; in terms of width decay therefore I'y ~ 600I;.

Let’s study Eq. (23) and (24) when it has elapsed
enough time that practically all |K?> is decayed but
basically no |Kg> has already decayed. Consider for
example the time scale of the nanosecond: 7 ~ 90 pc so
the fraction of ‘K ) surviving after 1 ns is about e~ ~ 0
while all ’K 9 > are still there, as we can check by comparing
this timescale with the average-life of ’K 9), that is about
50 ns. Let’s insert these approximation into Eq. (23) and
(24) by substituting the first e T1* with 0, e~I'2* with one,
and neglecting e 12? in the decay width sum, obtaining

Tzo(t)
T,c0(0)

the simpler equation for

Io(t) 1 o
III; 0) 4 (1 +2e C%((Am)t)) . (25)

This equation states that in the time windows where
‘K ?> is almost all decayed and ’K S> is not yet decayed the
ratio between the intensity of ’R’o> and ‘K 0> is a steady
i; indeed the last term of Eq. (25) is suppresses by the
exponential factor and the tiny value of Am, amounting
approximately to 3.5ueV makes the cosine modulation
very hard to notice.

Likewise for the regeneration of |Ko> we have

}T;{z(((t))) R~ % (1 — e cos((Am)t)) . (26)

We have obtained a interesting result: at ¢ = 0 we
produce a pure ’K 0> beam by strong interaction, then

we let evolve the system in vacuum and for the relatively
long time of a few nanoseconds we have two beams of
particles made of ‘K 0> and ‘I_( 0>, each one with intensity
approximately i of the original beam.

VI. DISCUSSION

The analysis carried out in the previous section in
not entirely accurate because we have identified mass
eigenstates with C'P eigenstates even if we know that
this is not true. In any case, the observed violation is
small so this approximation does not make our conclusions
invalid. Moreover it enables us to develop a relatively
simple formalism that would become much cumbersome
(and probably it would not allow us to grasp better this
system) if we had included C'P violation, thus working
with the states of Eq. (12).

The kaons system shows interesting features allowing
us a comparison with other physical systems, both in the
classical and in the quantum level, both in quantum me-
chanics and in quantum field theory where C'P violation
can play a role in understanding fundamental interactions.

In fact other sources of C'P violation processes are being
investigated: a promising realm is provided by the charm
and bottom quark physics. With respect to the kaons, the
true stationary states have very short and almost equal
mean lives. Experiments with such mesons are therefore
challenging.

Finally T would mention the search for C'P violation
in the neutrino sector. Neutrinos are elementary parti-
cles and the observed flavour oscillations prove that they
possess a tiny mass. A common feature with the kaons
system is that the states produced by weak interaction
are not mass eigenstates and the complete mixing concern
three kinds of neutrinos, making the general expressions
for the oscillations much more involved with respect to
two states mixing.
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Bell’s inequalities and Tsirelson’s bound
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Bell’s inequality draws a distinction between quantum mechanics and classical mechanics as a
description of the world. It states a limit that bounds classical statistical correlations, but that is
violated only by quantum mechanic correlations. It is natural to ask if quantum mechanic correlations
also have limits. The answer to this question is given by the Tsirelson’s bound, which gives an upper
limit to quantum correlations that can not be violated. In this paper, we derive the original Bell’s
inequality and its generalization or Clauser-Horne-Shimony-Holt inequality. We will also discuss
their importance for quantum mechanics. Finally, we derive and discuss the Tsirelson’s bound. The
derivations done in this paper are for the system of two entangled spin 1/2 particles.

I. OVERVIEW

This paper aims to derive and discuss 3 of the limits to
which statistical and quantum correlations are bounded.
The first limit is known as Bell’s Inequality and is par-
ticularly biased for ideal systems. The second limit is
the generalized Bell’s inequality (also known as Clauser-
Horne-Shimony-Holt, and in the rest of the paper named
as CHSH inequality), and takes into account real experi-
mental systems. Both of the mentioned limits describe a
bound which cannot be violated by classical or statistical
correlations, but which are in many cases violated by
quantum correlations. The last bound is the Tsirelson’s
Bound. This bound puts a limit that cannot be surpassed
even by quantum correlations.

This paper begins with a background to explain quan-
tum predictions and EPR (Einstein—Podolsky—Rosen) ar-
guments. EPR arguments are arguments that vow for
the existence of hidden-variable theories that assume the
incompleteness of quantum mechanics. Then, we begin
the derivation of the first Bell’s inequality aimed at ideal
systems. This Bell’s inequality proves the inconsistency of
EPR arguments and therefore the supremacy of quantum
mechanics. We then derive the Generalized Bell Inequal-
ity which takes into account real experimental systems.
We begin its derivation by mentioning some of the prob-
lems with the first Bell’s Inequality for real experimental
systems. We then state solutions for these problems that
will be used in the derivation of the Generalized Bell’s
inequality. After deriving the Generalized Bell’s inequal-
ity, we proceed to state a particular case, in which it
transforms to the first Bell’s inequality

Then, we derive the Tsirelson’s bound based on math-
ematical formalities of quantum algebra that are stated
at the beginning of the corresponding chapter. We then
present an example to give an overview of the three de-
rived inequalities. We finish with a discussion.

II. BACKGROUND

The lack of determinism and the “spooky” action at a
distance of the theory of quantum mechanics led Albert
Einstein, Rosen and Podolsky ( [1], hereafter referred

to as EPR), to propose an argument which, by means
of “hidden variables”, seeked to restore the apparent
lack of completeness, determinism and causality of quan-
tum mechanics. One of the derivations of EPR was the
Gedankenexperiment proposed by Bohm [2]. Eventhough
the scope of this paper is not aimed to describe hidden
variable theories (EPR and its variations), the experiment
proposed initially as part of the Gedankenezperiment is of
particular importance, as it was used as a set-up in which
to develop Bell’s theorem and its later generalization.

A. Bohm'’s set-up

Bohm considered an entangled pair of spin one-half
particles produced somehow in a singlet state and moving
in opposite directions. These spin particles are entangled,
and are sufficiently far away from each other. The spin
components of each of these particles could be measured
independently by means of measurement devices, for ex-
ample, Stern-Gerlach magnets. The decision of in which

direction to measure, is up to the experimenter. Our
general state can be expressed as [3]:
1 _ _

U= — (ug (1) ® uy(2) — uy (1) ®@uy(2) (1)

V2

The experimenter use the operator o to make a measure-
ment to the state uX (1) so that o - ufjf(l) = :I:ufil(l).
Here, n represents a unit vector in a particular direction
along which the measurement is taken; in Eq.(1), numbers
in parentheses “(1)” and “(2)” represent the label of the
first and second measured particle respectively; and “+”
represents the eigenvalue of +1 or —1 respectively. Since
the singlet state U is spherically symmetric, i can specify
any measured direction.

B. Quantum Mechanic Prediction

According to quantum mechanics, in Eq.(1), if the
measurement of the component of the first particle uz(1)
along n yields the eigenvalue +1, then, the measurement
of the second particle up(2) along 7 will yield —1. To
exemplify this, we can measure along the Z axis without



loss of generality (the state U is spherically symmetric).

We define:
(10
9= \0 -1

m=(5) v=(3) @)

where |1) and |}) represent our basis states. We there-
fore represent Eq. (1) as:

1

U=— @) —)® 3
7 (Mol - eln) 3)
As an example, we suppose that our state collapses to
U = |1 ®||); then we could measure the spin of the first
particle (measurement along the first Hilbert space) and
obtain: (¥]|o, ® 1|¥) = (4+1); when we measure the spin
of the second particle, we would then get: (}|1®o, [{) =

(—1).

For a measurement along different directions [4], with
the first particle being measured along the @ direction and
the second particle being measured along the b direction,

we define QM (d, E) as:

=)

oM (a,b) (U|G-G®G bW =—a-b=—cosh (4)

where 6 is the angle between the directions of @ and b.
If the measurement is done along the same direction, we
get:

C. EPR premises

The EPR argument is based on three main premises [3].
These premises were of great importance for the devel-
opment of Bell’s inequality, which states a contradiction
between them, and, subsequently, the impossibility of
hidden-variable theories. The premises are:

1. The EPR argument takes for granted, that some of
the quantum-mechanical predictions are correct.

2. “But on one supposition we should, in my opinion,
absolutely hold fast: the real factual situation of
the system S5 is independent of what is done with
the system S7, which is spatially separated from the
former.” [5]

3. “If, without in any way disturbing a system, we
can predict with certainty the value of a physical
quantity (i.e. the spin of the particle), then there
exists an element of physical reality corresponding
to this physical quantity.” [1]

The first premise states the validity of some quantum-
mechanical predictions (namely, Eq.(5)). The second

premise states the impossibility that the measurement
of a system S; perturbs in any way another system Ss.
This premise is known as locality, or, more colloquially,
impossibility of spooky action at a distance. The third
premise confirms the existence of hidden variable theories:
since we can predict in advance the value of a physical
quantity (i.e. the spin of a particle) by measuring the
value of another physical quantity (i.e. the spin of the
entangled particle), both physical systems are far away
without possibly interfering the other, and our wave-
function does not determine the result of any individual
measurement (for example, in Eq. (3), the wave-function
does not determine to which entangled pair our state will
collapse after the measurement), then, there should be a
more complete specification of the state (a hidden variable
theory).

III. BELL’S INEQUALITY
A. Assumptions

Bell’s inequality is based on the contradiction of the
mentioned EPR premises. This contradiction is proved
by showing that a hidden-variable theory satisfying both
the EPR premise 3. and the condition of locality stated
in the premise 2., can not at the same time satisfy the
partial agreement with quantum mechanics stated in the
premise 1. To begin with, Bell parametrises the existence
of hidden-variable theories (premise 3.) by means of the
parameter \. He states that the observables A and B,
which are the result of measuring the first particle by
using the operator ¢ - @ and the second particle by using
the operator 7 - b respectively, depend on @, b and \. He
then states:

A(@\) ==+1, B (5, A) " (6)

Eq.(6) assumes not only the fact that the values of A
and B depend on the parameter A\, but also the locality
premise (premise 2.): A depends on @ but not on 5, and
B depends on b but not on @ A and B can only take
values +1 and -1, which represent the spin being up and
down respectively. Bell then represents the probability
distribution of A as p(\), where p(A) is a normalized
probability distribution:

[ x =1 (7)

He then asserts that the assumptions of EPR stated here
as part of (6) and (7) should agree with some quantum me-
chanical predictions (premise 1.) for the hidden variable
theory to be true.

This partial agreement with quantum mechanics is
enunciated as follows:

First, we define a classical expectation value of the
product of two measurements of - @ and & - b acting on



the first and second particle respectively by:
P (a, E) - / d\p(NA (@, B (5, )\) (8)

Premise 1. expresses that our classical correlation should
have a partial agreement with some quantum mechanical
correlations, namely, with Eq. (5). Therefore, we should
have:

QM (d,a) = P (a,a) = —1 (9)

By Eq. (6), P cannot be less than —1. For Eq. (9) to be
true, we should therefore have:

A@N) =B (@) (10)

Eq. (10) represents the statement of partial agreement
with quantum mechanics (Premise 1.).

B. Contradiction

The contradiction is stated by finding a hidden-variable
correlation (Bell’s limit) that assumes locality and the
existence of a hidden variable theory (Eq.(6) and Eq.(7)),
and is derived with help of a partial agreement with
quantum mechanics (Eq.(10)), but that is in fact violated
by quantum mechanical correlations.

By Eq.(10), we can rewrite Eq.(8) as:

P(@,E) z—/d)\p()\)A(cY,)\)A(E, A) (11)

We can now introduce a second vector ¢ and do the
following calculation:

P (a’, E) _P(@.d) = — /d/\p(/\)A(&’, A A (5, A)

Noticing that A (l;, A) A (l_;, )\) =1, we then say:
P (@',B) _P(d,d) =
/ dAp(\)A (@, )) A (E, )\) [A (5, /\) AGN) - 1} (13)

Then, by the theorem of the Triangle Inequality of Inte-
grals (theorem 13.24 in [6]), we affirm:

‘P(&,B) —P(&’,E’)‘ <
/d)\p()\) ‘A(a,)\)A (E, A) [A (5, )\) A@GN) — 1” (14)

By the multiplicativity property of the absolute value, we
state:

’A (@) A (5, /\) [A (5, )\) A@GN) — 1}

|
’A(&,A)A(ﬁ,A)’HA(E,A)A(E,)\)—IH (15)

Then, by the triangle inequality:

HA (5.0) 4@ - 1” < HA(E,A) A(aA)] +1-1]]

As a result, we have:

/d)\p(/\) a@n A (B[4 (5.2) A@n] +1]

To progress, we use Eq. (10) to say:
‘A (5, /\) A(E,)\)‘ - (—A (5,A> B(E,)\)‘
-y (E,A) B(E\)
- A (5, )\) A(EN) (18)

‘We also notice that:

-

A@NA(BA)] =1 =1 (19)
| (5:3)]

We use Eq. (18) and Eq. (19) in Eq. (17) to get:

’P (d’,5> — P(d,?)

< / drp(\) [1 —A (5, /\) A, A)}
< /d)\p()\) - /dAp(A)A (E, /\) A(EN)

(20)
and, by Eq. (7) and Eq. (10):
/ dAp(\) - / (VA (5,2) A G A) =
1 +/d)\p()\)A (5, A) B(E)) =
1+ P (5, 5) (21)
so that we get:
]P(J,B)_p(a,a)]§1+13<5,a) (22)

which is the Bell’s inequality (Eq. (22)).

As we see, Bell’s inequality was calculated on the
premises of existence of hidden variable theories (Premise
3.) and of locality (Premise 2.). We can prove that, for
some quantum mechanical expectation value given by Eq.
(4), this inequality is violated. As an example, we suppose
that the angle between axis @ and ¢'is 27/3 and b makes
an angle of w/3 with both @ and ¢ Then:



We evaluate these quantum mechanical expectation value
on Bell’s inequality Eq. (22):

‘QM (a,z?) —QM G,d)| £1+QM (5,5)
1 1 1
‘22‘ 13
142 (24)

With Eq. (24), we prove that hidden variables theories
that rely on premises 2. and 3. of EPR cannot agree with
premise 1. at the same time, which is the main result of
Bell’s inequality.

IV. THE GENERALIZATION OF BELL’S
INEQUALITY

A. The problem of the first Bell’s inequality

Even though the first Bell’s inequality [4] is an argument
of great value as it provides a mathematical framework
that could be used to test hidden-variable theories, it is
strictly limited to ideal systems, what makes it of little
value to real experiments. There are two main problems
that arise from the first Bell’s inequality:

First, for its derivation, the first Bell’s inequality relies
on that Eq. (9) hold exactly in order to state Eq. (10)
(partial agreement with Quantum Mechanics or Premise
1.). Also, for the proof of its violation, Bell’s inequality
relies on that Eq. (4) holds exactly, what we will call as
perfect quantum correlation.

Unfortunately, Eq. (9) and Eq. (4) cannot hold exactly
in an actual experiment: the detector used to do the
measurements will have an efficiency less than 100%, and
any real analyzer will have some attenuation [3].

Second, the mathematical derivation of the first Bell’s
inequality also relies on the idealized situation, in which

particle detectors will detect either +1 or —1 (Eq. (6)).

However, in a real situation, there exists an additional
possibility: that the particle detectors could also contain
hidden variables that could influence the results [7]. This
additional possibility is interpreted by some authors [3] as
the detection of an additional 0 (which means no particle
detection).

B. Solutions to problems

The first problem was first tackled by John F. Clauser,
Michael A. Horne, Abner Shimony and Richard A. Holt
(CHSH). In their work [8], they propose a new derivation
of the Bell inequality independent of Eq. (9) and Eq. (10),
so that it does not need a perfect statistical correlation
to be valid. For this, CHSH uses another unitary vector
b_;, apart of a, 5, and ¢, in which the measure is to be
taken. The same derivation is used later by Bell [7], but

4

with the vectors d, l_;, @ and b For the derivation of the
generalized Bell inequality in this paper, we will use the
variables used by Bell in [7], as it pertains essentially the
same derivation as that of CHSH, but with the addition
that it also includes a solution to the second problem.
Additionally, CHSH [3] uses a modification of Eq. (4) by
including a coefficient C that bounds by one the QM pre-
diction. This way, we avoid relying on a perfect quantum
correlation. Eq. (4) is then modified to:

oM (a’, E) = Cq-b (25)

The second problem was tackled by Bell [7]. He as-

sumed that, if particle detectors can possibly contain

hidden variables, then, we should first average the corre-

sponding distributions of instrument hidden variables, so

that our derivation takes it into account. As a result, we
modify Eq. (6) to:

[A@ N <1, [B(5A)| <1 (26)

For the derivation of the generalization of Bell’s theorem,

we will use A and B to denote the averaged values.

C. Derivation of generalized Bell’s inequality
We now proceed to derive Bell’s inequality. We define:
P (a’, 5) - / d\p(\)A (@, \) B (E, A) (27)

We then calculate:

(28)

As we did in the derivation of the first Bell’s inequality,
we use now the triangle inequality, the triangle inequality
for integrals, and the property of multiplicativity of the

absolute value to get:
P (a.5) - P (@)

[ v [[a@n B (50)]|(124(7.3) B (7.2)])
+ [ [[a@n B (7.0)] (124 (7.0) B (5.0))
(29)

<

We know from Eq. (26) that:

‘A(d,A)B(E,/\)’ <1,




Also, the minimum value of A

(14 (3.0) B(7.2)) 20, (14 (7.0) B (5.3)) >0

As a result:

We now use Eq. (30) and Eq. (32) in Eq. (29) to get:
P (a.5) - P (V)
/dAp(A) (1 + A (J/,A B (1)7,)\)
+/d)\p()\) (114( 3
/Qd)\p /d)\p )\) B (z?,A
/ dAp(\ /\> (b )\) (33)

As a result, we get the generalized Bell’s inequality (Eq.
(34) and Eq. (35)):

or:

(35)
D. Particular case
We see that the first Bell’s inequality (Eq. (22)) is in
fact a particular case of Eq. (34). Assuming a J = = c,
and Eq. (9), we get:
’P(d’,b) aE)‘<2i(P(c 5)+P(6,5))
<24 (—1+P (55))
<1+P (5, E) (36)

V. TSIRELSON’S BOUND

Bell’s inequality and its generalization described a
bound that could be violated by a variety of quantum
correlations, but not by statistical correlations or hidden-
variable theories. It is natural to ask, whether quantum
correlations also obey a certain limit, and which this limit

is. Boris Tsirelson [9] was the first to answer these ques-
tions, initiating the study of the limitations of quantum
correlations. Tsirelson’s paper [9] contains 4 theorems,
the first of which is only needed for our purposes on the
derivation of the Tsirelson’s bound (in fact, an elementary
proof of the Tsirelson’s bound is also given on his paper as
part of the discussion of his first theorem). What makes
Tsirelson’s derivation and theorems different from the
derivations of Bell’s inequality, is that Tsirelson uses the
mathematical formalism of linear algebra to provide a pre-
cise mathematical characterization of quantum systems
that allows for the calculation of its bound; while Bell’s
inequalities relied on statistical correlations to be derived.
In the first part of this chapter, we will introduce some
of the mathematical formalities needed for the derivation
of the bound. We will then state without derivation the
elementary proof given in Tsirelson’s paper, and derive
the proof most commonly used in today’s literature. At
the end, we translate the generalized Bell’s inequality (Eq.
(35)) into the notation used for Tsirelson’s Bound, so that
we can compare both limits and bring the whole work
into overview at the discussion.

A. Mathematical formalities

We list the mathematical formalities used for the deriva-
tion [9]:

e There is a complex-algebra A with identity.

e We let an operator Ay be given for £k =1,...,m and
an operator B; be given for [ = 1,...,n. Operators
A, B; € A and are Hermitian operators.

e We then let two Hilbert spaces Hi and Ho so that
H=H1 ®Hs.
AY @1? and B, =1V @

Bl(2), where Akl) and Bl(z) are some operators in Hy
and Hs respectively.

e We now say that Ay =

e We state that [Ag,Bi] = 0, and that C =
[Ak, Ar] # 0 and D = [By, By] # 0 for different
values of k, k' and [,!’, and for which C and D are
scalar.

e We say that Ay and B; have an spectra consisting
of two points included in the interval [—1;1].

e We state the expected value: (U] AxB; |¥) = ciy
e Welet A7 =T and B =1

Notice that the fact that Ay and By have an spectra in the
interval [—1; 1] assures the suitability of the said operators
for their use on experimental set-ups. If we had chosen
the spectra of Ap and B to be of two unique points
{—1;1}, we would have committed the same problem of
the first Bell’s inequality: reliance on perfect quantum
correlations.



Also notice that the mentioned mathematical formal-
ities consider a number m + n of operators. For our
particular case (of two spin one half particles), we choose
m = 2 and n = 2; however, Tsirelson’s bound is more
general and it can allow for its derivation for a greater
number of operators.

B. Derivation of Tsirelson’s bound

We now write the elementary Tsirelson’s bound stated
in Tsirelson’s paper [9]. No great detail is given about
this derivation, but it is enough to solve it in order to
prove its validity:

A1By + A1 By + AyBy — Ay By =

1
E(Af+A§+Bf+B§)

71‘éV§((v5+ﬂ)(A1fzb)+<A2fzg)2
_1 ‘8\/5 ((\/§+ 1) (Ay — By) — Ay — 31)2
_1;V§(Qﬁ+1)m2—Bn+Al—BQQ
- _8\/5 ((V2+1) (42— B2) — 4, - 31)2

IN

(A2+ A2+ B} +B3) <2v2-1 (37)

The derivation of the Tsirelson’s bound mostly used in
today’s literature is due to L. J. Landau [10]. This deriva-
tion is presented in the next lines; however, it is important
to mention that our derivation will keep the notation used
in the chapter “Mathematical Formalities” of this paper.
For its translation to the notation of Landau’s paper [10]
it is enough to state: Ay =a,B; =b,As =a’,By =1.

We define:

C - AlBl + AQBl + A1B2 - AQBQ (38)
We square C':

C? = +AIB? + A1 AyB} + A3B1By — A1 A2B By
+AsA1B? + AZB2 + AyA BBy — A%ZB1 By
+A2BoB; + A1AyByBy + A2B2 — A1 AyB;
—A3A1ByBy — A2ByBy — Ay A\ B2 + AZB2

(39)
We recall that A% = Bl2 =1
C? =41+ A1Ay + B1By — A1 A3 B1 B
+A2A1 +1+ Ay A1 BBy — B1 By
+BgBl + A1A232Bl + I— A1A2
_A2A1B2B1 - B2B1 - AQAl + ]I (40)

We notice that some terms cancel pairwise, so that we

are left with:

C? =41 — A1A3B 1By + 1+ A3 A1 BBy
+A1AQBQBl + ]I - AgAlBgBl + I[
- —|—4 . ]I - A1A2B1B2 + AQAlBlBQ

After applying the triangle inequality and the property of
multiplicativity of absolute value, since ||A1]| = || 42| =
1By]| = [|Ba|| = 1, we get:

| = Ay A3B1 By + Ay A\ BBy + A1 AsBoB) — Ay A1 BBy ||
< ||A1A2 By Bs|| + ||A2A1 B1 Bs|

+[|A1 A2 Bo By || + || A2 A1 B2 By ||

< [lAx|[[[A2[[|Bal[| Bzl + || Az||[| Ax][[| B1[|| B2]|
+[A[|[|A2|[[| B2[|| B1] + |[A2|[[[ A1 ||| B2 ||| Bl
<l+1+1+1=4

(42)
So, we calculate:
|C?|<4+4=38 (43)
C is hermitian, so that ||C?|| = ||C|[*:
ICI? <8
= [ICll < 2v2 (44)

Eq. (44) is Tsirelson’s bound.

C. Overview

In order to get an overview of the two bounds (Gener-
alized Bell’s Inequality and Tsirelson’s Bound), we first
calculate the Generalized Bell’s Inequality in terms of C,
and compare it with the Tsirelson’s Bound and a partic-
ular example by means of a diagram (Fig. 1). First, we
can write Eq. (8) as:

-

P (a, 5) = ((¢-@)(0 - b)) (45)

and we define A; = a~d77 Ay =o0-d, By = o - b and
By = o - V. For the Generalized Bell’s Inequality (Eq.
(35)) we have:

[(A2B1) — (A2Ba) + (A1Ba) + (A1Bq1)| <2
| <2

= |<AgBl — AQBQ =+ A1B2 =+ AlBl> (46)

We notice the presence of Eq. (38), so we write:
{C) peu <2 (47)
Following, we present a particular example. For this

particular example, we suppose that a, [_)'7 a’ and b are



co-planar vectors separated from each other by an angle
0. We calculate the expected value of C as follows:

[(A2B1) — (A2B2) + (A1B3) + (A1 By
(o~ a@)(o - b)) — (o -

+{(o-a)(o-U)) + (o (48)

By using Eq. (4) to calculate the quantum mechanical
expected value, we get:

[{C)] = |3 cosf + cos 30| (49)

We now present Eq. (44) (Tsirelson’s Bound - red dotted),
Eq. (47) (Bell’s Inequality - green dotted) and Eq. (49)
(example - blue continuous) in Fig. 1:

NE
SE

Figure 1. Comparison of Bell’s Inequality (f3(0) - green),
Tsirelson’s bound (f2(6) - red) and example (C)(f1(6) - blue)

In the shadowed regions of Fig. 1, we can see that
our quantum expected value (C') surpasses our Bell’s
Inequality(green). However, our graph of (C) is bounded
by the Tsirelson’s Bound (red). We can also appreciate
that our graph for (C) is saturated, or, reaches its first
peak of 2y/2 (Tsirelson’s Bound), for § = /4.

VI. DISCUSSION

We have derived two Bell’s inequalities. Bell’s inequali-
ties are bounds that could be violated by quantum corre-
lations, but not classical or statistical correlations. The
generalized Bell’s Inequality (Eq. (35)) takes into con-
sideration problems that were part of the first Bell’s In-
equality (Eq. (22)) and that were part of ideal systems.
Because the generalized Bell Inequality considers real sys-
tems, and not ideal systems, this inequality provides with
an adequate framework for real life experiments. However,
it is important to mention, that even for this inequality
some loopholes can arise, which is in fact a matter of
research of other papers.

On the other hand, the Tsirelson’s bound was also cal-
culated (Eq. (44)). This bound was derived from the
formalism of quantum algebra and provides an additional
limit that cannot be surpassed by quantum correlations.
The importance of this bound, is that it helps determining
the possible saturation for quantum correlations. This
bound was calculated for our system of spin 1/2, which
means it took into account a 2 x 2 dimensional set of oper-
ators (m = n = 2); however, the mathematical formalism
mentioned also allows for the calculation of the bound
for a higher dimension. The calculation of the bound for
higher dimensions is part of other research papers.

To conclude, we put into perspective our two limits in
Eq. (50):

(O pew < ICI| < 2V2 (50)
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BLOCH SPHERE AND PRESKILL’S BOXES: A WAY OF LEARNING
QUANTUM PHYSICS FROM A QUBIT OR AN OAR

Pedro José Morillas Rosa

(Dated: June 19, 2019)

We live in a fundamentally quantum mechanical world, so it is imperative to learn quantum physics in high
school. However, the teaching of quantum physics is usually very brief at school, and students basically memorize
some formulas that they ponder without a correct conceptual understanding of what they represent. We know
that the quantum world is not intuitive, so we present in this document a way to visualize the concepts of quantum
physics through the Bloch sphere and Preskill’s boxes. We consider that high school students can get a more
practical idea of what is quantum physics by using pure mathematics and excellent illustrations inspired on a qubit
(instead of only using a historical presentation from Planck to Schrédinger through Einstein and Bohr). Using this
method, we show fundamental concepts and applications in various fields and we recommend physics teachers to
consider using the qubit to illustrate the principles of non-relativistic quantum physics, rather than more difficult
examples for the students to understand as the black body (whose relationship with quantum physics is much

more subtle).

I. INTRODUCTION

Physics is a science in continuous transformation.
From time to time, new experimental results force the
theories that until that moment were considered valid
to be modified. But no change has revolutionized
in such an important way the physical conception of
the world and matter as that introduced by quantum
mechanics. Despite its great importance and the recent
developments of quantum physics in many fields, its
teaching in high school is quite brief, which, together
with the difficulty of the subject, often means for
students a dark part of physics. But before hearing about
quantum physics, in high school students begin to learn
notions of computers and bits. It is not until the courses
closet to the university that they begin to learn their
first notions of quantum physics. They learn very briefly
the limitations of classical physics and some quantum
mechanics (wave-particle duality, Heisenberg uncertainty
principle, spin and some applications). All this, in
spite of the many advances achieved in this matter and
in the new developments of quantum computing. We
believe that a new approach to quantum physics can
help students understand in a much more visual way
the great oddities involved in some of the facts and
experiments of quantum physics. Such an approach is
not intended to replace the way in which this subject
is currently taught, but it does propose to complement
it, introducing concepts such as the qubit, Bloch sphere,
Preskill’s boxes, or some of their own ideas inspired by
them, so that the concepts can be better visualized and
understood, thus subtracting difficulty from everything

that we find unusual or not at all intuitive. Therefore,
we briefly review what each one of these concepts is
and how we can help young people to become interested
in the fascinating and booming field of research. We
end the document showing how to explain using this
approach some concepts such as the photoelectric effect,
the Heisenberg uncertainty principle and we make a brief
reference to the importance of quantum in cryptography.

II. CLASSICAL AND QUANTUM BITS

Since the early years of high school, students have
come into contact with the concept of the classical bit
(binary digit). In technology subjects, they learn that
information is composed of zeros and ones, and that
the bit is the minimum unit of information used in
computing. With it, they can represent any two values,
such as true or false, open or closed, white or black, green
or red, etc. They are generally given the example that
a classic bit 0 could be represented as a light bulb off,
while a bit 1 would be the bulb on.

On the other hand, the qubit is the minimum unit
of quantum information theory and the concept is much
more abstract than in the case of the classical bit. The
qubit can be described as a vector of length unit in
a complex two-dimensional vector space. The qubit
presents two basic states |0) and |1), which would become
the counterparts of the classical bit 0 and the classical
bit 1 respectively. The worrying thing about the qubit
is that it does not have to be only in one of these two
states, but it can be in a quantum superposition of them,
that is, it can be in both at the same time, something
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Figure 1: Classical and quantum bits. a) Representation of the
classic bit 0 as an oar with the paddle upwards. b) Representation
of the classic bit 1 as an oar with the paddle facing down. c)
Representation of a qubit as an oar that can be in an overlap of
the states |0) and |1), that is, it can be inclined in infinite different
positions in space.

that mathematically is expressed like this:

W) = a o)+ 5 1) M

This would be equivalent to having a light bulb on,
off or in a situation between the two, as if you had a
potentiometer that controlled the intensity of the bulb.
Things are no longer true or false, they can be half truth
or half lie or be in infinite situations more or less close
to the truth or the lie. The representation of a qubit is
no longer as simple as the series of steps of 0 or 5 V that
represent the series of classic ones and zeros, but we can
try to visualize it in some way, for this the Bloch sphere
is used, of which we will talk next; but let’s start now
with some revealing visualizations 1, if we represent the
classic bit 0 = |0) as an upward oar and the classic bit
1= 1), as a downward oar, a qubit could be represented
as that same oar in infinite inclination possibilities.

II1. BLOCH SPHERE

Bloch’s sphere, named after the Swiss physicist Felix
Bloch, is a generalization of the representation of a
complex number z with |z| = 1 and, as we will see, it is
a very appropriate way to represent a qubit. A complex
number z has a real part  and an imaginary part y 2.

z=x+1y z,yeR

(2)

and, as |z] = 1 = y/22+y? = 1. Every complex
number can be represented in polar coordinates, where

= 0 . .
z = CosT = |z| (cos + isind). Using Euler’s
y = |z| sinf
identity: e = cosf + isinf, we can write a complex

number like this: z = |z| €. In the case of our complex
number of module 1: z = €. Well, as we have seen,
a qubit is a mathematical object that can be found in

two possible states,|0) and |1), and also in any linear
combination of them, that is, it can exist in a continuous
of states between them.

Figure 2: Representation of a complex number z in the complex
plane. z can be defined in cartesian coordinates (z,y) or in polar
coordinates (|z|,6).

In equation (1) a and (B are complex numbers such
that |a|* + |8)° = 1, since the quantum states must
be normalized. Since «,8 € C, taking into account
a = |a| ei?e
5 =o€

so that by substituting in equation (1), we have:

our previous development, we can do {

@) = |ale™ [0) + |B] e |1) ®3)

where |af,|B], ¢a,9s € R. In quantum physics, the
quantities that can be measured are |a|*and |8|°, which
are the respective probabilities that |¥) is in the state |0)
or in the state |1). To free ourselves from parameters, we
will show that if we multiply our state by an arbitrary
factor that is a global phase e, this will not have
consequences for the probabilities:

}e”a’z = ()" (e"a) = (e Va*)(e"a) = oo = |af?
2 (4)

And the same would happen with |87, So, if we
multiply our state |¥) by e~*®= in equation (3), we get

[0') = |a] [0) +|8] P2 =?)[1) = |a] [0) +|B] " [1) (5)

where we have called ¢ = ¢ — ¢. At this point, we
only have three parameters ||, |8], ¢ € R. And since our
quantum state is normalized, that is: (/| ¥/) = 1, we
can go further in our development, to express our state
according to the smaller amount possible of parameters.
Suppose we write 8 in Cartesian form: 8 = x + iy.
Substituting in equation (1), we have:

W) = lal[0) + (z +iy) [1) (6)

For the normalization condition: |a|® + |z +iy|> =
P+ +iy)" (@ + i) = |o*+(z — iy) (2 + iy) = o>+
22 4+ y? = 1. And this is the equation of a sphere of unit
radius with Cartesian coordinates (z,y, |al).

Recalling the relationship between the Cartesian and
spherical coordinates: x = rcospsind, y = rsinpsind,



Figure 3: Representation of the Bloch sphere, in which we can
represent any state |¥) as an oar of length unit that starts from
the origin of the sphere and whose blade is defined by the angles 6
and .

z = rcosf, if we make |a| = z and remember that the
sphere’s radius is one: r = 1:

|U’) = 2|0) + (z + iy) |1) = cosh |0) + sinb (cosp + isinp) |1)

= 080 |0) + sinfe'? |1) (7)

with which, suddenly, our state already depends only
on two parameters 6 and .

Suppose now a state |¥) = cosf’ |0) + sinf’e’? [1). We
if =0 = |¥)=|0)
if0 =7/2= |U)=¢¥|1)
that making 6’ to take the values 0 < 6 < /2, all
points on the Bloch sphere could be generated. Now,
let’s consider a state |¥’) opposite to |P), this means
that if |¥) has spherical coordinates (1,6, ¢), |¥/) will
have coordinates (1,7 — &', + 7), as can be seen:

see that which suggests

|B) = cos(m — 0')|0) + sin(m — ")+ |1) =

cost’ |0) — sind' e |1) = — | ) (8)
Therefore, it is only necessary to consider the upper
hemisphere of the sphere 0 < 6’ < 7/2, since the lower
hemisphere differs from the superior hemisphere by a
factor of phase —1. We can, therefore, make the change
0 =20" = ¢ = 6/2 and define 0 as an angle with possible
values 0 < 0 < 7. All in all, we finally come to:
[ = cosg |0) + singei“" (9)

with 0 < § < mand 0 < ¢ < 27. Thi is the
mathematical expression that allows expressing any state
in Bloch sphere. If we continue with our example of the
oar as a qubit represented in 1, the Bloch sphere could
be considered as the result of the infinite positions that
that the length of the oar 1 placed at its center can have.
In 3 we can see the representation of the Bloch sphere
and the Bloch vector as an oar representing our state|¥).
Simply by changing the angles 6 and ¢, we can get oars
in every conceivable positions. In 4 are shown those in

which the oar points in the direction of the x, y and
z coordinate axes. We will see in point V how we can
manipulate our oar in Bloch sphere, read it and apply
it in the explanation of some key concepts of quantum
physics.

[0.) = |0} 112y =11}

1
f=m/2 o=m2  p=m [)=(0h-)

e=n2 g=mp2 |0,)=%(|0>+r|1>: f=n2  p=n |1,,)=Vi,§qu)—i|1>:

Figure 4: Different states in the Bloch sphere, under each of them
it is indicated the angles 6 and ¢ that define them. a) States along
the z-axis. b) States along the z-axis. ¢) States along the y-axis.

IV. PRESKILL’S BOXES

Theoretical physicist John Prekill, a quantum computing
expert and professor at Caltech, likes to visualize a bit
as a ball that can be one of two colors, either red for
0 and green for 1. If the information is saved, that is,
if we keep a ball in a box, and we want to read that
information later, we only have to open the box and there
will be the result of its color. In the case of the classic
bits, the ball that comes out of the box will be the same
color as the ball that we put in. We believe that, if
the Bloch sphere is a good way to visualize a qubit, the
simile of Preskill’s boxes is very useful to understand
the measurement process, our ultimate goal will be to
mix both concepts to bring a new approach to quantum
physics. For Preskill, a quantum bit could be, as we
say, a box with a ball stored inside, but in this case,
we have two doors, door 1 and door 2, which are like
two orthogonal axes to each other. Our qubits will be



two-colored spheres. Writing a qubit in a Preskill’s box
consists of choosing one of the two doors and inserting
a red or green ball. Reading a qubit in a Preskill’s box
is to choose another door and take out the ball. That
is the process in which the observer intervenes and looks
at the ball and sees if it is red or green. In a classic bit,
if T put a ball of any color through any door and take
it out through any door, the ball always keeps the color,
but that is not true in a quantum bit. In a qubit, if the
door through which I put the ball and the door through
which I take out the ball are the same, nothing happens,
the ball maintains its color. But if I put the ball through
one door and take it out through another one, it’s like
flipping a coin, I have a 50% chance of it coming out of
one color or the other.

- ey

Figure 5: Preskill’s boxes. a) If I insert a vertical oar through a
vertical door and take it out through that door, the oar does not
change. b) If T open a horizontal door when introducing a vertical
oar, the oar changes its position with a certain probability.

Using our example of the oar, as we see in 5, if we
put an oar in the direction of the z-axis through door
1 and open that door, the oar will continue as we left
it. And this is because the door 1 is associated with the
way of measuring on the z-axis. So if the qubit has been
prepared on such an axis, we will see it as it is. But if
we put our oar in that state, we open the door 2, which
we can imagine associated with a measurement on the
z-axis, the state will have changed and the paddle will
now point in the direction of the z-axis, in one direction
or another with certain probability.

V. A NEW WAY OF TEACHING QUANTUM
PHYSICS

We have seen that a qubit is like an oar in Bloch sphere;
it was not by chance that this object was chosen to be
used in future developments. An oar resembles a vector,
has an origin, a length and an end that points and we
could place it in any position, besides it could travel as
information that moves. We should not, therefore, think
of our oar as something static, we can make operations
on it and manipulate it. The operations with qubits, are
equivalent to rotations of the state vector (of our oar) in
the Bloch sphere. Pauli’s matrices:

Jo=(o %)

(01 (0 i
2=\ 10 )T\ o
(10)

when they are exponentiated, they form rotation
vectors, that is, the oar rotates an angle a around the
axes. A rotation operator R, (a) is defined by an axis n
and a rotation angle o. The action of a rotation operator
on the quantum state is translated, in what refers to the
point associated with the state on the Bloch sphere; in a
rotation of the point with respect to the axis of rotation
in the angle of rotation. The rotation around any axis 7,
would be given by:

R, (o) = elonE/2 cos%]—isin%(nxow—l—nyoy—knzoz)

(11)
With successive rotations around the axes x, y and z
we can express manipulations of our oar and, therefore,
its evolution. Let’s see now what happens when we
want to read such a qubit. In quantum, depending
on how we measure, the result can be random, that
is, quantum mechanics can only provide statistical
predictions. A very visual way of understanding the
measurement process with Bloch sphere is to imagine
our oar dragged by a current trying to pass through an
opening made under a bridge, what it is equivalent to
have an observable ¢. In physics, an observable is all
property of the state of a system that can be determined
("observed") by some sequence of physical operations.

Figure 6: a) An oar travels in the direction of thez-axis, so an
observable o, will measure the oar as it travels. b) An oar is
traveling with a certain inclination with respect to an observable
oz, so there will be different possibilities for it to go under the
bridge in one direction or another.

If the traveling state is |0), that is, an oar in the Bloch
sphere oriented in the direction of the z-axis, and we
look at it vertically (that is, we make it pass through a
vertical opening under the bridge, which is equivalent to
an observable ¢), our measurement will correspond to
the qubit itself, that is, we will see a qubit in the state |0)
(6a)). The same will happen if, through said slot passes
a |1). However, if the original qubit is in a superpositon



state, it is not so clear how it will pass through the
slot. There will be a probability that it crosses it
vertically and another that it will cross it horizontally,
with such probabilities being greater the closer the state
of one of its superimposed states is (6b)). That is,
if the oar was in the state |¥) = cos?|0) + sin|1),
once we measure it (once it goes under the bridge)
, there will be a probability pg = cos2g that we
find it in the state |0) and a probability p; = sm2g
that we find it in the state |1). Now, if the slot
is horizontal and crosses the same state |¥), Since:

0= L0 +10) [ 10) = 25 (10.) +[1.)
L) =20y~ 1) 7 1) =5 (0) 1))

|T) = % (cos$ + sin) [0,) + % (cosg - smg) [1.);
the probability of finding it this time in the state |0, )will

be por = {\% (cosg + sing)r = % + cos%smg, while
the probability of finding it in the state |1,) will be
Piz = {% (cosg — sing)r = % — cosgsing.

In summary, writing a qubit is to choose an axis
in the Bloch sphere and make the vector on that axis
point in one direction or the opposite. After the various
operations that I can do on the qubit, later I will want
to read it. So we choose another axis, which can be the
same or different, and we project that vector onto it.
Such a projection has a probability that I get the vector
projected after the measurement in one direction or in
the other. Thus, to understand the measurement of the
state of a qubit, it is enough for a student to know the
concept of the orthogonal projection of a vector. Let’s
see below the potential of this point of view to bring
clarity to the key concepts of quantum physics.

VI. CONCEPTS AND APPLICATIONS

An important concept that can be explained by our
approach is the quantum-mechanical property called
spin, that is, the intrinsic angular momentum of a
particle.

Stern and Gerlach designed an experiment with silver
atoms in 1922 that led to this concept. They sent a
bundle of silver atoms through a non-uniform magnetic
field. If the atoms are small magnets, then they will
deviate to one side or to the other. The peculiarity of
the silver atom is that all its layers are closed, but a
single electron remains in the last layer. In the closed
layers, L = 0, so if it is discovered that there is angular
momentum, it will be due to the electron of the last
layer. What Stern and Gerlach expected from a classical
point of view, is that, since each silver atom of the beam
would have its own magnetic moment, when passing
through the magnetic field, they would find a whole
range of deviations. But they discovered that atoms
only deviated into two spots. It turns out that, no

matter how disordered the silver atoms were, when going
through the magnetic field they were ordered, either in
one area or in another. This was the experiment that
revealed spin And this is something that we can
explain with our qubit, our oar or our Bloch sphere 7.
When our qubit traverses a slot, which in the case of
the Stern and Gerlach experiment would be equivalent
to the magnetic field, it is forced to position itself in one
of two options, this would also provide an idea of what
spin is, although such an idea would not be exempt from
loss of interpretation, since there is no classical analogy
for spin; in fact, the spin is often mistakenly associated
with a rotation of the particles.

10>
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Figure 7: Stern-Gerlach experiment. The orientation of
the inhomogeneous magnetic field determines the direction of
measurement (opening under the bridge). The coupling of the spin
to the magnetic field leads to a discrete displacement of the oar,
corresponding to the two results of the measurement +1 (spin up)
or -1 (spin down).

Another concept, perhaps the one that students of
Baccalaureate know best, is the photoelectric effect.
Theorized by Albert Einstein in 1905, it explains
the relationship between the energy of the photons
that illuminate a metal, the work of extracting said
metal and the kinetic energy of the emitted electrons.
This quantum theory which could be expressed in the
following terms:

E=Wy+ Ey (12)
where E is the energy of the photons: F = hf = %;

Wo = hfo = f\’—g is the work function or extraction work,

characteristic of the illuminated metal and E;, = %mv2 =

qV is the kinetic energy of the electrons issued. No
matter how many photons are cast against a metal, if
they do not exceed the threshold frequency of the same
fo, there will be no photoelectric effect. Let’s place
our oar now in this context acting as a photon. And
suppose that the bridge is the metal that we are going to
illuminate. If our oar travels in a calm current, regardless
of the number of oars that go down and hit the bridge,



the stones or the wood that make up the bridge do not
have to be damaged and to shoot out of the structure
the make up; however, if the oars (the photons) have a
sufficiently large energy E due to a storm that causes the
flow of the river to grow and strike the bridge overcoming
its structural capacity Wy, then the stones (the electrons)
weakly linked to the bridge will escape with a maximum
kinetic energy Ej, which gives us the expression of the
photoelectric equation. We can see this effect illustrated
in 8.

Figure 8: Photoelectric effect. If the oars strike the bridge with
an energy E > Wy, the parts of the structure less bound to it will
be fired at a maximum kinetic energy Fj.

Let’s now apply this approach to the Heisenberg
uncertainty principle. As we know, this principle of
indeterminacy reveals a characteristic of nature at the
quantum level and that there are pairs of magnitudes
that are simply not simultaneously defined. If we try to
measure one of them we lose the knowledge of the other
and vice versa. Basically the principle says that it is not
possible to simultaneously determine the exact value of
the position z and the linear momentum p of a quantum
object; or that it is not possible to simultaneously
determine the measured value of the energy E of a
quantum object and the interval of time necessary to
effect the measurement. This is formulated as follows:

A,};-A])EEAE'-AL‘Zi
47 47

(13)

This is very complex to understand by the students.
Let’s see it with our qubit-oar. Suppose a state in which
our qubit is very close to the state |0). This means that
if T execute a measurement in z it is very likely that I
will end up obtaining [0). I mean, I'm pretty sure of
what’s going to happen. But if I measure it in 2 (which
would be equivalent to a bridge whose opening the oar
can only enter horizontally), the chances of obtaining |0,)
or |1,) are almost equal, so I have an almost complete

uncertainty of the result. The qubit, when it gains
definition in z, loses it indeterminately in x, we can see
this situation illustrated in 9.

Figure 9: Heisenberg uncertainty principle. If an oar is very close
to the state |0), there is a good chance that an observable o (first
bridge) will finish measuring |0). Now, if that state is measured
with an observable o, (second bridge), we have a lot of uncertainty
about whether I will get |02) or |1z).

Another very interesting application is quantum
cryptography and, in particular, the BB84 protocol.
Suppose an emitter, Alice, wants to communicate with
Bob by sending her oars down a river. Alice and Bob are
each on a bridge. It is decided that if the oars are sent
vertically (]) or forming 45° (/), that will be equivalent
to sending a 1. Now, if they are sent horizontally (—)
or forming —45°(\), it would be like sending a 0. To
send them in the position they want, Alice changes the
openings under the bridge. When Alice sends a polarized
oar to Bob, Bob does not know which polarizer (what
bridge opening) Alice has used, so he has to randomly
choose a + or other slot in the form of x to detect the
oar. If Alice sends Bob a vertical (1) or horizontal (0)
oar and Bob uses the 4+ opening, he will detect a 1
or a 0 respectively. Now, if Bob uses the opening X,
then the oar will be detected \ setminus or /, with a 50
probability in each case. What is clear is that Bob has to
use openings compatible with Alice’s message if he wants
to get the right message (the process can be seen in 10).
Once Bob has received enough oars, both sender and
receiver announce publicly through an insecure network,
such as the internet, the sequence of openings they used;
that is, when Bob used + and when he used x; what they
do not do is tell themselves the sequence of bits. Then
they discard the qubits in which they did not use the
same opening, and keep those in which they did coincide.
Since Bob randomly chooses one opening for each oar,
he will choose the wrong opening half the time, so they
will end up discarding half of the qubits and the new
random oar sequence will be half as long. This sequence



is what is called a sifted key. From this key, Alice and
Bob take a fraction of oars and compare them through a
public channel to see if they match. If so, then they have
achieved a secure quantum security key and know that no
one has intercepted their message, that is, there is no Eve
that has disturbed their signal. Then, the sifted key is
safe to use from now on for encryption and decryption.
Now, if there are discrepancies between Alice and Bob
it is possible that someone has heard (that someone
has built a bridge between them) or that the signal is
deficient so we will have to order new shipments of oars
until we confirm that their message is well safeguarded.

Figure 10: Quantum cryptography. An Alice transmitter sends
oars in different positions using openings under a bridge. The
receiver, Bob, will decode the message using openings under
another bridge. They will know if the information is correct by
telling the sequences of openings they used. If Eve intercepts
the message, it will modify the sequence expected by Bob and
he and Alice will have to start their communication again to make
it secure.

Students will find in these examples and in many
others, something fascinating that can be done with
quantum mechanics and learn the implications, even
political, that these new methods of communication and
computation can have.

VII. SUMMARY AND CONCLUSIONS

Quantum mechanics is something complicated, yes,
that’s why it is necessary to search for a "quantum
intuition" that permits the explanation of the
phenomena that surrounds it and its unpredictability.
To do this, we must study and reflect on the main
concepts surrounding quantum mechanics to develop a
new way of learning and subsequently understanding it.
Quantum physics undoubtedly arouses special curiosity
in students, so educational research must take steps in
the direction of promoting the learning of this valuable
discipline. In high school, there is almost no time

to explain Modern Physics, students memorize some
equations that sound like science fiction and then apply
them to solve problems that they learn more or less by
heart.

In this document we have seen how the qubit seen
from the perspective of the Bloch sphere or the Pregkill’s
box can be used to provide a more intuitive vision to
a completely contraintuitive (quantum) world. With
simple examples and graphics you can get students to
acquire a much more revealing conception of quantum
physics than just following a historical description of the
phenomena. This can help new generations of students
feel attached to this discipline, whose frequent obscurity
many times in the way of teaching it, makes them quickly
disengage from it. We hope that this approach will
inspire teachers and students and bring some light to the
many complicated mathematics and difficult concepts
that surround quantum mechanics.
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Bohm-Aharonov effect for a particle in a defective ring
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Aharonov and Bohm [1] suggested a long time ago an interference two-slit experiment where
a charged particle can go either way round a region where a magnetic field exists. Crucially the
particle is excluded from the region where the magnetic field is non-vanishing. It is found that
the fringe pattern depends on the magnetic flux enclosed by the possible particle trajectories. A
well-known variant of the Aharonov-Bohm effect involves a charged particle constrained to move in a
ring enclosing a magnetic field. The energy spectrum of the particle depends on the enclosed flux.
In the present paper a defective ring is considered, the defect being defined by a potential depending
on the azimuthal angle and the energy spectrum is studied as a function of the enclosed flux and of

the potential strength.

I. INTRODUCTION

In classical physics the motion of a charged particle in
an electromagnetic field is completely determined by New-
ton’s law and the Lorentz expression for the force which of
course vanishes at a point where the fields E and B vanish.
The electromagnetic vector and scalar potentials A and ¢
(see e. g. Chapter 10 of Griffiths [2] for a discussion) are
particularly convenient in deriving the invariance proper-
ties of the theory under Lorentz transformations (see e. g.
paragraph 24 of Landau and Lifshitz [3]). Radiation by
accelerating particles is beautifully described by retarded
electromagnetic potentials (see e. g. Chapter 8 of Landau
and Lifshitz [3] on Lienard-Wiechert potentials). At the
interface between classical and quantum physics we must
point at the adiabatic invariants for charges moving in
electromagnetic fields (Jackson [4], Chapter 12, paragraph
5).

The status of the electromagnetic potentials is rather
different when one incorporates electromagnetism in quan-
tum mechanics. The latter is based on the Hamiltonian
formalism and the Hamiltonian function features the ki-
netic energy term p?/(2m). From the word go this term is
modified to (p — gA/c)?/(2m) (the minimal substitution)
to describe the quantum mechanics of a non-relativistic
charged particle interacting with the electromagnetic field
(for an account of minimal substitution see e. g. Chapter
4 of Griffiths [5] or Chapter 15 of Bohm [6]). This has
been known since the 1920s. People at the time may
have thought that gauge invariance would reinstate the
electric and magnetic fields as somehow the real fields
and fall back to the classical view that it is the latter only,
and not the potentials, that have observable effects. To
paraphrase Feynman [7] the Aharonov-Bohm effect has
been waiting to be discovered for about thirty years.

The suggestion by Bohm and Aharonov [1] was to
modify the well-known two-slit interference experiment
by including a magnetic field as in Figure 1. The beam
consists of charged particles that can go either way round
the magnetic field. The field is confined in the cylindrical
region shown in the Figure and the charged particles are
forbidden to enter the field region. They point out that

interference
region

Source

Figure 1. The two-slit experiment of Aharonov and Bohm
(from Sakurai [8] p 17)

this can be achieved by erecting an impenetrable potential
barrier round the field. Hence all possible trajectories
(in the sense of a Feynman [7] path integral). Yet the
Bohm-Aharonov analysis shows that the pattern of the
interference fringes does depend on the enclosed magnetic
flux.

A well-known variant of the above situation consists of a
charged particle constrained to move in a ring as in Figure
2 surrounding a cylindrical region where a magnetic field
exists:

B=DBz r<a

B =0, M)

r>a.

Then the energy spectrum of the particle depends on the
enclosed magnetic flux; for details see Example 4.6 of
Griffiths [5].

Clearly the interference pattern disappears if one slit
in Figure 1 is shut. Similarly no dependence of the en-
ergy levels on the magnetic flux would be detected if an
impenetrable obstacle is located at some point on the
ring. In this paper we set out to do that in a controlled
fashion as follows. Rather than having the constrained
particle to move freely on the ring we dig a potential well
V that depends on the azimuthal angle ¢ as in Figure 3.
Clearly when the potential strength vanishes we go back
to perfect interference as in Griffiths.



Figure 2. Motion of a particle on a ring of radius b. A solenoid
of radius a runs perpendicular to the plane of the ring through
its center (from Zwiebach [9], Problem 5, Problem Set 5).

The Hamiltonian reads

H= % (}Zv - %A(x, t)> Fap(x,t) +V(x)  (2)

where m, g are the particle’s mass and charge respectively
and c is the speed of light.

II. CONSTRUCTION OF THE VECTOR
POTENTIAL

Given the cylindrical symmetry of the problem we write

the vector potential in cylindrical coordinates (see e. g.

Weisstein [10]) in the form
A=A1+A,0+A.2 (3)
Having introduced the vector potential we have to choose
a gauge. We choose the Coulomb gauge
V-A=0. (4)

Then (see p. 440 of Griffiths [2]) the scalar potential
obeys Poisson’s equation and in the absence of external
charges

¢ =0. (5)

The magnetic field created by a solenoid is given in p. 237
of Griffiths [2]. We define the magnetic flux through the
solenoid

® = Bra?, (6)
and then
[0)) A
A=_—ro.
5eaz’® (7)

That the above equations are consistent can be shown by
using the fundamental equation B = V x A and use the
expression of curl in cylindrical coordinates [10].

III. SCHRODINGER’S EQUATION FOR A
PARTICLE IN A RING

A. The Hamiltonian

il (ld q‘p)2+m<¢> )

T omb2 \idé 2mhe
The time-independent Schrodinger’s equation reads
Hy =By (9)

We substitute equation (8) in (9), expand the square in the
former, recall expression ®y = 27hc/q for the elementary
flux quantum and define

o

"%,

(10)

to obtain (from now on derivatives with respect to ¢ are
denoted by primes)

2V mb? 2Emb?
W - 2By — = w+( o —/32)1»:0, (1)

where the angle ¢ varies in the range [—m,7]. We define
dimensionless quantities

_ 2mb?

2mb?
£= = =

E7 ’U(¢) - hg

V(9), (12)
to rewrite (11) in the form

" = 2ipY — (@) + (e = %)Y =0.  (13)

The wavefunction must also satisfy the periodic boundary
condition

P(=m) = p(m). (14)

For simplicity we take the potential to be of finite range,
have angular width 2« and be symmetric about ¢ = 0
(see Figure 3).
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Figure 3. The potential Vp(¢) on the ring is characterized by
an angular width a.



B. Relaxation of the Boundary Condition and
Connection with the case of an Electron in a
one-dimensional Lattice

We can certainly attack the problem defined by eqns
(13) and (14) directly by writing % as a superposition of
exponential wavefunctions inside and outside the potential
and apply matching conditions at +m and +«/2. This
procedure is straightforward but rather tedious. So we
decide to temporarily abandon boundary condition (14)
and consider the particle in a periodic potential as in
Figure 4. Then, for 8 = 0, the Schrodinger equation (11)

Figure 4. The potential with period 27

is familiar from the problem of an electron in a periodic
lattice and for a square potential it defines the Kronig-
Penney model (see pages 146-149 of Ashcroft and Mermin
[11]). The presence of 8 makes of course a difference.

Bloch’s theorem provides an important tool in the con-
struction of the wavefunction in a periodic potential. A
general discussion is given in the book by Ashcroft and
Mermin. For our purposes the short, mathematical treat-
ment of the one-dimensional case in Problem 28 of Fluegge
[12] based on Floquet’s theorem suffices for our purposes
(the theorem deals with a general second order linear
differential equation and does cover the case of a first-
derivative term as in (13)). According to the theorem the
solution of (13) is of the form

P(¢) = e u(e),

where k is a wavevector to be determined and w is any
periodic solution of (13):

(15)

u() = u( + 2m). (16)
Then from the above two equations
»(¢ + 27) = €FT (). (17)
Clearly for the derivatives
V(¢ + 2m) = Y (). (18)

C. Solution of the Schrodinger Equation

Differential equation (13) features a first derivative and
the standard technique to get rid of it (see p. 159 of

Simmons [13]) is to introduce a new unknown function w
by
u(¢) = 7Pw(9). (19)
Then
u = iBePPw + Pl (20)
U = —B2ePPw + Pu" + 2iBeP .

We substitute the above in (13) to deduce the differential
equation obeyed by w

w” — Xvg(¢)w + ew = 0. (21)

This is the standard equation of a particle in a potential.
For positive energy we define the (real) wavevector

p=+e (22)

and denote by wr,,wgr the usual waves incident from left
and right respectively. Let R,T be the usual reflection
and transmission coefficient of the potential Avg. Then in
accordance with (19) we can construct ur, ugr (see Figure
4):

Uy, = ei(5+p)¢ + Rei(ﬂ*PM” —r < ¢ < —OZ/Q,

(23)
T+a/2<¢<m,

— Tei(ﬁ+z7)<i>7
up = eiB=P)¢ Rei(ﬂ+p)¢>’ THa/2< <,
=TeB P << —a/2.

We also quote the first derivatives of the above that will
be needed below:

up = (8 +p)e" " +i(B - p)Re' TP,

(25)

uhy = i(8 — p)e'PP? 1 (3 + p)Re!PHP?,
=i(B— p)Tei(ﬁfp)dJ’
(26)

The solution u that enters (15) is a linear combination
of ur,ur. Thus (15) reads

Y = e (Aur, + Bug), (27)

where the coefficients A, B are to be determined. We
apply properties (17), (18) to the wavefunction (27) and

obtain

Aur(m) + Bug(m) = eik%[AuL(—w) + Bug(—m)],
/ / ik2m / / (28)
Aulp (m) + Bup(m) =€ [Auf (—7) + Bup(—m)].

We rearrange the above
Afur(m) — €™y (—n)] = Ble**™ ugr(—m) — ugr(r)],

Afuf (m) — el (—m)] = Ble™* ulp (—7) — ().

—T< < —af2,
T+a/2<¢<m,

T+a/2<¢<m,
—T < P < —af2



The set of equations (29) is a homogeneous linear systems
for the unknowns A, B. Consistency requires

107) = 2y ([l () i)
= [uf (m) — ™l (—m)][e™*Tug (~7) — up(m)].
We substitute equations (23) to (26) in the above and

multiply both sides by e~*2*7 to deduce
MK + Ky + e Ky = 0, (31)

where the constants K; turn out to be

K = K3 = 2ipe 207 T,

; ; 32
Ky = 2ip ((R2 — T2)612Pﬂ _ 6—12])77) ) ( )
We use the above in (31) to deduce
—i2pm R2 o T2 ]
cos2m(k — ) = € _ o120 (33)

2T 2T

It is known (see Barton [14]) that the reflection and
transmission coefficients of a symmetric one-dimensional
potential are parametrized by two angles A and 6 that
are functions of energy

T = cosfe’™, R =isinfe®, (34)
where A is the familiar phase shift. Then the two prop-
erties |T)?> + |R|> = 1 (the unitarity condition) and
RT* 4+ R*T = 0, that can be proved by considering ap-
propriate Wronskians, are satisfied. Substituting (34) in
(33) we obtain

cos(2pm + A)

cos2m(k — B) = p—"7

(35)

It is also shown in the previous reference that —m/2 <
0 < 7/2 and then from the first of (34)

|T| = cosb. (36)

Hence equation (35) is equivalent to (8.76) of Ashcroft
and Mermin [11].
For negative energy states we define

p=lel (37)
and define solutions that behave outside the well as follows

g = eP? + e, —m < < —a)2,

. 38
=ce P, a/2<p<m, (38)

p = e P? 4 ceP?, /2 < p <,

. 39
=cef? -1 < ¢ < —a/2, (39)

where the ¢; coefficients in eqns (38, 39) are identical to
the symmetry of then well. In accordance with (19) we
define

ﬁL,R = 6i’8¢wL,R. (40)

Then equs (27) to (31) read the same provided we use

hats over the relevant quantities. The quantities K; turn
out to be

Ky = —2¢icope™ 2™,
Ko =2p (e ck + e~ c — e7207) (41)
2B

IA(3 = —2c1cope

We substitute the above in the hatted analog of (31) to
obtain the equation that determines the spectrum of the
negative energy states:

—2pm —2pm 1
e C1 e (42)

C1C2

e2p7r Co

cos2m(k — ) = 5 C1+ 3 o 5

D. Reinstatement of the Boundary Condition and
Calculation of the Energy Spectrum

In the previous two Subsections we solved the mathe-
matical problem of a charge moving in infinite ¢ space
in a periodic potential of period 27w. We now return to
reality and require that after a full circle the wavefunction
returns to its original value (eqn (14)). Then eqn (17)

gives
k=mn, n:integer, (43)
and equs (35), (42 become
2 A
cos2r(n— ) = 7%8( pr + )7 (44)
T
62;071' 672 €—2p7r c1 e—2p7r 1

cos2m(n — B) = 5 o + R 5 (45)
A given enclosed flux ® determines 8 through (10) and
a given potential determines the transmission amplitude
T(p) and the phase shift A(p). Then (44) determines the
acceptable values of p given n and hence the spectrum
through (22). One conclusion from the above equation is
that the spectrum is unchanged when 8 — 8+ 1 similarly
to the case of a vanishing potential.

The main features of the model are sufficiently well
illustrated by the choice of a square well (Figure 5). The
transmission amplitude in this case is determined in e. g.
paragraph 11.7 of Bohm [6]

467@1704
L+ B+ pemior + (1= B)(1 = p)eier’’
(46)

T =

where p’ is the wavevector inside the well
p=vVA+e. (47)
The quantities ¢; are calculated by continuity of either w

(eqns (38), (39)) at ¢ = «/2:

A~

2pp
(p2 + p'?)sinp'a’
2pp’ cos pla + (p* — p'?)? sinp'ax

(77 + ) sinpla

(48)

Cy = e P
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Figure 5. The square well of Subsection III.D

where p' = /X — |¢].

We first look at the negative energy states and plot
in Figure 6 the right hand side of (45) as a function of
le] and the horizontal line y = cos 278 for the relatively
small strength A\ = 1, and repeat this in 7 for A = 120.

Figure 6. The green and blue curves respectively stand for
y = cos 237, B = 0.2 and the right hand side of eqn (45) for a
potential with A = 1.0.

Clearly in Figure 6 the intersection of the blue curve with
the green line varies as 3 varies. On the other the hand
for deep-lying bound states (|e| large) the exponentially
large factor e*™ causes the right hand side of eqn (45)
to oscillate wildly and as a result the blue curve in 7 is
essentially vertical. Hence in that regime the spectrum
is independent of 8. This vindicates the assertion in
question (f), Problem 5 of Problem Set 5 of Zwiebach’s
[9] notes.

We turn to positive-energy states. In the absence of a
potential eqn (44) gives

cos 2w (n — B) = cos 2pm, (49)

20 40 60 80 100 {120

-0.51

Figure 7. Same as Figure 6 for A = 120.0.

where n is an integer and p by definition positive. Then
the above equation gives

€= (n_B)Zu

in accordance with Griffiths [5]. To apply eqn (44) we
need (apart from |T'| which is immediately calculable from
(46) the phase shift A given by argT (see the first of (34)
and (36)). To choose the correct branch of the arg we
use Levinson’s theorem that determines the behaviour
of the phase shift as p — 0 through A(0) = (n, — 1/2)7.
For the values § = 0.2, A = 1.0 and A = 120.0 examined
previously the potential supports one and five bound
states respectively (note that by bound states we refer to
one well in unlimited ¢ space and that this is not directly
related to the spectrum in the present). In Figures 8
to 11 the phase shift and the modulus of the transition
amplitude are plotted as functions of p for the above
A values. In Figure 12 we estimate graphically the
positive energy spectrum for A = 1. Two conclusions are
drawn. If we compare with the case of zero potential
the state marked with a cross in Figure 12 is lost. This
state corresponds to the state that appeared in Figure
6 as negative energy states, hence the total number of
states is conserved as expected. We also observe that as p
grows larger the spectrum is unaffected by the potential.
The case A = 120.0 is more intriguing. Clearly the first
conclusion drawn from Figure 12 still holds: For large
eigenvalues the percentage change E/E in the absence
and presence of the potential is negligible for a given
B value and as mentioned previously the spectrum is
periodic in 8. One question that remains has to do with
variation of \ for a given : Patiently counting the number
of eigenstates up to, say, p = 20 in Figure 13 we note that
the number of positive-energy eigenstates in the absence
of the potential exceeds the number in the presence of the

n=0,%1,+2,.. , (50)
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Figure 8. The phase shift as function of p for A = 1.0
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Figure 9. The modulus |T'| of the transmission amplitude as
function of p for A = 1.0

potential by three whereas, according to Figure 7 there
are four negative energy eigenstates. To check that the
number of eigenstates is conserved one would have to
look at the asymptotic distribution of eigenstates in the
presence of the potential. I understand that this problem
has been solved in its generality but there was no time to
apply these results to the present problem.

IV. DISCUSSION

We considered the presence of a defect along the path of
charge ¢ in the interference experiment of Figure 2. The
Bohm-Aharonov effect predicts that the energy spectrum
is sensitive to the enclosed magnetic flux and that this is

Figure 10. The phase shift A(p) for A = 120.0
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Figure 11. The modulus |T| of the transition amplitude for
A =120.0

due to interference between waves going to the left and
right of the enclosed magnetic field. Our findings confirm
the expectation that the energy spectrum of states lying
deep inside the defect are insensitive to the enclosed flux
since no interference is there. On the other hand high
energy states are impervious of the presence of the well,
perfect interference takes place, and the Bohm-Aharonov
spectrum is recovered.
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Case Study of the Momentum Operator

Rohan Kulkarni

Term paper for MIT 8.06z :

I. INTRODUCTION

In this review paper, I focus mainly on how to see
if one can construct a specific operator for a given do-
main. This is a lost art as many books take the existence
of meaningful physical operators on a Hilbert space for
granted. If T had to categorize this paper it would go
under Mathematical quantum mechanics. The modern
mathematical toolkit explaining quantum mechanics is
Functional analysis. Therefore before starting to read
this paper, I would request the reader to familiarize them-
selves with the most important basic facts of Functional
analysis needed for Quantum mechanics. One can read
this in [ ] or even better | | (This
is a link of some lecture notes I have uploaded online,
they are password protected as they are not mine and
I don’t want to publicly post some notes that don’t be-
long to me. The password can be found along with the
link in the bibliography). The paper could be somewhat
difficult to read for someone who is not familiar with ba-
sics of Functional analysis. If you feel this please leave a
comment on the abstract post so we can take this matter
to Prof. Bloomfield

II. OPERATORS

Hilbert spaces are what coordinate systems or phase
space are to classical mechanics. In order to construct an
entire physical system we needs the concept of function
or observable.

Definition II.1 (Operator). Let A and B be two
normed spaces. An operator 7 is a linear map T :
A— B.

Remark 11.1. In most of the linear algebra courses it is
assumed that the concept of continuity is well-defined.
This is true in the case when A is assumed to be finite
dimensional. The reason for this is that all norm’s are
equivalent in finite dimensional vector spaces. This is
not true in infinite dimensional vector spaces.. In order
to understand the concept of continuity in infinite dimen-
sional vector spaces like L? (RN ) which is one of the most
fundamental Hilbert space in Quantum mechanics. We
need to understand the idea of a bounded operator before
we talk about continuity.

Definition I1.2 (Bounded Operator). Let (V,|.|,,)
be a normed space and (W, ||.||;;,) be a Banach space. A
linear operator A : V. — W is called bounded if V f €

Applications of Quantum Mechanics

VA{0},

A
sup 147l < 00 (IL.1)
rev Ifllv
another definition is,
If3C eRwithVae e H
Az, < Cl|,, (IL.2)

Lemma I1.1. An operator T : A — B is called contin-
uous iff it is bounded.

Definition I1.3. We denote H’ to be the set of continu-
ous operators from H — C. Also, we denote B (H) to be
the set of continuous operators from H — H. Basically
amap 7 € H' is a continuous bounded map T : H — C.
Also, a map A € B(H) is a continuous bounded map
A:H— H.

Definition I1.4 (Unbounded operator). An operator
which is not bounded is an unbounded operator.

The most frequently used in physics is the L? (]R3)
which is the space of square-integrable functions. The
most important operators up-to a multiplicative constant
are

1. The position operator

&:L* (R*) — L* (R?) (I1.3)
p > oy (IL.4)

2. The momentum operator

p:L?(R*) - L? (R?) (IL5)

pY — %W (11.6)

These operators are not well defined on the entire Hilbert
space and even on the subspace where they are well de-
fined, they are not bounded. As this paper focuses on
the study of the momentum operator. The momentum
operator is just the derivative operator with some finite
multiplicative constant (we have an imaginary number
so the concept of finite seems vague, what we mean is
that the real and imaginary part of it is finite). The fi-
nite multiplicative constant will not matter if we have an
unbounded operator. One can easily using basic analy-
sis techniques prove that the derivative operator D is an
unbounded operator. We know from basic real analysis
that D is a linear operator.



Consider the following the derivative operator defined
abstractly in the following way :

D:CL[0,1] — C2[0,1]
fef

We will now show that this operator is indeed un-
bounded. The momentum operator is defined on a subset
of C¢ with additional structure. If we prove that this op-
erator is unbounded on such a big space, then we can
later use this result claiming that the momentum opera-
tor is unbounded.

(IL.7)

Proposition I1.1. The operator D defined in (11.7) is
unbounded.

Proof. Can be found in literature | ) ]. Not
extremely necessary right now. O

III. SELF ADJOINT AND ESSENTIALLY
SELF-ADJOINT OPERATORS

Definition II1.1 (Densely defined linear operator).
A linear map or operator T : Dy — H is said to be
densely defined if Dy is a dense set in H, i.e.

Ve>0:VyeH :FpeDr:|le—9¢||<e (IIL1)
Remark II1.1. Equivalently we can say, if D7 = H then
we have a densely defined operator. Essentially, Vi €
H:I{vn}neny € D7 {pn} —nooo ¥

Definition II1.2 (Adjoint operator). Let T
D1+ — H be a densely defined operator on H. The ad-
joint of 7 is the operator 7* : Dy« — H defined by T
if

Dr- :={¢Y € HI3n € H : Vo € Dr: (¢ |Te) =
(n| )} and T*¢ :=n is true.

Let us use the definition above to prove a trivial prop-
erty of the adjoint.

Proposition ITI.1. The adjoint operator T* : Dy« — H
1s well defined.

Proof. Let v € ‘H and let n,7 € H be such that

Yo € Dr
(W | Te) =nle)and (| Te) = (| ¢)
Then Vo € D,
m=nle)=mle) =
=W |Te) =@ |Tye) =0 (IIL.2)
@)=l

n=1n (I11.3)
In the last step we use positive-definiteness. O

Definition II1.3 (Kernel and Range of a Linear
operator). The definitions of kernel and range are the
same that one knows from their elementary linear algebra
course.

o ker (7)) := {p € Dr|T¢ =0}

o ran (T) := {Toolp € D7}

The range is also known as the image and im (7) is an
alternative notation.

Definition II1.4 (Invertible operator). An operator

T is called invertible if,

Jan operator : Osuch that 7o O =idyOoT =idp,
An operator is invertible iff

1. ker (T) = {0}

2. ran (T)=H
Proposition II1.2. Let T be a densely defined operator.
Then ker (T*) = ran (T)".
Proof. Let ¢ € ker (T*) <= Ty =0, then

VoeDr: (| Te) = (T | ¢) =0= 1 cran(T)"

O

Definition IIL.5 (Extension of an operator). Let
T and T be operators defined in the following way
T: DT —H

(IT1.4)
(I1L5)

We say that T is an extension of T ie. T C T if
L. Dr C D=
2.VoeDr=To=Typ

Proposition IIL.3. Let 7',7~' be densely defined opera-
tors. If T C T then T* C T

Proof. Let ¢ € Dz, . Then 3n € H such that V3 € D :
<1/)|7~'B> = (n|B) where n = T*%

In the above line we just redefined what we know. Now
we will use some more facts to prove our proposition.

Particularly, as T C T we have D7 C D7 and then
Va e Dr €Dz (UTa) = (@lTa) = (yla) (L)

Therefore 1) € Dy and hence Dz, C D~ O



A. Adjoint of a Symmetric operator

Definition II1.6 (Symmetric operator). A densely
defined operator T : Dy — H is called symmetric if

Va,B8 € Dr = (a|TH)

Remark 111.2. Let us address the big elephant in the
mathematical notions related to quantum mechanics.
What are these so called Hermitian operators and what
do they have to do with symmetric or self-adjointness? In
a lot of Physics literature, these symmetric operators are
referred to as Hermitian operators. However, many times
the notion of Hermitian is associated with the notion of
self-adjointness. Statements like Observables in quantum
mechanics correspond to Hermitian operators are incor-
rect as Hermitian corresponds to symmetric operators
and not self-adjointness. On the other hand, if one de-
cides to use Hermitian as a synonym of self-adjoint, then
it is not true that all symmetric operators are Hermitian.
We can avoid this confusion by completely erasing the
word Hermitian and instead just using symmetric and
self-adjoint operator.

Lemma IIL.1. If T is symmetric, then T C T*.

Proof. Let ¢ € Dy and let n = T1. Then by symmetry
we have

Va €Dy : (|Ta) = (Tyla) = (na)

This means ¥ € Dy«. Hence, Dy C Dy~ and T*¢Y =n =
T. O

Definition II1.7 (Self adjoint operator). A densely
defined operator T : Dy — H is called self-adjoint if
T = T*. We are comparing operators, so this means the
following must be true if the equality must hold

1. Dy = Dy

2.VpeDyr :To=T*p

Corollary III.1. A self-adjoint operator is maximal
with respect to the self-adjoint extension.

Proof. Let ’7‘,7~’ be self-adjoint operators and suppose
T C T. Then we have

TCT=T"CT"=T
and hence T = T. O

Remark 111.3. As a fact, self-adjoint operators are max-
imal even with respect to symmetric extension. The dif-

ference will be T~ - T* instead of T - T*.

B. Closability, closure, closedness of an operator

Definition III.8 (Closable operator).
A densely defined operator T is called closeable if it’s
adjoint T* is also densely defined

Definition II1.9 (Closure of an operator).
The closure of a closable operator T is

T=T"=(T")
where the over-line denotes closure.

Definition II1.10 (Closed operator).
An operator T is called closed if

T=T

Proposition I11.4. A symmetric operator is necessarily
closable.

Proof. Let T be a symmetric operator. Then, T C T*
and Dy C Dy-. Symmetric operators by definition are
densely defined. Hence

H=Dr CDr-CH

which concludes the fact that the adjoint of a symmet-
ric operator is also densely defined. Hence, 7T is closable
if it is symmetric. O

C. Essentially Self Adjoint operators

Definition II1.11 (Essentially self-adjoint opera-
tor). A symmetric operator T is called essentially
self-adjoint if T is self-adjoint.

Remark 111.4. The condition for essentially-self adjoint-
ness is a weaker condition than self-adjointness i.e if an
operator is self-adjoint it is implied that it is also essen-
tially self adjoint. The other way is not true in general.

Proof. T =T+ = T* = T = T = o0 o T
T -
Theorem III.1. If T is essentially self-adjoint, then

there exists a unique self-adjoint extension of T, namely

T.

Proof. This theorem is the essence of essentially self-
adjoint operators. So we will go through the proof
here, O

1. T is symmetric = 7 is closable = T exists

2. T CT = T* is known. Hence, T is an extension

of T.

3. The only thing that remains to be shown is that T~
is the unique self-adjoint extension.



IV. CASE STUDY OF THE MOMENTUM
OPERATOR

In this section we will exclusively talk about the mo-
mentum operator in quantum mechanics in the language
we built in the previous sections. Let us define the mo-
mentum operator precisely.

Definition IV.1 (Momentum operator). The mo-
mentum operator on the j’th coordinate (in the operator
language described above) is defined as follows

P;: Dp — L* (R) (IV.1)
Y —ihdjp (IV.2)
e (IV.3)

We will use the last equation from above indefinite
times. We use h = 1.

Remark IV.1. This is one of the most commonly found
definition of the momentum operator in quantum me-
chanics. In the previous sections whenever we are talk-
ing about operators which are self-adjoint or have some
other property, we have assumed them to be densely de-
fined. If an operator needs to be explicitly defined, along
with the map we also need to define it’s domain. This is
something that is always exclusively skipped in most of
the quantum mechanics texts.

A. Absolutely continuous functions and Sobolev
spaces

In some of the calculations in this section we will be
needing a few more definitions. Let us take a moment to
define them before proceeding. More precisely we will be
needing the following relation between Continuous func-
tions C, absolutely continuous functions AC and Sobolev
spaces F1

! ([a,b]) € " ([a,b]) € AC ([a,b]) (Iv.4)
Definition IV.2 (Absolutely continuous spaces
(AC)). Let us define a function ¢ : [a,b] — C. ¥ is
absolutely continuous i.e. ¥ € AC if Ip € [a,b] — C
integrable (Lebesgue integrable) such that

where p is the derivative of ¢ almost everywhere (a.e),
ie p=act.

AC ([a,b]) = {¥ € L* (R) | ¢ is absolutely continuous}
(IV.5)

Definition IV.3 (Sobolev space). The Sobolev space
is defined by the following set

A ([a,b]) = {¢p € AC ([a,0]) | ¥’ € L*(R)}  (IV.6)

Momentum operator on a Compact interval v/s on a
Circle

In this section we will try defining our momentum op-
erator precisely on a compact interval and on a circle. We
do this so we can analyze the properties of this operator
by looking at spaces that are one dimensional but not R
itself. In both the cases we will define our Hilbert space
to be H = L? ([0, 27]).

Let us try to define reasonable domains for the mo-
mentum operators on both these intervals by eyeballing
the situation:

e On a compact interval

Dp={¥eC ((0,22]) [ ¢ (0) =0=¢(2m)} (IV.7)

-1 l 1

Figure IV.1. Compact interval from x = —1 to x = 1

e On a circle

Dp={vec' ([0.2n]) | (0)=v(2n)}  (IV.8)

Y

N
NI

Figure IV.2. Unit circle

These look like reasonable guesses but we need to actually
check if the P; defined on these domains are self-adjoint
or not (It turns out that neither of them are self-adjoint).
This is the main goal of this review paper - understanding
the procedure of formulating a momentum operator on
some Hilbert space.

B. Momentum operator on a Compact interval

We consider the interval Z = [0, 2] with the operator
defined as follows (we will take h = 1 i.e. use Planck
units for convenience). Let us rewrite the momentum



operator
P;: Dp — L*([0,27]) (IV.9)
P —ig) (IV.10)
r_ o
P = oz, (IV.11)

The main goal of this part is to check if 75]- defined as
above is self adjoint with respect to our domain Z. Let
us do this one step at a time and formulate an algorithm
to do this eventually :

1. Step I : Is P; symmetric?

We need to check if our operator is symmetric because
it is a necessary condition for self-adjointness. We check
if the operator is self-adjoint by checking if, V1, ¢ € Dp

(vPie) = (Pivle) (Iv.12)

Let us explicitly compute this to check. We will be
using integration by parts ([ udv = uv — [vdu) which
is a common technique for such computations.

27 27

—1 ; dzj i (z;) ¢ (x5) =

T ) p )
=i [T )

0
27

= il(¥ (@))p (@)

0

27
- / dz; @' () % (@)
(IV.13)

We need to be careful with the boundary term. We
know that 1, ¢ € Dp and hence ¥ (0) = ¢ (0) = ¢ (27) =
¢ (2m) = 0. Using this in the above condition we get the
following

(IPsp) =0 - z‘/:ﬂ ¢ ()0 (a;) da

= (Psule) (IV.14)

Hence, proving that ’P} is symmetric indeed.

2. Step II : Is 75]- self adjoint?

To check this, we need to calculate the adjoint of 75j
and see if it coincides with the original operator. As
we recall, when we are comparing the equality between
two operators we need to make sure that their domains
match along with their actions on the elements of these
domains.

Let us start with something that we know - P; is sym-
metric and by using lemma(IIl.1), we can say

’ﬁj - 75]* — 75]* is an extension of 75j
Let ¢ € Dp~ then we have to show that
Ine X (R): Vo e Dp: ([Pig) = Grlp)  (IV.15)

The above condition is equivalent to showing

| anT@i e @)= [ dsate )
0 0
(IV.16)

With a loose argument we can always find a function
N : [a,b] — C such that n =, N’. Using this we will
rewrite the above equation as

27 27
/0 da; T(@)) (=) @' () = / n@e (=)

_ / 7 4, N0 ()

[ 4 FE@ e @) =~ [ F@ @

+ [N @e (@)

0

2
[ [T i )+ @ (w)] =0
0

(IV.17)

<[ (¢ @) W)~ i ) day =0
(IV.18)

(6 ) — N ()l (23)) = 0
(IV.19)

From this last statement we can conclude that v (z;) —

iN (z;) € {¢'|¢ € Dp}™ where L means the orthogonal
complement.
We can make two observations at this point :

1.
[¢' (@) | ¢ € Dp} = {f e @ | [ € de; = 0}
0

Proof. We will prove equality of the sets by proving
LHS C RHS and LHS D RHS simultaneously :

(S)
Let ¢' € {¢' (z;) | ¢ € Dp}. Let ¢’ =,

2m 2
/ Edr; = / ¢’ dx;
0 0

Sy () € {e )| [ ew)an - o}

[’ (2)Ile™ =0



(2)
Let & € {§ cC'(7) | fo%g(:z:j)dzj = 0}. This implies

@5(%‘):/0 E(y)dy = e €C

= ¢ (0) = 0= ¢ (27)
= e €{¢' () | ¢ € Dp}

Together with (C) and (2) we can conclude the proof.
O

2. ¢ (z)|p(z;) € Dp} = {1}l where 1 is the con-
stant function.

Proof. We can write

2m
§(x)de =0=(1/¢) =0
0

Using this and the proof from above we can effectively
say

{ge™@ (e =0f = 1}*

We can now proceed the following way

Y —iN € {¢ (z)) | ¢ € Dp}" = {¢' (x;) | p € Dp} "

= (@)1 pePolt) " = (¢ @ 1o e D) ™)

ST TeeDal = (1Y) =
= {1} ={C:fa,b) > C
| x — Constant}
Hence we say 9 (z;) — iN (x;) = Constant =1 (z;) =

Constant +iN (z;) and we use the fact that N (z;) € AC
to say

Y (z5) € AC
Thus, 1 € Dpx = 9 (l‘]) e AC (I) = Dp« C AC (I)
What we need is PA;‘ :Dp« — L? (R) which requires
—iy)’ (z;) € L* (R)
v (z;) € A7 (T)
= Dp. C ' (T)
So, as expected we get
P; CP;
= Dp C Dp=

”PAj was defined on C! with boundary conditions and
75;‘ was defined on 7!

= P; ¢ A;—‘

6

Hence, 75j is not self adjoint. This problem can goes
further ahead and can be dealt with the notion of Essen-
tially self adjointness.

So, we showed that P; is not self-adjoint. It could be
essentially self-adjoint? We recall that essentially self-
adjoint means the closure (double adjoint) of P; is self-
adjoint. If we could prove this then it works in our favor,
Why? Because we have theorem saying, If the closure
is self-adjoint, then the closure is the unique self-adjoint
extension. In this case, we just take the closure instead
of the original operator and we will have a self-adjoint
operator.

3. Step III: Calculate the closure 73’;’7* of P;

We know that 75j is symmetric and from one of the
Pj € P;* € P;. We also
know from previous section that ’P;’-‘* is also symmetric.

Let ¢ € Dpe- then V ¢ € Dp- <¢|75jgp> _
(Prole).

Now we use a standard trick from the book using the fact
: P;* C P;j which means Dp+« C Dp+ and P;*¢ = Piy.
The above two lines give us the equality

theorem we proved earlier :

(6lPie) = (Pivle) = (Prule)  (IV.20)

Thus, Vi € Dp«+ and V¢ € Dp- we have

2

W () (1) ¢’ (z) da

<w|75;s0> =

(Psole) =/0

The left hand side of both the equations are the same
and hence we get

(=i)¢’ (x)p (x) dz

2m 2m

5 (@) (—i) ¢ (@) do = i

¥ (x)p (z) dx

0= (2m)p (27) — ¢ (0) (0)

We know nothing about ¢ at the endpoints 0 and 27 as
¢ € A1 (I) (Sobolev space). Hence, 9 (2m) = 1 (0) = 0
in order to satisfy the equation above. This condition
precisely means that ¢ € Dp««. This gives is

€ {0 € Dp-|tp(2m) =0 =1 (0)}
= {0 e (D]y(2r)=0=1(0)}

Hence, we can conclude that

Dpwx = {0 € 2" (I)|3 (2m) = 0= (0)}




At this point if one summarizes the definitions of the
operators Pj, Py, P;* (don’t forget their domain) one will
believe that 75j is neither self-adjoint nor essentially self-
adjoint. This in particular is not good as this means one
cannot compute a meaningful momentum operator on an
interval. This problem is solved by calculating the defect
indices of the operators and is beyond the scope of this
paper. In the next example, this problem does not arise
and a much more meaningful result is concluded quite
early.

C. Momentum operator on a Circle

Let us begin by first stating our operator and domain
like always.

P;: Dp — L*(I)
e ()Y
Dp ={y € C'y (0) = (271)}

We can note that (7%) C (753) as (2m) =
Interval Circle

0 = ¢ (0) is a stronger condition than ¢ (2m) = 1 (0).

Hence we say momentum on the circle is an extension

of the momentum operator on a interval. In this section

whenever we write 75j without specifying whether it is on

the circle or interval, we will assume that it is (7%) Cirele”
ircle

Same applies to similar notations like 75]* , Dp etc.

1. StepI:1Is 753- symmetric?

We won’t go through the calculations again. Using the
algorithm from momentum on an interval one can effec-
tively check that this is true. One of the major differences
being that [wcp]gﬂ = 0 because of different boundary con-
ditions.

2. Step II : Calculate the adjoint 75;‘

h

Interval

We will use the fact (7%) - (,PAj)Circle. As

is symmetric we can conclude P; C 73; and (’PJ* )
Circle

(75*) . Using these two facts we can write the fol-
Interval

N

J
lowing

(DP*)Circle - (DP*)Interval = ‘%1 (I) (IV21)

Hence, we already know that Dp+ lies in the 5 space.
We proceed like we did in the previous example.

Let ¢ € Dp- = V¢ € Dp : <w|75j<p> = <7§;‘w|¢>'

We already know that (PA*

j> is an extension of
Interval

7

the (75*) operator. Hence, we can replace PAW)
I/ Circle J

o

v A;f 1 as we already know the properties of
Interval

(%)
7'/ Interval

/ "G @) (i) () = / dx (=) T @) (z)
0

0=i [Ww (20)}:r

We do not know anything about the boundaries for
¢ (x) or ¢ (). Let us expand the above equation and see
if we can reach somewhere

i (0)[¥(2m) — ¥ (0)] =0
= ¢ (2m) =9 (0)
Which gives is the domain,

Dp. = {4 € A" (D 2m) =0 (0)}  (IV.22)

So now we see that the Dp~ for 75;‘ on a circle is not just

1 but ' with some boundary condition. As we see,
every case is unique enough to work out this everytime.
So our intermediate result for the operator is

Py { (Dl (2m) = ¥ (0) - L (D)}
b (—i) o

3. Step III : Is ﬁj self adjoint?

Let us recall the following things :
1. cCt ¢ !

2. These two equations

Dp- = {y € A (D) (2m) =4 (0)}
Dp = {4 € Cly (2m) = (0)}

Using these two facts we can effectively conclude, 75j C
P; =P;j is not self-adjoint! Is it essentially self adjoint?

4. Step IV : Is 75]- essentially self adjoint?

We need to check 73;** = ’PJ’? **. To check that, we need
to calculate the closure. R

We know that P; is symmetric which gives us P; C
’P; *C PJ’?‘. In this relation we know that P € Céircle and
P e c%Clircle'



Let ¢ € Dp.., then Vo € Dp- <¢\7ﬁ;¢> _

<’P§“*7,/1|g0>. From the previous line we can say 77;**7,/1 =

P}‘zﬁ as 7?;-** C ’ﬁ; So now we have

(¢IPye) = (Pyole)

0=i[¢ (z)p ()]
We know ¢ (27) = ¢ (0) because ¢ € Dp«. So we get

0= ip(0) |v (2m) =¥ (0)
This means 9 (27r) = 1 (0). This conclusively means

Dper = H' = Dp.= P** = P*. Hence, we have shown
that it is essentially self-adjoint.

5. Step V : Replace by the closure.

We succeeded in constructing the unique momentum
operator on a circle by taking the closure P~ of our

8
initial guess P; : S (I) — L2 (I) where V) € A" )

(—i)y".

V. CONCLUSION

The goal of this review paper was to show that defin-
ing operators in quantum mechanics mathematically pre-
cisely is not a trivial task. One needs to define the do-
main, check if it is self-adjoint, if it is not then check if it
is essentially-self adjoint at least. We still did not discuss
why we take the momentum operator as P;i¢p — —it)’.
This is the goal of something known as the Stone-von
Neumann theorem. After understand this review paper,
a starting point would be to understand the Stone von-
Neumann theorem which helps us construct observables
like the momentum operator by taking analogues from
Classical mechanics. Analogues like the Poisson bracket
which in Quantum mechanics are replaced by commuta-
tor brackets, this is known as the quantization prescrip-
tion.

[Schuller] Lectures on Quantum theory, Fredric Schuller,
University of Erlangen-Nuremberg
Lecture 6 to 9 : https://www.youtube.com/playlist?
list=PLPH7f_7Z1zxQVx5jRjbfRGEzWY_upS5K6

[Hall] Quantum theory for Mathematicians, Brian C.Hall,
Springer 2013
Various topics from Chapter 7 to 10.
1.1

[R&S] Methods of modern mathematical physics: Volume 1
- Functional Analysis, Michael Reed and Barry Simon,
Academic Press 1980
Various topics from chapter VI to VIII.

[QM Leipzig] Notes taken during the course 12-PHY-
BIPTP4: Theoretical Physics IV - Quantum Mechanics
at University of Leipzig, 2017. (Unpublished)

[Szekeres| A course in Modern Mathematical Physics
Groups, Hilbert Space and Differential Geometry, Pe-
ter Szekeres, Cambridge University Press 2004. (Chapter
13,14) (Recommended background reading).

I, II.1

[Background read| Link to transcript of a 10 page talk that
might be sufficient as a quick background read. (Password
: 806x)
http://rohankulkarni.me/sdm_downloads/
functional-analysisO-for-qm/



Charge Quantization, Dirac String and Wu-Yang Monopole

Mert Kurttutan
(Dated: June 19, 2019)

Magnetic monopoles are particles that carry magnetic charge. They were proposed because of two
reasons: Symmetry between electric and magnetic field, and quantization of electrical charge. The
first example of magnetic monopole was proposed by Pauli M. Dirac, namely Dirac string. I will first
discuss how Dirac string leads to charge quantization and properties of it. To better understand it,
I will look at some interactions between an electron and a magnetic monopole in classical physics.
However, Dirac string requires singularities in the vector potential A. One monopole that doesn’t
require was proposed by Wu and Yang. I will derive charge quantization using gauge invariance and

study topological properties of it.

I. INTRODUCTION

The idea of magnetic monopole can be motivated by
the dual symmetry of classical electrodynamics. If we
have a magnetic charge p,,, Maxwell’s Equations become,

V- -E =4mp.,V -B = 4nmp,,

47 10B 47 1 0E
E=—1J,- - vxB="J,4+-&
VX ch cat7V>< cJe+cat

where J,, and p,, are corresponding magnetic current
and charge, respectively. Due to existence of magnetic
charge, Maxwell’s equations is invariant under transfor-
mation

{E, pe;Je} = {B, pm, I }

{vamv‘]m} - {*Ev —Pe; 7‘]6}

Another important reason why this idea is appealing to
physicists is regarding charge quantization. The quan-
tization of the quantities such as energy levels in atoms
and spin of an electron was explained by quantum me-
chanics. However, physicist couldn’t explain one of the
fundamental quantization in nature, namely the quan-
tization of electrical charge. But, one can demonstrate
Dirac Quantization condition by requiring the existence
of magnetic charges. In section II, I will list some of
the important concepts of electromagnetism in quantum
mechanics. In section III, I will explain one model of
magnetic monopoles called Dirac String. Then, using
this model, I will show the Dirac quantization condition
given that magnetic charges exist. In section IV, I will
study physical properties of Dirac string such as singular-
ities of magnetic field and rotational invariance. To gain
more insight into Dirac string, I will look at the classi-
cal interaction between electrically charged particle and
magnetic monopoles. In section V, I will look another
type of magnetic monopole called Wu-Yang monopole.
This monopole doesn’t include any singularity in the vec-
tor potential, which is the unpleasant property in Dirac
String.

II. VECTOR POTENTIAL AND GAUGE
INVARIANCE IN QUANTUM MECHANICS

Here, I summarize some necessary results from the
electromagnetism in quantum physics, obtained from
Ref. [1]. The time-dependent Schrodinger equation for
a charged particle in a magnetic field B(r) = V x A(r)
is given by

. 0¥(r,t) 1 q .\
RN (2 p T2 g0 w(rt
ih—p, <2m(p SA) +e® ) U(r1)
If two different vector potential (A, ®) and (A’, ®) are
connected by a Gauge transformation,

10A
A=A +VADI =0 -—
c Ot
They describe the same system even though they are
not equal. If we transform A into A’, then the wavefunc-
tion transforms as follows,

with U(A) = exp(i@)

U = U(A)W
U(A) e

satisfying the Schrodinger equation with A’ and ®'. The
two wavefunctions describe the same physics since they
differ by a pure phase.

III. MAGNETIC MONOPOLES AND CHARGE
QUANTIZATION USING DIRAC STRING

Magnetic charges are hypothetical objects carrying
quantized charges in units of %, which was first derived
by Dirac in 1931 [3]. But, how one can model such an
object that is not allowed by Maxwell’s equations? In his
paper 1931, Dirac proposed a model called Dirac String.
In 1938, Jordan found that Dirac String can be repre-
sented by a semi-infinite solenoid [6]. We first begin by
studying this semi-infinite model. Imagine you have a
semi-infinite solenoid that starts from z = 0 and extends
to z = —oo. Near the point z = 0, there are magnetic
fields coming off from the point z = 0, just as solenoid.
As we go down, we won’t be able to see magnetic field
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going back into solenoid since the solenoid extends to
z = —oo. Hence, the magnetic fields are as if they come
from magnetic charge. The system will be a magnetic
monopole only if the solenoid is physically undetectable.

FIG. 1. Dirac string as a Semi-Infinite Solenoid.

To see how this leads to magnetic charge, we need
to calculate vector potential A due to this semi-infinite
solenoid. The vector potential of a magnetic is given by

mXxr
A:

r2 7
where m is magnetic dipole moment and r is the point
of interest. Hence,

JA — dm2>< r,dm: DNIalzf{7
r c

where D the area of cross section of solenoid, I is the
current through the wire, and n is the number of turns
per length. To calculate A of the entire solenoid, we
integrate over all solenoid,

A dm X r,,

string Tm

/ DNIdzmk X T'm

IND ro dzm -
- 3
/ Z’m,*ZO +7~g)3/2¢ ( )
InDl—cosGA
— S 4
¢ rsinf (4)
1—cosf -
— i 5
g rsinf ¢ (5)

where c is the speed of light and g is the magnetic
charge.
Indeed, one can show that

~

B=VxA=go
r

Now, we are ready to obtain charge quantization. To
do this, let’s imagine a usual experimental set-up for
Aharonov-Bohm effect. We consider an electron trapped
at the radius rg.

We know that there are 2 scenarios that can happen.
First, the magnetic flux may not be integer multiple of
¢, in which case the shift in energy spectrum can be
realized. Hence, the solenoid is physically realizable. On

143

7-(r, 8,4)

FIG. 2. The contribution to the magnetic field at the point
(r,0,¢) due to the magnetic moment at the point z = z,.

B

FIG. 3. An Electron Moving around Solenoid at radius rg.

the other hand, if the magnetic flux is integer multiple of
oo = %, the shift in energy spectrum is not realizable.
For we want our system to be a magnetic charge, it is
required that the solenoid is physically undetectable. The

magnetic flux through solenoid is ® = 4TTrnI D = 4ng.
Hence, it follows
d =ndg (6)
27h
drg=n e (7
he
9= 712*6 (8)

where n is an integer number. Hence, we obtained Dirac
quantization condition.

IV. THE DIRAC STRING AND ITS CLASSICAL
INTERACTION WITH A CHARGED PARTICLE

Even though the Dirac String leads to desired mag-
netic field, it contains singularities in magnetic field. We



An Algebraic Approach to Reflectionless Potentials in One Dimension 3

couldn’t account for these singularities. To do this more
delicately, we need to use the regularized version of the
vector potential A. Expressing A in cylindrical coordi-
nates, it follows

9 (-
A‘p<l m) ®)

Then, the regularized version is obtained by taking

1 O(p—¢) z z
P = p and \/z2+p2 - \/z2+p2+62
® _
An(ep =229 (2 (10)
p V224 p?+ €

One can show
lim V x Ag(z,p,e¢) (11)
e—0
=g +47g O(—2)6(x)d(y)2 (12)

Hence, we obtain
B = g% +4mg O(—2)0(x)6(y)Z = Bmon + Bstr1

We can see that magnetic field from the Dirac String
doesn’t have only monopole component but also string
component. In fact, it is this string component that
reconciles the magnetic monopole with Maxwell’s equa-
tions. But this additional magnetic field does not change
the physics of the magnetic charge system by the Dirac
quantization condition.

One can also study the rotational symmetry of this sys-
tem. Indeed, T the magnetic field of magnetic charge is
manifestly rotationally invariant even though its vector
potential and Hamiltonian is not. How are these com-
patible with each other? A

Say we have rotation operator R(fp) which rotates
around x axis by #y. Then, it follows that the rotated
Hamiltonian is given by

PPN 1 q 2
RHR= — (p— *A’ 1
2m (p c ) ( 3)
and
A’ =R'AR (14)

~ 1+cos(d+6o) -
g rsin(f + 6p)

The magnetic field for the rotated system is

B =V xA (16)

T ~
= g5 —4mg O(=2)3(x)d(y — zcosbp)z  (17)
= B/’mon + Blstr,? (18)

From this, we can see that the string is also rotated,
as expected. By Dirac quantization condition, the direc-
tion of the Dirac string doesn’t change the physics of the
system. Hence, the system is rotationally invariant.

To gain some intuition for the magnetic monopoles,
we now study the classical interaction between a charged
particle and magnetic monopole. The equation of mo-
tion for a particle with charge q in the field of magnetic
monopole is given by

(va):%(i‘xr) (19)

mr —

SRS

We can find the constants of motions to calculate tra-
jectory of the particle. By taking dot product of v and
I, we have

d rm ,
=—|—= =0 20
dt (2 ! ) (20)
In addition to kinetic energy of the particle, the mag-
nitude of the mechanical angular momentum is also con-
served as in the case of central potentials. To show

this, the mechanical angular momentum of the systems
is given by

L=rxmv (21)

The time derivative of mechanical angular momentum is

L=rxmv (22)
:TZieri'xr (23)
ag
Then, we have
4 (L-L)=2L-L (25)
dt B
=0 (26)

where the last step is obtained using (24). Hence |L]| is a
constant of the motion.

Different from central potential systems, the conserved
angular momentum has the form,

J:mrxi'—qu (27)
r

Now, we show that this is a constant of motion.

51— g (28)
= 9 (e 1) - x(i1) -~ ag (1 - ) (20)
=0 (30)

From (27), it follows



An Algebraic Approach to Reflectionless Potentials in One Dimension 4

J-t=—qg (31)

Hence, both J and # are constants of motion. We also
found that the angle between J and f is constant. To
find the equation for r, it follows from (19),

O=r-f (32)
= 37— (P - (9?) (3)
= _r2 —2? (34)

Due to conservation of energy, we can write

r=+vv2t2 4+ C (35)

with initial conditions r(t = 0) = C and #(t = 0) = 0.
Using (30), (31) and (35), one can conclude that the
motion of cone with the vertex at the magnetic monopole.

FIG. 4. The Motion of an Electron Being Scattered by a
Magnetic Monopole at the Origin.

V. WU-YANG MONOPOLE

In the vector potential of Dirac string, there are singu-

larities. These singularities exist even at points that are
not the origin. Hence, the phase that charged particles
take exp(is= § A - dl) becomes ill-defined when the par-
ticle goes through a singularity. But it is true that every
vector potential for a magnetic monopole possesses such
singularities. We now prove this.
Let’s assume that there exists a vector potential for mag-
netic monopole, which does not include singularity. Con-
sider a loop integral at fixed radius 79 and polar angle
Bo.

?{A~dr://B~dS (36)
29

2 o
:/ r —2(f‘-f')dgz5/ sinfdf  (37)
0 0

r
D, =2mg(1 — cosby) (38)

As 0y — w, @, — 4mwg. However, when 6y = 7, the
boundary of the loop integral shrinks into a point. Since
A does not contain any singularity, ®,, = 0 when 6y = 7,
which is a contradiction. Hence, A must have a singu-
larity.

However, the problem of singularity can be resolved in
the following way, as suggested by Wu and Yang in their
1975 paper [9]. Instead of having one vector potential,
we can have two vector potentials that are defined in dif-
ferent regions. As long as they are connected by a gauge
transformation in the overlapping region, this formula-
tion is physically valid. The vector potentials are given
as follows

1— 0 -~
A1:g$¢ for SI:O<0<71'—1—E (39)
rsinf 2
1 0 -~
Ay = —g- 805 o 2ir— S << n (40)
rsinf 2

In the region they overlap, they must be connected by
a gauge transformation. Therefore, we obtain

VA=A, - A, (41)
_ 29 ;5

o 7"sinAt9(725 (42)

A = 2999 (43)

One can see that A; and As do not have singularities
on the region where they are defined. By using two single-
valuedness of 1(¢) and ¥’ (¢), it follows

.€2g

¥/(8) = expl 222y ) (44)
= exp(i%)w’(qﬁ +2m) (45)
= exp(i P02 i om) ae)

where we used the fact that they are connnected by a
gauge transformation. Therefore,

2ge
—2m) =1 47
exp(i -2 2m) (47)

h
Xnez (48)

g:n2e

Therefore, the magnetic charge g is quantized in units
of % Note that this method works for any magnetic
monopole model.

One can discover the link between charge quantization
and topology using Wu-Yang Monopole. We know that
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the gauge transformation is single-valued function. If we
choose U(¢) such that U(0) = 1, it follows

U(2r) = U(0) = (49)
:wﬂ%é%MJ—AﬁdD (50)

= exp(iz—(dn + 65)) (51)
exp(i47;;g) (52)

We found that the winding number has the form n =
%. This quantity tells us how many times the vector
potential encircles the magnetic monopole as ¢ : 0 — 2.
Indeed, the magnetic charge is quantized since the wind-
ing number is quantized. This gives us the topological

aspect of Dirac quantization condition.

DISCUSSION

1. In the Wu-Yang Monopole, we used 2 different
vector potentials A; and A,, which are connected by a
gauge transformation. The magnetic fields of these vector
potentials give insight about the gauge transformation of
Dirac string.

By using the method we used, one can obtain the mag-
netic field for this vector potential,

B=VxA, (53)
r X

=93 — 4mg0(2)d(x)é(y)2 (54)

- Bmon + Bstr,? (55)

-

FIG. 5. The picture of Dirac Strings with the vector potential
A, and A, respectively.

In the first system, the string extends down to infinity
while in the second it extends up to infinity. The effect
of the gauge transformation is to rotate the string by
an angle m. More generally, this implies that magnetic
monopole is defined up to the direction of Dirac string.

2. We can gain insight into the force between magnetic
charges by comparing it to electrical charges. The force
between electrical charges is proportional to e?, which
has the value

5  hc

= — 6
137 (56)
However, the value of g2 is
137
92 = Thc (57)

which is approximately 4700 times higher than e2. It re-
quires much more energy to separate two opposite mag-
netic charges as compared to electrical charges. This ex-
plains why it is much harder to obtain magnetic charge
alone.
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Constructing Dirac spinors using representations of Lorentz group

Fedor Indutnyy
(Dated: June 9, 2019)

Spin-% particles are governed by Dirac equation and are described by 4-component objects named
spinors. Given the influence of Special Relativity on the derivation of Dirac equation it is inevitable
that the physical processes involving spin—% particles have to be independent of observer and their
inertial frame. Measurements made in one frame should agree with the measurements made in
another, and thus the components of spinor have to transform between frames. In this paper we
introduce the generators of Lorentz transformations that form a Lie algebra, find the decomposition
of Lorentz algebra into a sum of two sub-algebras su(2) @ su(2), build left- and right- handed
representations of spin—% particles and combine them to form a full Dirac spinor.

I. OVERVIEW
A. Conventions

Through the rest of the paper it is assumed that:
h=c=1 (1)

and thus all quantities are expressed in Natural Units.
The energy and momentum of the particle are combined
into 4-momentum:

Pu = (E,pe,py,pz) ;10 =0,1,2,3 (2)

and dot product of two 4-momenta is defined as:

pP-a=pun" qu 3)
with the metric:
10 0 O
" =mw={0 o -1 0 )
00 0 -1

The dot product of 4-momentum with itself is:
pPP=pp=FE—pl—p,—p=E"-p> (5
Einstein summation is used for every repeating index:

4
A'By, = A'B,,. (6)
pn=0

B. Dirac Equation

Scrodinger equation is famously non-relativistic. Spe-
cial relativity makes no distinction between space and
time and thus they should appear on an equal footing.

However, the powers of derivatives % and % in

2
Py = By = (;n (i) + V@) v

are not the same.
In order to account for relativistic effects the equation
of motion should use the relativistic energy formula

E=F+m2 (8)

which could be rewritten differently as

VEZ B2 =m. 9)

Dirac’s ingenious coup is finding such y* that:

2 .
(VB +9'pe +9%py +9%p:)" = E* =% (10)
Then the square root in (9) could be taken exactly:

VE? =52 =7"E+79'p: +7°py +7°p-. (11)
In terms of operators E = i0; and p; = —i0; equation
(10) takes following form:

2
(moat — ini&) Y= (af + Zaf) v (12)

Simple calculation shows that in order to satisfy (12),
~* have to be matrices with following anti-commutation
relations:

{7 = Ayt =2 (13)
Substituting differential version of Dirac’s coup (12)

back into the square root (9) and redefining 7' = —~*
results in famous Dirac equation:

(170, — m) = 0 (14)

There are different ways to select v* satisfying anti-
commutation relations (13). In this paper we use Weyl

basis:
o_ (01 i (0 o’ )

where ¢ are usual Pauli matrices. Each v# is a complex
4 x 4 matrix and ¢® is a complex vector (not a 4-vector!)
with ¢ = 0,1,2,3. Fully expanded Dirac equation reads
as:

(i(y")4 0 —md%) v® = 0. (16)
Note that greek letters (u, v, ...) are used for coor-

dinates, and the first letters of latin alphabet (a, b, ...)
are used for spinor components.



C. 4-vector representations

The defining idea of Special Relativity is invariance
under Lorentz transformations X'* = A% X:

XY = Xt XY = X, X", (17)

In turn the Lorentz transformations A have to leave the
metric invariant:

nf = A% A (18)

v

Skipping the parity change and time reversal transfor-
mations we are left with are 6 “basic” operations: boosts

cosh(B) sinh(8) 0 0

o= (B Y
0 0 01
cos}(;(ﬁ) (1) Sin}(l)(ﬂ) (1)
Ky(B) = (sinh(ﬂ) 0 cosh(3) 0] (20)
1 0 0 1
cosh(8) 0 0 sinh(3)
K.(8) = ( 0 01 0 1)
sinh(8) 0 0 cosh(B)
and rotations
10 0 0
wo-(33 o o)
0 0 —sin(6) cos(f)
1 0 0 .0
0 sin(#) 0 cos(f)
1 0 00
7.0)= |0 o) sontd) 0 (24
0 0 0 1

The subset formed by K, Ky, K., J;, Jy, J. and their
combinations is called proper ortochronous Lorentz group
L which we’ll just call Lorentz group from now on.

Suppose now that two observers see the particle gov-
erned by Dirac equation from two different frames related
by A. The laws of physics should be the same in both
frames, and thus both observers should find that the
particle’s wave function satisfy the same Dirac equation.

Each ¢(z) = ¢(t,X) is a function of space and time
and therefore has to abide to coordinate transformation:

V' (z) = 9(Ax) (25)

Putting (25) into Dirac equation (14):
(I8, —m) ' (2”) = 0
= (7"0 — m) Y(A"z")
= (in"A", (0,) (Ax) — my (Ax))
= ("8, —m)¢ =0

(26)

with v = AY,~". Simple application of the main prop-
erty of Lorentz transformations (18) shows that

YAy = =M (27)

~'# is a different set of matrices satisfying the same
anti-commutation relations as ~.

Apparently naive wave function transformation is not
enough to make physics observer-independent! This
should not be surprising: 1 has 4 components and we
assumed that they do not mix under Lorentz transforma-
tion. We have to introduce ”mixing” to compensate for
the coordinate transformation. As we shall see in the next
sections, finding the right way of ”mixing” the compo-
nents of the Dirac spinor is crucial for Lorentz invariance
of the Dirac equation.

D. Representations of Lorentz group

Components of ¥ can’t mix arbitrarily. Lorentz trans-
formations form a group (i.e. there is an identity trans-
formation, inverse for every A, matrix multiplication is a
group action), and thus two successive ”mixings” of the
spinor components have to act as a single "mixing” using
combined Lorentz transformations:

T(A2)%T (A1)l ¢ = e T (Ao Aq) %" (28)

up to a phase ¢1s.

Such map T : £ — SL(N,C) is a representation of the
group L, where SL(N,C) is a group of complex N x N
matrices. In case of Dirac spinors the target group has to
be a subgroup of SU(4) (unitary 4 x 4 matrices) because
spinors have to remain normalized under transformations:

Py = ITHA)T(A)gp = Tep. (29)

E. Lie Algebra of Lorentz group

Although it is convenient to define the Lorentz group £
in terms of matrices A#,, the group L itself is independent
of particular matrix representation. £ has mathematical
structure that is best seen on infinitesimal transformations
of K, (19):

0 =100
1 -1 000
0 0 00



and similarly of other operations (20) — (24):

00 -10 000 —1
Lo o0 o0 o0 o 00 o
Ka=i| 39 0 o] %=1l og 00 0| GV
00 0 0 100 0
000 0 00 00
fooo o fo 0o 01
Si=ilgoo-1]2= o 0 00] 2
001 0 0-100
00 0 0
{oo-10
JB=il01 o o (33)

00 0 0

The matrices (30), (31), (32), (33) are called generators
of Lie algebra so0(1,3). Any Lorentz transformation could
be put into an exponential form

A(0,B) = exp [i6"J; +if K] (34)

by combining several generators together.

Note that neither of J; or K; commute with each other,
e.g. rotating by 90° around z-axis and then rotating by
90° around x-axis is not the same as doing 90° x-axis
rotation first and applying 90° z-axis rotation afterwards:

R.(90°)
—
O

R.(90°)
—

O

R.(90°)
—>
O
S
After few steps of derivation the commutators of in-
finitesimal rotations J; familiarly are:

[Ji, Jk] = ieijkjk. (35)
The rest of the commutators are:

[Ji, K] = iei'ijk-, (36)
[Ki,Kj} = —zeiijk.
Neither (35) nor (36) make any reference to a particular
matrix form (representation) of £. In fact these commu-
tators define Lie algebra of £. Exponentiating different
set of matrices J/, K/, that have the same commutation
relations (35), (36) will yield a different valid representa-
tion of Lorentz group! Therefore we set ourselves on a
quest to find J; and K; that have an appropriate action
on Dirac spinors.

II. DECOMPOSITION OF LORENTZ ALGEBRA

The spin of a quantum particle is defined by its trans-
formation properties under rotations. In non-relativistic
Quantum Mechanics we found that spinors transform
through an application of the exponential unitary opera-
tor

P — (exp [i&iSi])abwb, (37)

— O0; . . 1 .
where S; = % are spin opgrators for spin-5 particles
constructed from Pauli matrices o;.

The commutators
[SZ‘, Sj] = ieiijk (38)

define the Lie algebra su(2) of the group of unitary ma-
trices with det M =1 SU(2). The su(2) (38) is the same
as 50(3) (35). Thus, because these Lie algebras are the
same, each 3-dimensional rotation in SO(3) (orthogonal
matrices with det M = 1) can be mapped to an element
of SU(2). The only difference between these groups is
that for every SO(3) element there are two elements in
SU(2), and thus single full rotation in SU(2) is not equal
to identity transformation. Peculiarly spinors change the
sign of their wave function under a single 360° rotation.
This is very easy to see by putting #° = (0,0, 27) into the
transformation (37).

We wish to find such representation of £ that the
relativistic spinor would transform under rotations using
unitary matrices, i.e. using SU(2) representations. Even
though the S;’s commutation relations (38) are exactly
the same as (35), the boosts K; commutators (36) make
the so(1,3) different from su(2).

The trick [1, ch. 10.1.2] is to study combinations of J;
and Kil

1 1
J = 3 (Ji +iK;), J; = B (Ji —iK5). (39)

Their commutators

EA Jf] = iendy (41)
[, J{] =i€ijkdy (42)

indicate that s0(3,1) is a direct sum of two commuting
sub-albegras:

50(3,1) = su(2) @ su(2). (43)

Instead of looking for representations of full £ we can
combine two representations of SU(2) into a tensor prod-
uct SU(2)®@SU(2). Each epresentation of SU(2) acts on a
(27 +1)-dimensional vector space, where j is a half-integer
characterizing the representation. The combination of
two SU(2) representations therefore can be labeled by a
pair of half-integers (A, B) with the total number of basis
states equal to (24 + 1)(2B + 1).



The rotation and boost operators J, K can be recon-
structed from JT and J:

Ji=Jr+J7, (44)

Ki=i(J7 —J). (45)
Despite unfamiliar context, (44) is practically the same
as total angular momentum operator in non-relativistic
quantum mechanics:
Ji=L; + S;. (46)
Just as in Clebsch-Gordan tables, the tensor product
of spin-A and spin-B spinors decomposes into a sum of
representations of SO(3) with spins:

A+B, A+B—-1, ..., |A-B| (47)

III. LEFT- AND RIGHT- HANDED WEYL
SPINORS

1

Since we are looking for spin-3 particles the relevant
pairs of A and B are left- and right-handed Weyl spinors:
(%,O) and (0, %), respectively. It is easy to check that
these values of A and B combined generate spin—% rep-
resentation using the summation formula (47). For the

left-handed spinor we set:

gi 0

L + _ _ 0 g 0,
vt J; —2,Ji =0, J; Q’KZ ig (48)
and for right-handed:
v =0, =5 =5 Ki=—ig o (49)

Substituting matrices (48) and (49) into the exponential
form of Lorentz transformation (34) we find that ¢y and
g transform according to:

Y — exp [; (i6" — 8") Ui:| YL, (50)

1. . :
YR — exp [2 (i6" + B) Ji] YR. (51)
Note that both ¥ and ¥z have two components, just as
usual non-relativistic spinors.

IV. DIRAC SPINORS AND LORENTZ
INVARIANCE

Starting from (30) there was a trouble following us
through all derivations. The boosts K; are not Hermi-
tian, and therefore very evidently transformations of left-
and right-handed Weyl spinors (50) and (51) are not
unitary for 4¢ # 0! The reality is that there are no

non-trivial finite-dimensional unitary representations of
Lorentz group £, because it is non-compact [2]. Proper
solution is attainable only in fully-relativistic Quantum
Field Theory with the use of representations of Poincaré
group (Lorentz group with addition of time- and space-
translations), which we will not discuss here.

A. Scalar quantities

Despite this flaw we can still study the transformations
of Weyl and Dirac spinors. To get more insights into this
it would be suggestive to build several Lorentz-invariant
quantities out of ¥y, and ¥ . The infinitesimal versions
of transformations (50) and (51)

Sy = = (i6" — B') o3vr, (52)

N =

Sp = = (0" + B") oihr (53)

N |

and similarly of their conjugates

50l = 5 (~i#' — B) o, (54)
S = % (=i + B) Y foi (55)

will be useful in this process.
The norm of ¢¥g:

6 (vhvn) = 0vkn + vhdvn
= % (=it + B +i0 + ) phowr  (56)
= ﬁil/);ggﬂ/m
is non Lorentz invariant for 8* # 0, just as the norm of

P

o (1#21%) = —Biwlam. (57)
The z/Jzz/J r combination however
7 (vhvn)
v, (58)
=3 (—i0' — B+ 0" + 1) Yl oipr = 0

and therefore its complex conjugate ¢;¢L are Lorentz
invariant scalar quantities.

B. Vector quantities

Since every complex matrix could be decomposed into
a combination of identity and o;, it would be sufficient to



study the transformation properties of 1/);%01'1/)}{

4 (1/1201'1/11%) :% (—it? + B7) Yhojoibr+
% (i67 + B7) Y hosoibp+
= S0} 01,0, bt (59)

%ﬂjﬂ)}g {oi,05} Yr+

= BYhvr — et Phontr
using [0, 05] = 2iejjrok and {oi,0;} = 26;;. Similarly
’L/sziwL transforms as:
0 (wlmw) = —BIPLr — et} ontr. (60)

It could be checked that infinitesimal action of the

exponential Lorentz transformation (34) on a 4-vector
XH is:
§X%=p'X",
7 . . (61)
0X' = BZX - eijkan .

Comparing it to change of the non-invariant quantities
(56) and (59):

6 (vhun) = Bvhoin, o)
62
0 (MDLUWR) = BIlr — et hor,

we see that 4-component combinations
(vhvr vhown) . (ehve, —vfows)  (63)

behave like vectors under Lorentz transformations!
We therefore define:

ot = (1701702703)

64
EH = (17_0—17_0—27_03) ( )

and conveniently the combinations (63) become:
Vho"r, VLT L. (65)

C. Back to Dirac equation

In previous sections we have derived several Lorentz
invariant quantities:

Yhr, vivg,
Yhot g, YT

It is time now to combine them into the Lorentz-invariant
Dirac equation. Since quantities (65) act as 4-vectors,
they could be paired with a derivative

Lot dbr, viTHr (67)

(66)

to become scalars.
Combining 1y, and ¥ into a 4-component Dirac spinor

b= (j;) (69)

and restating Weyl-basis (15) in terms of (64)

= (%) (69)

we see that derivative terms (67) are nothing else, but
DTy 8,1, (70)
The scalars from (66) could be built similarly:
¥y (71)

Defining 1) = 14" It is easy to see from (70) and (71)
that

Y (iv" 0 —m) Y (72)

is a Lorentz invariant quantity. What we have found is
that (72) is nothing else, but Dirac equation (14) multi-
plied on the left by !

Given the definition of ¢ in (68) and properties of left-
and right- handed Weyl spinors (50) and (51) we see that
it transforms under rotations as:

W = exp [W; (‘3’ (S)] V. (73)

D. Weyl spinors

Quite interestingly setting mass to zero m = 0 in Dirac’s
equation (14)

0 iao + i&'io-i 1/JL o
<z’80 - 1820’ 0 > x (dﬁ%) =0 (74)

decouples 1y, and i parts of .

i0y —id-3) v =0, (75)
( )

(iao +id - &) Vg = 0. (76)
If we would replace partial derivatives with momenta

7 = id and energy E = id, the equations (75) and (76)
become:

p-oYr = EYr, (77)

p-0Yr = —Eyp. (78)



When the particle is massless its energy is equal to the

magnitude of its momentum E = /52 + m2 = /52 = |p|
and so equations (77) and (78) simplify even further:

f;%' LGy =+ (79)
% L FUR = —UR. (80)

The expression % - & is called Helicity operator, and is a
projection of spin along the particle’s momentum. Thus
in massless limit left- and right- handed Weyl spinors
are helicity eigenstates with opposite eigenvalues.

Demanding certain helicity (79) of a particle might
seem restrictive, but due to Special Relativity massless
objects always move with the speed of light in all reference
frames. Such objects cannot be slowed down, and their
direction of motion cannot be reversed. Therefore they
must have fixed helicity.

V. DISCUSSION

We have seen that Lorentz invariance and represen-
tations of Lorentz group play key role in defining the
properties of Dirac spinor. The scalar quantity (72) that
we have derived plays central role in both Quantum Elec-
trodynamics and Quantum Chromodynamics, where it is
included as a part of Lagrangian describing the behavior
and mass of spin—% fermions.

The same process that we have used for Dirac spinor
could be applied to spin-1 bosons using (%7 %) represen-
tation of Lorentz group. In this case, however the spin
addition formula (47) says that we will get two possible
SO(3) representations: spin-0 and spin-1. The spin-0
representation is fictitious and cannot take part in phys-
ical processes. Its elimination is the basis of the Gauge

Theory.

Representation theory has been very fruitful for particle
physics. The non-negative energy unitary representations
of Poincaré group (Lorentz group with translations) has
been classified by Wigner [2], and give basis to and de-
scription of intrinsic angular momentum of massive (spin)
and massless (polarization) particles.
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Coordinate-space wavefunctions for the simple harmonic oscillator via algebraic

operator methods

James K. Freericks
(Dated: April 6, 2019)

The simple harmonic oscillator is solved in 8.04-06x via differential equations and via ladder
operator methods. But then the traditional construction of the wavefunctions from the eigenstates
involves an nth-order differential equation acting on the ground state; this arises from evaluation of

atym . . . . . . . .
(z| (C\l/% |0) in the coordinate representation with p = —ifi-L. The method is not efficient to calculate,

nor is it illuminating (even if it leads to a so-called Rodrigues formula). In this paper, I will show how
one can adapt the conventional ladder operator methods to directly construct the Hermite polynomial
recurrence relation for the coordinate-space wavefunctions (x|n) = ¥, (z). This methodology will
introduce you to the power of the translation operator; technically, it employs both the Hadamard
lemma and the Baker-Campbell-Hausdorff formula in the analysis (identities already worked out in
8.04-06x). Hints for this approach can be found in Arno Bohm’s Quantum Mechanics: Foundations
and Applications, but the strategy taken here is markedly different, emphasizing the use of the
translation operator and illustrating how it can be employed more generally for the determination of
wavefunctions without differential equations. The paper concludes with a brief sketch of how one can
achieve similar results for the momentum-space wavefunctions and beyond to more general systems.

I. INTRODUCTION TO THE TRANSLATION
OPERATOR AND EIGENSTATES OF i AND p

In this paper, we describe how one can construct the
wavefunctions of the simple harmonic oscillator from
purely algebraic methods. While nearly every quantum
text describes how to construct the energy eigenfunctions
|n) from the ladder operators, almost none describe how
to construct the coordinate and momentum-space wave-
functions via operator methods; in fact we have not found
any that proceed as we do here, although Bohm hints
at alternatives to the “standard” approach [1]. We be-
gin by simply noting that wavefunctions are the overlap
of the energy eigenfunctions |n) with the position |z)
or momentum |p) eigenfunctions, or ¥, (xz) = (z|n) and
dn(p) = (p|n). So we must start by constructing those
position and momentum eigenfunctions. Our strategy is
to employ operator methods without resorting to specific
representations of the operators, so we do not need to
introduce the coordinate space representation of the mo-
mentum operator in terms of a derivative with respect
to the coordinate. Instead, we follow the representation-
independent operator-based approach initiated by Dirac
in 1926 [2].

We start with the canonical commutation relation
[Z,p] = @p — p& = ih, where hats are used to denote
operators. For this paper, we simply state this as a
postulate, but one can strongly motivate the canonical
commutation relation from the facts that atoms have
sharp spectral lines, the existence of stationary energy
eigenstates, and the Planck-Einstein relation for energy
and frequency [3]. Our goal is to use these operators to
construct position eigenstates. We will assume that an
eigenstate for the coordinate at the origin exists |z=0),
which satisfies |x=0) = 0, and use that state to construct
all other position eigenstates. Note that we do not need
to worry about the normalization of the state for anything

that we do in this paper, so we do not discuss this issue
further here (as it requires calculus to settle it properly).

To start working with the translation operator, we use
the so-called Hadamard lemma (derived below), which
allows us to evaluate the similarity transformation of the
operator Z as follows (with g a real number):

o . ; 2
ehT0D e hTOD _ 5 4 %xo[ﬁ, 2] — %m 5, &]] + - -

= &+ x0. (1)

The final equality occurs because [p, Z] = —ih is a number,

not an operator, and subsequently it commutes with all
additional multiple commutators of p; this truncates the
expression after the first commutator. Next, we multiply
the left and right hand sides of Eq. (1) by exp(—izop/h)
from the left to yield

ie—%xoﬁ = 6_%36013(.% + x()). (2)
With this identity, we establish the eigenfunction |xg),
which satisfies &|z¢) = xo|xo) (here, xy is a number and
a label for the Dirac ket):

o) = €™ #70P|3=0). (3)
Operating & onto the state |xo) yields

E|zg) = e #TP|z=0) = e~ 5P(% 4 x0)|2=0) = x0|x0).
(4)
The last equality follows because &|z=0) = 0, numbers
always commute with operators and the definition of
|zo). Hence, Eqs. (3) and (4) establish that |x) is the
eigenstate of & with eigenvalue zg.
Similarly, one can also derive that the momentum eigen-
states satisfy

Ipo) = e##*%|p=0). (5)

This result will be used in subsequent calculations.



II. ALGEBRAIC CONSTRUCTION OF THE
ENERGY EIGENFUNCTIONS

We will be working with the simple harmonic oscillator,
which is defined by the Hamiltonian with a quadratic
potential

. 2 1

H= % + 5mw8§c2. (6)
Here m is the mass of the particle and wq is the character-
istic frequency of the harmonic oscillator. The operator
method for the harmonic oscillator was fully covered in
the 8.04-8.06 sequence. But let’s revisit it anyway to
understand a bit about the history of the method. It was
first introduced in the 1930 edition of Dirac’s monograph
on quantum mechanics [4]. In that text, Dirac worked
with dimensionless position and momentum operators and
tried to factorize the Hamiltonian (p* + ¢2)/2 in terms
of p +4&. The factorization (p + i&)(p — i&)/2 produces
the Hamiltonian up to a constant shift. The operator ap-
proach has since been modified. The i factors are moved
from the coordinate to the momentum, and we work with
dimensionful coordinate and momentum operators. The
dimensionless raising a! and lowering é operators are then

defined to be

Y L (P 2 R S L A
2h mwo )’ 2h mwg )

(7)

One can immediately compute that

@ dT] _mwo @
T 2R muwg

2[p, 2] =1 (®)
or [a,a'] =1 and
H = hwo (a*a + ;) : (9)

Since a'a is a positive semidefinite operator, because

(vlataly) = llajy)[|* > 0, (10)

we immediately learn that the ground state |0) of the
simple harmonic oscillator satisfies

a0y = 0, (11)

and the ground-state energy is Fo = hwg /2.
The commutator of the Hamiltonian with the raising
operator is simple to compute, since

[H,a'] = hwolata, af] = hwoal[a, al] = hwoa®.  (12)
This can then be generalized by induction to show that
|7, (@1)"] = nhwo (ah)" (13)

Equation (12) is the base case, and then one simply
assumes the result is true for n — 1 and uses the product

rule for the commutator to establish the general case.
The commutation relation in Eq. (13) is next used to find
the higher energy eigenstates. we define the nth excited
energy eigenstate |n) to have energy F,,. Then we claim
that

[n) oc (a')" [0). (14)

The proof that this is an eigenstate follows by direct
computation:

Aln) = [#, (@1)"] 10) + (@1)" #I0) = e (n + 1) In).

2
(15)
So, we learn that F,, = fuwg(n + 1/2) due to the commu-
tator in Eq. (13) and the fact that |0) is an eigenstate of
the Hamiltonian with energy hwg/2.
Finally, we need to normalize the eigenstate. If we
assume the ground state is normalized (0/0) = 1, then,
using the fact that @|0) = 0, we find that

(01 (@)" (ah)" 10y = (01 @" " [a, (@)"] I0)

=n0| ()" (a')" " |0)
= n! (16)
so that we find
at)"
In) = @) 10) (17)

Vn!

is the normalized nth excited state with energy F,,. Note
that we used the fact that [&, (&T)n] =n (dT)"_l in the
derivation of the normalization factor. This result for the
commutator is easily established by induction, and was
covered in 8.04-06, so will not be repeated here.

IIT. COORDINATE-SPACE WAVEFUNCTIONS

In this section, we will compute the wavefunction in
coordinate space using purely algebraic methods. But
first, we need to determine two critical operator identities—
the Hadamard lemma and the Baker-Campbell-Hausdorff
identity.

The Hadamard lemma is given by

oo
o N 1 . . o

eBe ™ = X:OM[A, (A, [A,B]- ] (18)
where the m subscript on the commutators denotes that
there are m nested commutators; this lemma is also called
the Baker-Hausdorff lemma and the braiding relation. But
as far as I can tell, it was first discovered by Campbell
in 1897 (see Eq. 19 of Ref. [5]) and hence should be
called the Campbell lemma. It is not clear at all where
the Hadamard lemma name comes from. To prove the
Hadamard lemma, we need to use induction, but first,
to get a feel for the identity, we examine the first few



terms in the expansion. To start, we expand the two
exponentials in a power series, so that
Ll
( ) . (19)

o0

o N 1 R

R WA OND W
n=0

Grouping the terms in the power series in terms of powers

of the operator A, we find

eAéefA =B + AB — BA
1 ABA L P A2
5( —9 BA+BA)+-~
1 . . .
B+[A, B+ 5[A A B+ (20)

We immediately see that the first few terms of the
Hadamard lemma come from this reorganization of the
terms in the expansion.

For the full proof, we need to use induction. Our goal
is to show that the term with m A terms, satisfies

S ot () B (4)

L[A,[A,...

m 7[12173]]"1 (21)

The term on the left hand side comes from collecting all
terms of order A™ from the power series in terms of the
two exponentials and the right hand side is our goal. The

base case, with m = 1, is already established in Eq. (20).

We assume it holds for m — 1, which we rewrite in the
following form, after multiplying both sides by (m — 1)!,

’”Z a1 B ()" "B (4)"
[A[A A Bl e (22)

Take the commutator of both sides with respect to A to
yield

m—1

o s ]
=[A A, [A,B] ]m o

The left hand side becomes

m—1
(m—l)! o A\ A\
nZ:() (m—1—n)n! (=1) (A) B (A) (24)
m—1
(m _ 1)[ na1 (3 m—1-n A n+l

+ nZ:o (m—1-—n)n! (=1) (A) B (A) '
Multiply the first term by (m—n)/(m—n) = 1. Using the
fact that 0!=1, we can then extend the first summation

to n = m on the upper limit (which contributes nothing
because the numerator, proportional to m — n vanishes

when n =
and find

m). For the second term, we shift n — n —1

—m gy ()" "B(4)" @)

m—-n

in_wn (4)" "5 ()"

Now we multiply the second term by n/n = 1 and extend
the lower limit to n = 0 after rewriting the denominator
as n! (which adds zero, since 0! = 1 again). Adding the
two terms together and combining the numerator into
m!, then finally establishes Eq. (21). This completes the
proof of the Hadamard lemma.

The Hadamard lemma can now be employed to establish
additional identities. Any function f(B) of an operator
B that can be written as a power series in B satisfies

M§

m—n) lnl

Af B A A Z fm Bme 4 = Z fm (eABefA)m
m=0
f(eABe 4
- (Z A ,[A,Bl-~-}m> - (26)
m=0

This is an exact relation. Choosing f(B) = exp(B)
then yields an important identity after some simple re-
arranging of terms:

A_B oo

e e = e&~m= Dm,'[A [A

CABInGA (o)
This relation is often called a braiding relation. When
[A, B] is a number and not an operator, then we have the
re-ordering identity

eAeB = eBeAe[A7B], (28)

which includes a correction term when the exponential
operators are re-ordered.

This last identity is not enough to allow us to carry
out our calculation. We also need an identity that is
“halfway” between the re-ordering identity, which rewrites
the exponential of the sum of the operators in terms
of the two exponential operators and a correction fac-
tor. This identity is an alternate form of the famous
Baker-Campbell-Hausdorff (BCH) identity [6-8] (which
is most aptly called the exponential identity). Unlike
the Hadamard lemma and its application to exponential
re-ordering, the BCH identity does not have any simple
explicit formula for its result in the general case (although
one can write the result in closed form [9, 10]). Fortu-
nately for us, we need it only for the case where [/1, B]
is a number, which commutes with all other operators.
In this case, the BCH formula is rather easy to derive
through a differential equation (while it can be derived
completely algebraically, the derivation is rather long and
takes up too much space to present here). The differential



equation approach is rather straightforward though and
we present it next. o

We assume [A, [A, B]] = [B, [A, B]] = 0 in the following.
Then we define the operator function f(\) by
“MANA+B) ,-AB (29)

fA)=e
Clearly, f(A=0) =1, and the derivative satisfies

df(/\) 7/\A ANA+B) _—AB

— A A B AA+B) _—)\B

N (-A+ A+ B)e e

o~ MAALB) g,—2B (30)

because dexp(AA)/d\ = Aexp(AA) and A commutes
with exp(AA). Using the Hadamard lemma, we find that

HMATB) B (B A, B]) HMATB) (31
Using this relation transforms Eq. (30) into

df(A) 1A
—~ = )\A,B]f(\ 32
because the commutator commutes with A and B. This
differential equation can be integrated immediately to
yield

FOV) = fFA=0)e 3N ABL (33)
Using the fact that f(A=0) = I and setting A\ = 1, fi-
nally yields the Baker-Campbell-Hausdorff result when
the commutator commutes with all other operators as

AP _ JA+B+L(AB] (34)

and

eBeA A+B—§[A B] (35)

The BCH proof is completely consistent with the braiding
relation in Eq. (28), as can be seen with a little rearranging
of the terms.

We now have all the technical tools needed to determine
the coordinate-space wavefunction v, (x) = (z|n). Using
the position eigenstates and the energy eigenstates, we
immediately find that

Un(2) = (z|n) = —=(z=0e#*? (a1)" [n=0).  (36)

1
vn!
The operators p and a' can be easily identified by their
hats.

The strategy to determine the wavefunction takes a few
steps. First, we replace the momentum operator in the
exponent of the translation operator by its expression in
terms of the ladder operators

3>

5 (a—a). (37)

The wavefunction becomes
1
vn!

Then we use the BCH relation in Eq. (34) with A « af
and B « a to factorize the translation operator into a
factor involving the raising operator on the left and the
lowering operator on the right. This is given by

() = —=(a=0[eV 5 #@=0) (a1)" [n=0).  (38)

x (z=0le~V 7r #4 V5w (1) |n=0). (39)

Third, we take the relation in Eq. (26

by eXp(/Al) on the right to create the general functional
braiding relation and apply it to the matrix element for
the wavefunction with f(B) = (af)". This yields

) and multiply

1 mwqp .2
¢n($) = ﬁeiﬁx (40)

x {x=0|e”V e < T4/ W;};O ) eV %mm:()).

The rightmost exponential factor gives 1 when it operates
on the state because a|n=0) =0

Yp(x) = —=e~ ™ ° (41)

n
X {(x=0]|e”V T wal ( fy \/ 77;2103:) |n=0).

Next, we introduce a new exponential factor with the

opposite sign of the exponent multiplying the ground-

state wavefunction, because it equals 1 when operating

against the state:

Ynle) = e T (42)
n\T) = n!e

x (z=0]e~V T ed" <a* ¥y /””2“’7;%) e~V =),

The general functional braiding relation is used again to
bring the rightmost exponential factor to the left through
the a' term raised to the nth power

]. mwqg .2
VYn(x) = ﬁef et (43)

maw ~ o ~ 2 "
x {x=0|e”V ! o=/ Tyt v (&T +1/ w;wo J:) |n=0).

Now, we use the BCH relation again to combine the
two exponentials into one which increases the Gaussian
exponent by a factor of two

1 mwg 2
Yn(x) = ﬁe_ 2n " (44)

x (x=0|e”V w(al+a) (&T + 4/ M;JOCE> |n=0).




Finally, we use the fact that the sum of the raising and
lowering operator is proportional to the position operator

h

a4 al
9mug (a—l—a )

(45)

=
I

We replace the sum of the raising and lowering operator
in the exponent and let it act on the state to the left,
where it gives 1, because the position operator annihilates
the state (xz=0|. The wavefunction has now become

n

2muwyg In=0)

1 mw
= Zae =0l (‘“ VT
(46)

We are almost done now. We have achieved a reduction
of the problem into a Gaussian function multiplied by a
matrix element which is an nth degree polynomial in zx.
All that is left is evaluating the polynomial. To do this,
we first introduce a definition of the polynomial, which
we will then show is a so-called Hermite polynomial H,,.
We write the wavefunction as

1 mw
Unlw) = ==t (,/”?%) e~ 50 (1=0|n=0),

(47)
which defines the Hermite polynomial via
27’L
Hy (| 50) = = (48)
h (x=0|n=0)

2mwy

x (x=0] (dT + A x) |n=0).

Note that the number (z=0|n=0) is the normalization
constant for the ground-state wavefunction; we will dis-
cuss how to determine it below. This definition allows us
to immediately determine the first two polynomials Hy
and H;. Choosing n = 0 in Eq. (49) immediately yields
Hy = 1. Choosing n = 1, produces

i

The second term vanishes for the following reason: we
first note that afln=0) = (a' + a)|n=0), because the
lowering operator annihilates the ground state. Hence
a'|n=0) o< 2|n=0). But (x=0|# = 0, so this state vanishes
when it acts against the position eigenstate.

For the remainder of the Hermite polynomials, we work
out a two-term recurrence relation. We focus on the
nontrivial matrix element, and factorize the terms as
follows:

n—1
(2=0] (aﬁ + ,/Qm;’%> <a* + ,/27”};”0:0> In=0).

(50)

mwo z) =29 mwo -
h N h
V2

4 m(m:mdﬂn:@. (49)

The constant term in the first factor can be removed from
the matrix element and it multiplies the matrix element
with n—1 operator factors (which is proportional to H,_1).
For the remaining term proportional to a', we replace the
operator by a' — a' + @ — a. The term proportional to
at + @ is proportional to &, and so it annihilates when
it operates on the left against the (x=0| state. The
remaining G operator can be replaced by the commutator
of the n — 1 power of the a' term, because ajn=0) = 0.
The remaining commutator is straightforward to evaluate
via

n—1 n
2 2
a, <d* + \/n;:mx> = (n—1) <a* + \/m;’ox>

(51)
We can assemble all of these results to find the recurrence
relation for the Hermite polynomials, which becomes

 (5) < e 5
) . (52)

This recurrence relation, which is of the form H,(z) =
2zH,_1(z) — 2(n — 1)H,,_2(z), is the standard Hermite
polynomial recurrence relation when Hp(z) = 1 and
Hy(z) = 2z, as we have here.

We have now established that the simple-harmonic-
oscillator wavefunction satisfies

1 mwo _mwg 2
WHR (1/ - .13)6 2 ¥ (z=0n=0).

(53)
The last task in front of us is to find the normalization
factor. This is computed for the ground state via

—2(n—1)H,_s ( %x

Yo () =

[(z=0|n=0)/? / dze~ 77" =1 (54)
or
1
- - o mwo\ 2
(x=0|n=0) = (Th ) (55)

This has finally produced the wavefunction for the simple
harmonic oscillator using algebraic methods. Note that
calculus is only needed for the last normalization step
since the BCH formula can also be derived algebraically
(not shown here).

In Table I, we list the first six Hermite polynomials
as a function of the argument z. In Fig. 1, we plot
the wavefunctions (left) and the probability distributions
(right) for the lowest few eigenfunctions of the simple
harmonic oscillator. The different curves are centered on
their energies. These wavefunctions behave as we expect
them to. The number of nodes starts from zero in the
ground state and increases by one with each higher energy
level. The wavefunctions oscillate in the allowed region,
and exponentially decay in the forbidden region. The

—2



n Hy(z)

0 1

1 2z

2 42% — 2

3 823 — 122

4 162* — 4822 +12
5 322° — 1602° + 1202

Table I. First six Hermite polynomials.

ground state is an even function of x and the higher-energy
states alternate from being odd and even as the energy
is increased. Finally, the wavefunctions for higher-energy
states have their probability largest near the turning
points as expected as well.

IV. MOMENTUM-SPACE WAVEFUNCTIONS

In this short section, we will sketch how one can use
similar methods to compute the wavefunctions in momen-
tum space. To start, the momentum “boost” operator
is given by exp(ipz/h) and the momentum eigenstates
satisfy

Ip) = e#P?|p=0). (56)

The wavefunction satisfies ¢,,(p) = ()" (p|n); we added
an additional global phase to ensure we reproduce the
standard results—you will see why this is important be-
low. The wavefunction can be expressed in terms of the
operators as

_ (Z)n o 7%;05: AT\

Pn(p) \/7?@ Ole (@')" [n=0). (57)
The remainder of the calculations proceeds as before for
the coordinate-space wavefunction. We start by replac-
ing the & operator by the sum of raising and lowering
operators; in this case, the coefficients of the raising and
lowering operators are now purely imaginary. Then we use
BCH to factorize the exponential into a raising operator
on the left and lowering operator on the right. Then we
use the braiding identity to move the exponential through
the ()™ terms and let it operate on the ground state,
where it produces 1. The shift term added to the raising
operator is now purely imaginary. Next, we introduce a
factor of 1 at the ground state, which is the same expo-
nential operator of the lowering operator, but with the
sign of the exponent changed. Then we use the braiding
identity to bring it back to the left, BCH to place the
operators in one exponential, and evaluate the momentum
operator on the momentum eigenstate. At this stage, the
wavefunction has become

@"
Vn!

¢n(p) = |Tl:0>

e_#zm(p:m al — ii\/ﬁp
vV hwom
(58)

Note the additional factors of ¢ and the replacement of

/mwoy/hx by p/v/hwom. The Hermite polynomial now
needs to be defined via

2"

t ( ﬁffom> = (p=0n=0)

x (p=0| (a* —i\f> In=0)(59)

2p
vV hwom
Starting with Hy = 1 and H; = 2p/+/hwom, we find the
same Hermite polynomials as in table I, but now with
z = p/v/hwom. The rest of the calculation is similar
to the coordinate space calculation. The normalization
factor is found by a simple integral. One can see that this

procedure will lead to the momentum-space wavefunction,
which finally satisfies

bn (p) =

2
1 0 1 Hn ( b ) e 2h50m .

(mhwom) T v/nl2n Vhwoem

(60)
Aside from some different constants, the coordinate-space
and momentum-space wavefunctions have identical func-
tional forms. This is expected from the outset, because
the Hamiltonian is quadratic in both momentum and
position. Hence, each wavefunction must be isomorphic.

V. CONCLUSIONS

We end this paper with a short discussion of where one
can go further with this approach, First, any problem that
can be solved analytically with differential equations can
also be solved algebraically with operators. The approach
is commonly called the Schrédinger factorization method,
and was introduced by Schrédinger in the early 1940s [11,
12]. Most textbooks that present this methodology use
it to compute the energy eigenvalues, but often employ
the more standard approach of expressing the raising and
lowering operators in terms of differential operators to
create first-order differential equations to compute the
wavefunctions (this strategy was discussed for the simple
harmonic oscillator in the 8.04-06 series and appears in
almost all textbooks). But, as you can see, the approach
presented here, which employs the translation (or “boost”)
operators, is a novel technique to find the wavefunctions.
The number of other problems this can be applied to
is large (including at least the Ploschl-Teller potential,
the Morse potential, and the radial problems for the
spherical box, the harmonic oscillator and the Coulomb
problem in three dimensions). The three-dimensional
radial problems are a bit more complex, because the
translation operator uses the radial momentum operator.
A careful computation finds that the radial translation
operator has extra terms in it that cause it to vanish as
r — 0, because one cannot translate the radial coordinate
to go less than 0. Nevertheless, one can find wavefunctions
in this algebraic fashion there as well. The development
of these methods will be completed elsewhere.
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Figure 1. In the panel on the left, we plot the wavefunctions, while in the panel on the right, we plot the probability distributions
for the simple harmonic oscillator. The results are each centered on their respective energy levels.

As far as I am aware, this approach to solving the
Schrodinger equation and finding the wavefunction is a
new approach. It does not appear to be in any textbook
I have seen (if you have seen it somewhere, please let me
know). Interestingly, many textbooks use the translation
operator to compute the overlap between position and
momentum eigenstates (x|p), but the extension to use sim-
ilar methods to compute wavefunctions for bound-state
problems seems to not have been developed elsewhere.

We also find it compelling that one can determine en-
ergy eigenvalues and energy eigenstates for many problems
using just high school level algebra. This dispels the oft
heard myth that one needs to know calculus, differen-

tial equations, and special functions to solve bound-state
problems. One doesn’t!

Stay tuned for more details in the future as these ideas
get incorporated into a book that provides a radically
different pedagogy for teaching quantum mechanics. It
will be called Quantum Mechanics without Calculus [13].
While it cannot teach everything (most notable is the
omission of scattering, perturbation theory and semiclas-
sics), it does cover many topics at a much higher level than
in conventional textbooks and eventually brings readers
who master the material close to the point where they
can contribute to current research problems.
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Algorithm is proposed to convert arbitrary unitary matrix to a sequence of X gates and fully
controlled Ry, R. and R; gates. This algorithm is used to generate Q# implementation for arbitrary
unitary matrix. Some optimizations are considered and complexity of result is analyzed.

I. INTRODUCTION

In this paper I will solve a problem of implementing a
unitary matrix with a sequence of quantum gates which
can be expressed using standard library of Q# language.

Q7 is a domain-specific programming language used for
expressing quantum algorithms, developed by Microsoft
[1]. Tts standard library currently doesn’t support explic-
itly specifying unitary operation by a matrix. Instead,
programmer has to express it as a sequence of built-in
quantum gates. However, while designing some quantum
algorithms it may be necessary to implement a unitary
operation which is given by a matrix and decomposition
of this matrix into standard gates is not obvious (for
example, [2, problem B2]).

In this paper I will describe algorithm which can be
used to generate Q# code using only fully-controlled R,
R, and R; gates and single-qubit X gates. Length of this
code (in terms of number of commands) will be O(4™),
where n is number of qubits.

I will start by giving some basic definitions. Then I will
describe proposed algorithm (which is based on [3, 4]).
Then I will analyze complexity of this algorithm. I will
conclude with discussion of several related topics.

II. DEFINITIONS

Qubits. Qubit is a quantum system which can be in
superposition of two basis states |0) and |1).

Register of n qubits is a quantum system which consists
of n qubits and its state space is tensor product of state
spaces of those qubits. Register’s state space is span of
2™ basis states, each of which is tensor product of qubits’
basis states (although not any register’s state is a tensor
product of qubits’ states).

We denote states in qubit register of n qubits by binary
string consisting of n bits. The leftmost bit in string
corresponds to qubit 0, rightmost bit corresponds to qubit
n — 1. Also we denote state by an integer ¢ € 0,...2" — 1,
represented by that binary string in little-endian style (i.e.
leftmost bit is least significant). For example, if n =5
then register has 32 basis states, and state 25 is

[25) = ]10011) = 1) ® [0) ® [0) @ 1) ® |1). (1)

If ¢ is index of state, i[j] is j-th bit of this index (i.e.
Jj-th character in binary string representing ).

All notation is 0-indexed.

Quantum gate acting on one qubit is a unitary operator
acting on state space of this qubit. Similarly, quantum
gate acting on register of several qubits is a unitary op-
erator acting on space which is tensor product of state
spaces of those qubits.

Matrices. Complex-valued matrix A € C™"*" is called
unitary if Ut = U1, U(n) is set of all unitary matrices
of size n X n.

Matrix is called special unitary, if it is unitary and has
determinant 1. SU(n) is set of all special unitary matrices
of size n x n.

Two-level unitary matrix is a unitary matrix obtained
from identity matrix by changing a 2 x 2 principal sub-
matrix.

Any quantum gate on register of n qubits, being an
unitary operator, can be completely defined by unitary
matrix 2™ x 2". Indexing of matrix elements follows the
same pattern as indexing of register states, i.e. U;; =
(i| U |j), where 4,j € [0,2™ — 1].

Controlled gates. Let’s consider a gate U acting on
register t. Let’s add a new qubit ¢ to this register and
define new gate CU as follows. If ¢ is in state |1), this gate
applies U on t, but if ¢ is in state |0), this gate doesn’t
change the register’s state:

CU(Ja) ®[0)) = |a) @ [0), (2)
CU(ja) @ 1)) = (U |a)) @ 1)

Such gate is called controlled, qubits in ¢ are called
target qubits, and qubit ¢ is called control qubit.
Example of a controlled gate is CNOT (controlled-X)

gate:
0
) 3)
0

Similarly, let’s define controlled gate with mul-
tiple control qubits. Gate CU acting on regis-
ter to,...,tr_1,¢Co,...,cc—1 is controlled by qubits
Coy---yCC—1, if

10
czvo:r:(gg
00

[l ele]

(Ula)) @ [b)
|a) @ |b)

if b)) =[1...1),

otherwise,

CU(Ja) @ b)) = { (4)

where |a) - basis state of target qubits tg,...tr_1, |b) -
basis state of control qubits cg,...co_1, U € U(2T). In



other words, it applies U on target bits only if all control
qubits are set to |1).

Matrix of a controlled gate has special form. It’s an
identity matrix 2¢+7 x 2¢+7  where lower right submatrix
27 % 2T is replaced by U. If T = 1, this matrix is two-level
unitary.

We will denote I — unitary matrix; X = (9 }) — Pauli
X matrix, also known as X gate or NOT gate.

Expression a @ b means bitwise addition modulo 2 (also
known as XOR), e.g. 25 ® 13 = 20.

IITI. ALGORITHM
A. Two-level decomposition

First step is to decompose our unitary matrix A €
U(d) into product of two-level unitary matrices (d = 2").
Following algorithm is based on algorithm in [4].

Let’s make elements in first column equal to zeroes
by multiplying matrix (from the right) by two-level uni-
tary matrices. Assume that at current step elements
Ap,it1 ... Ao,a—1 are already zeroes and we want to make
element Ag; zero as well, without affecting already elimi-
nated elements. This can be written as:

(2200 U=(c00--0) (5

Suppose a # 0,b # 0.

Matrix U can be chosen to be two-level unitary matrix
acting on elements (4,7 4 1) with non-trivial unitary 2 x 2
submatrix U’, where

(ab) U =(c0). (6)

Let’s show that we can always find such special unitary
matrix U’ which satisfies condition (6), and makes ¢ real
positive number.

Any special unitary matrix U’ can be written in form
(3, §4.6]:

, cosfe  sinfe't
—sinfe* cosfe
where 6, A\, € R.
Substituting (7) in (6), we get:
{acos fe — bsinfe* = ¢,

asin fet + beosfe ™ = 0.

From second equation we get:

tan @ = —g exp (—i(A + 1)) - )

Let’s demand that tan @ is real and positive. Then:
b
6 = arctan -1 (10)

arg <—26:ﬂp(—i(>\ + u))) = m+arg(b)—arg(a)—A—p =0
(11)

From (11) we can express u:
=+ arg(b) —arg(a) — . (12)

Let’s find A. For this, let’s express ¢ from first equation
in (8), using (9):

) ) ) b2 —2ip
¢ = cosf(ae™ — btanfe ") = cosf (ae“\ + = )

ae

Ty

Let A = —arga. Then ae™ = |a|e?>8oe—iar80 = lal.

From (12) we get p = 7w + argbd, therefore be " =

|b|€iargbe—i7r€—iargb — —|b‘, SO

b2

¢ =cosf- |a|+ﬁ . (14)
a

We have c real and positive, exactly what we wanted,
so matrix U’ is given by formula (7) with

0 = arctan (’ZD A= —arg(a); p=r+arg(h). (15)

If b = 0, we can just skip this step, formally putting
U =1. If a =0, we can just replace columns by taking
U'=X = (9}) and proceed.

After we finished eliminating first row, all elements in it
except first will be zeroes and matrix still will be unitary.
First element then must have magnitude 1 (because norm
of row in unitary matrix must be 1). As our construction
always makes c real and positive, it must have value 1.
All other elements in first column must be zeroes, because
norm of first column must be 1. So, we get (d — 1)-level
matrix, and we can apply the same algorithm to remaining
(d—1) x (d — 1) submatrix and repeat it until only 2 x 2
non-trivial submatrix is left in A, which will make A
2-level unitary matrix.

For example, for matrix 4 x 4 this process looks like
this:

* % % % 1000 1000
* x k ok 0 * * * 0100
— — (16)
I 0 % % x 00 % %
* ok ok % 0 % * * 00 % %



Let’s denote Uy, Us, ...Up — all matrices which we
applied during this algorithm and Uy - final two-level
matrix we got. Then the whole process can be written as

AUy -Uy...Up=Uy, (17)

from which follows

A=U;-U) UL . UL (18)

Equation (18) gives desired decomposition of A into
2-level unitary matrices. This decomposition has d(d-1)
matrices. Indeed, each matrix in decomposition (includ-
ing Uy) corresponds to one eliminated element in upper
triangular part of matrix A, and there are @ such
elements.

All matrices in decomposition are special unitary, with
two exceptions. First, if we were swapping columns due to
a being zero, we will have two-level X matrices. Second,

if det(A) # 1, matrix Uy will not be special unitary.

B. Gray codes

Now all two-level matrices in decomposition act on pair
of states (¢,4 + 1). For our purposes we want them to act
on pairs of states differing only in one bit, i.e. (i,7 @ 2¥).

Luckily, for any positive integer n exists such permuta-
tion of numbers 0,1,...,2" — 1, that any two neighboring
numbers in it differ only in one bit. Such permutation
is called binary-reflected Gray code [5], and is given by
formula

m=io|if2], (19)

where : =0,1,...,2" — 1.

For example, Gray code for n =3 is (0, 1,3,2,6,7,5,4).

Let’s consider matrix P € U(2"), such that P;; = Oim;-
This is permutation matrix, i.e. its action on a vector
is permuting elements of that vector with permutation
7. Then expression P A’ P simultaneously permutes rows
and columns of matrix A’ with permutation 7. If A’
was a two-level matrix acting on states (¢,7 + 1), then
A = PTA’P will be two-level matrix acting on states
(m;, miy1) — exactly what we need.

So, we need to apply two-level decomposition algorithm
to matrix A’ = PAPT and get decomposition A’ = ], A..
Then A = PTA'P = [[,(PTA,P). So, we have decomposi-
tion of A into two-level unitary matrices acting on states
differing in one bit.

Similar technique is used in [6].

C. Fully controlled gates

Let’s call gate a fully controlled (FC) gate acting on
qubit ¢ if this gate acts on qubit ¢ and is controlled by all

other qubits in the register. This gate will act on certain
basis state only if all bits in index of this state (except
maybe i-th) are set to one. For example, if n = 5, FC
gate U acting on bit 1 applies matrix U to states |[10111)
and [11111).

By convention, FC gate acting on single qubit is just
simple one-qubit gate without control qubits.

FC gate applies a two-level unitary matrix. But also
any two-level unitary matrix (acting on states differing in
one bit) can be implemented with a fully controlled gate
and possibly some single-qubit X gates. Let’s show how.

Let U be two-level unitary acting matrix on states
(i,i @ 2"). Let Jy — set of all indices j, such that j-th
bit of i is zero, J; — set of all indices j, such that j-th
bit of 7 is one (both sets don’t include 7). Then we need
to apply this two-level unitary only to pair of such states,
whose indices have zeroes on positions Jy, and ones on
positions Jy. If Jy = 0, this is simply fully-controlled gate
on qubit 7.

But if there is some j € Jp, then we have to just apply
X on j-th qubit, then apply U and then apply X on j-th
qubit again.

This will work because X acting on j-th qubit swaps
state i with state i ©27, so if U does something only with
states i where i[j] = 1, then XU X does the same thing
with states ¢ where i[j] = 0.

So, to implement two-level unitary matrix we have to
apply X gate to all qubits from Jy, then apply fully-
controlled gate on qubit r and then again apply X gate
to all qubits from .Jy.

Let’s consider an example. Let n = 5 and we want
to apply two-level unitary matrix with non-trivial 2 x 2
submatrix U acting on states |10100) and |10110). Then
r =3, Jo ={1,4} and J; = {0,2}. So, we need to build
the following circuit:

D. Implementing a single gate

At this point we have sequence of X gates and FC gates
acting on single qubit, but each such gate is represented
by arbitrary U € U(2). We have to decompose U into
product of matrices, which can be implemented by gates.
In this paper I will consider how to decompose them into
Ri, R, and R, gates, which are defined as:

Ri(a) = ; (20)



(o) _ (o) sntofe)
Ry(a) = p( 2 ) —sin(a/2) cos(a/2) |

(21)

eia/Q 0

R.(a) = exp (maz> - L (22)

0 efia/Z

First step is to make U special unitary matrix, if it’s
not such matrix already. Let ¢ = argdet U (recall that
|det U| = 1). Then det(R;(—¢) - U) = e~ *®e® = 1. So,
takes place decomposition U = Ry (¢)U’, where

U'=Ri(-¢)U (23)

and U’ is special unitary.

Now all is left is to decompose special unitary matrix
U’ into gates. As U’ is special unitary, it can be written
in form [3, §4.6]:

, cosfe’™  sin Qe
U= | NE (24)
—sinfe cosfe
where

6 = arccos(|Upo|), A = arg(Up), 11 = arg(Up,).  (25)

It can be directly checked that then

U'= R.(A+ p)Ry(20)R- (A — p). (26)

So, action of single-qubit gate U can be implemented
using four gates:

U=Ri(o)R-(A+ p)Ry(2O)R.(A = p),  (27)

where ¢ = argdet U and other parameters are given by

(25).

E. Optimizations

Combining all previous steps, we can build sequence of
single-qubit X gates and FC gates R;, R, and R, which
implements given unitary matrix.

Each of O(4™) FC gates is surrounded by O(n) X-gates.

It can happen that there are two X gates (after one FC
gate and before next FC gate), which act on the same
qubit. As X? = I, they both can be removed.

This will eliminate significant amount of X gates. When
neighboring two-level matrices correspond to eliminating
elements of the same row, they act on states (i1,42) and
(i2,13), so mask Jy for them can differ at most in two

bits, so there will be not more than two X gates between
almost all FC gates after optimization. There is only
O(2™) pairs of gates where this doesn’t work and we can
have up to n X gates (this happens when we proceed to
next row in matrix). Overall, this guarantees that after
optimization there will be O(n-2" +4™) = O(4") X gates,
or O(1) X gates per one two-level matrix.

Another easy optimization to make is to re-
move all gates which are identity matrices, namely
Ry (27k), R, (47k), R.(47k) for k € Z.

One more optimization is when we convert matrix to
gates and matrix X occurs, don’t apply usual procedure
for not-special unitary matrix (which will result in de-
composition X = R, (—m)R; (7)), but just use FC gate X
instead. If we do that, we can guarantee that final circuit
will contain at most one R; gate, and even this gate will
be needed only if initial matrix was not special unitary.

F. Implementation

I implemented a Python program which uses described
algorithm to transform arbitrary uniform matrix U €
U(2") into a Q# operation, which implements action of
this matrix on array of n qubits. This program is available
on GitHub [7].

This program performs all steps described above and
then maps gates to standard Q# commands, namely
X, Controlled X, Controlled Ry, Controlled Rz,
Controlled R1.

IV. COMPLEXITY

One interesting question to consider is how many op-
erations does it generally require to implement unitary
matrix acting on n qubits.

Decomposition into two-level unitary matrices consisted
of w = O(4™) matrices. Each two-level matrix was
mapped to 3 or 4 fully-controlled gates and O(n) X gates,
but after optimization we expect to have O(1) X gates
per two-level unitary matrix. Thus we expect number of
needed commands to be O(4™).

Let’s check it experimentally. I generated random
matrices U € U(2") for n = 1...9, decomposed
them using described algorithm, and calculated how
many gates of each type appears in the decomposition
(#(X),#(Ry), #(R.),#(R1)). Also I calculated total
number of gates G(n) and number of gates per matrix
element, which is number of gates divided by 4™. Results
are shown in table I.

As we can see from the data, indeed G(n) ~ 2.00-4™ =
o4m).

Let’s denote Gpin(n) — minimal number of gates
(X, FC-Ry(«), FC-R, (), FC-Ry()), needed to imple-



Table I. Number of gates in decomposition of random matrices

n|#(X) |#(Ry) [#(R:) |#(B1)|G(n) |G(n)/4"
1[0 1 2 1 4 1.00
2(2 6 12 21 1.31
3128 |28 |56 |1 13 |1.77
4/130  [120 |20 |1 491 [1.92
50532 496 (992 |1 2021 [1.97
62118 |2016 [4032 |1 8167 |1.99
7/8392 [8128 16256 |1 32777 |2.00
8(33290 (32640 (65280 |1 131211]2.00
9(132364 1308162616321 524813|2.00

ment arbitrary 2™ x 2™ unitary matrix. We showed that

Unitary matrix 2™ x 2" can be parametrized by 4"
independent real numbers [8, §IV.4]. So, to implement
arbitrary matrix using gates parametrized by a real num-
ber, we will need at least 4™ such gates. So, we will have
to use at least 4" FC Ry, R, and R, gates, which gives
us lower bound Gpin(n) = Q(4™). Therefore, proposed
algorithm gives asymptotically optimal result.

However, in some special cases matrix can be repre-
sented by much fewer number of gates, for example, if
it was built as product of a few single-qubit gates and
CNOT gates. Generally, proposed algorithm will not rec-
ognize special structure of the matrix and will still return
Q(4™) gates.

V. DISCUSSION
A. Further decomposition

In this paper we consider fully controlled R,, R, and
R, gates as primitives, because they are supported by Q#
language. However, two-level matrix can be decomposed
into sequence of simpler gates, namely Ry, R, and R;
gates acting on single qubit and CNOT (controlled-X)
gate (acting on two qubits), and decomposition of a single
two-level matrix will contain ©(n?) such gates. How to
do that is shown in [3, §4.6].

B. Universality

Set of gates is universal if any quantum gate acting on
any number of qubits can be implemented by combining
gates from this set.

Universality is important property for quantum com-
puters: if we have set of universal gates, we only need
to be able to implement them on a particular quantum
computer to be able to implement any irreversible com-
putation on it. Possibility of implementing universal set
of gates is one of DiVincenzo criteria [3, §11], meaning it
is necessary requirement for any physical system to be a
viable quantum computer.

This paper can be seen as a constructive proof that
set of single-qubit X gate and fully-controlled gates
Ry (), Ry(a), Ri(c) with any number of control bits (in-
cluding 0) and with any parameters is an universal set of
gates.

However, this set can be reduced to just set of CNOT
gate and single-qubit gates R, (), R. (), Ri(«) [3, §4.6].
Moreover, this set can be reduced to just one 2-qubit gate
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Dirac equation, spin and fine structure Hamiltonian
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The Dirac equation is the starting point for relativistic quantum mechanics which evolved into the
modern Quantum Field Theory. The purpose of this paper is to introduce it from a historical point
of view and focus on two conspicuous applications. The first one is the explanation of the spin of the
electron on a theoretical basis. The second is the derivation of the fine structure Hamiltonian that
gives the relativistic corrections on the hydrogen atom.

I. HISTORICAL INTRODUCTION

Along the following sections we are going to give quite
a number of historical references and comments but we
want to devote this one entirely to the groundbreaking
paper [1] in which Dirac introduced his new equation.
After 80 years, it is noticeable how close this paper is to the
modern reader. Definitively it is not only a fundamental
contribution, it is also a very advisable reading.

The paper [1] has six sections and a general introduc-
tion that we label as 0. We describe here the contents
with some comments avoiding deliberately formulas and
technical points.

§0. Dirac notices firstly the discrepancy between the ex-
periments and the quantum theory predictions for atoms.
After mentioning the contribution of Pauli and Darwin
to solve this problem, he indirectly suggests that they are
artificial theories (with the funny sentence “The question
remains as to why Nature should have chosen this par-
ticular model for the electron”). Finally he announces
in an impersonal way a Hamiltonian in agreement with
relativity and the experiments.

§1. Previous Relativity Treatments. This is a kind of
technical continuation of the introduction. The Klein-
Gordon equation (named here as Gordon-Klein) is consid-
ered as a tentative relativistic Schrodinger equation with
two difficulties: Its limitation to define probabilities of
dynamical variables and the existence of negative energies.
The last paragraph contains an assertion between modest
and prophetic: “we shall be concerned only with the re-
moval of the first of these two difficulties. The resulting
theory is therefore still only an approximation”.

§2. The Hamiltonian for No Field. The content of this
fundamental section is a derivation of the Dirac equation
as a factorization of the Klein-Gordon equation in a way
that could be found in any modern book except for slight
changes in the notation. Something that sounds strange
from the modern point of view is that Dirac seems to be
prone to consider the needed extra dimensions (and even
the matrices) as reflecting new “variables”.

§3. Proof of Invariance under a Lorentz Transformation.
Although the equation has been derived starting from
a relativistic expression, it is not clear what Lorentz
covariance means for it. The point to have in mind (that
still puzzles students) is that the four coordinates of W
(the spinor wave function) are not the four coordinates

of Minkowski space-time. In this section one can follow
the steps of the proof but the underlying idea remains a
little obscure. Paying a high price, the modern language
of representations makes this point clearer [2, 4.2].

84. The Hamiltonian for an Arbitrary Field. The
equation for an electron in an electromagnetic field is
displayed at the beginning and the rest of the section
contains manipulations with o that nowadays could be
consider prolix.

85. The Angular Momentum Integrals for Motion in a
Central Field. This is an impressive and important part
of the paper. In one sentence, the spin of the electron is
deduced. Namely, it is proved is that L+ %a is a constant
of motion under Dirac equation in a central field (and
L is not). This is an honest theoretical physics answer
for the philosophical question about the Nature in the

introduction.

86. The Energy Levels for Motion in a Central Field.
The motivation here is to deduce that the correction
for the hydrogen atom matches the theory of Pauli and
Darwin. Dirac is sketchy in this section and some inter-
esting implications appear in the second part of the paper
[3]. Shortly after, Darwin published his study of the fine
structure of the hydrogen atom [4].

Along this work we will tackle topics related to the
sections in the paper by Dirac with the only important
omission of the Lorentz covariance, which is more tech-
nical in nature. In connection with the last section, we
derive the fine structure Hamiltonian which is one of the
aftermaths of it.

II. SEVERAL FORMULATIONS

Let us start with some motivation following Dirac’s
steps. The idea to create a relativistic Schrodinger equa-
tion is to quantize the relation E? = p?c? + m2¢* promot-
ing F and p to be the corresponding operators. In this
way it comes out the Klein-Gordon equation for the free
particle (by a slip of the pen there is a wrong sign in [1])

— h20%W = —h2 VAU + m2A. (1)

This is a second order equation in time. It means that
the wave function at a fixed time does not determine its
evolution in later times. A deeper problem is that it lead
to negative probabilities (see e.g. [5, §1.2]).



The Dirac equation is usually introduced, following the
original [1, §5], as a “factorization” of Eq. (1). Let us
examine a toy analogy. Consider the classical harmonic
oscillator ruled by & + w?r = 0 and say that for some
reason one wants to turn it into a first order linear equa-
tion az + Bx = 0. The first reaction is to claim that
this is blatantly impossible because we need the freedom
to impose two initial conditions, one for position and
another for velocity. The key point is that the dimension
of the solution vector space can be increased keeping the
order promoting x to be a vector and consequently the
coefficients to matrices. In our example & + w?z = 0 is
equivalent to the vector equation

aX +BX =0 with a=1ls, = <£2 _01>. 2)

The matrix equation forces X = (x, )" with x a solution

of the scalar equation. This is the cheap and well-known

mathematical trick of hiding higher order derivatives in
d

coordinates. A calculation shows (a4 — B)(al + ) =

% + w? (Cayley-Hamilton theorem is working here) and
we can say that we have factorized the original equation.
In the same way, we could write Eq. (1) as

(—ih0y + co-p+ Bmc?) (ihdy + ca- p+ Bmc®) ¥ = 0 (3)
if we impose for 4,5 € {1,2,3}, i # j,

a?=p%=1,

j aja; +ajo; =0 and o+ Bay = 0.

(4)
Of course this cannot fulfilled with numbers, we need
to move to the noncommutative realm of matrices. The
first two relations for o; are part of those for the Pauli
matrices but the third spoils any choice of a 2 x 2 matrix
B with 2 = 1. Taking 8 = 1 would work flipping the
middle + sign into —. In fact it can be proved [6, XX.7]
that the smallest dimension to have a solution of Eq. (4)
with Hermitian matrices is 4. Roughly speaking, flipping
signs requires to increase the square roots of 1 doubling
the dimension. A possible choice fulfilling Eq. (4) is

a; = <t(7)J UOJ) and B = <é OI> , (5)

written in blocks of 2 x 2 matrices. It is not the only
choice but it can be proved that all possible choices are
equivalent except for a change of basis [6, XX.II1.10].

After the previous factorization, we infer the Dirac
equation in its Hamiltonian form

ihd, ¥ = HV with H=ca-p+ pmc*.  (6)

This is an evolution equation and then time plays a
distinguished role (by the way, the conservation of the
probability [ Ui follows easily from it). With an eye to
deal with Lorentz covariance, it is convenient to define

7 =pa; and 4’ =4. (7)

With this notation the Dirac equation becomes
(ihy" 0y — me)¥ =0 (8)

where, as usual in relativity, it is assumed p € {0, 1,2, 3,4}
and the summation convention. This is called the covari-
ant form of the Dirac equation. In QFT (Quantum Field
Theory) very often %9, is abbreviated as @ and the
equation acquires the minimalist form in natural units
(i@ —m)¥ = 0. The explicit form of the v corresponding
to the choice Eq. (5) is the so-called Dirac representation

() (07 o

In some contexts it is convenient to define v° differently,

namely
0 __ O I j o 0 gj
»=(76) 7=(0 %) o

This is called the Weyl representation. It corresponds to a
different choice of o and S i.e., to switch the two couples
of columns and to change the sign of the last couple of
rows in Eq. (5).

The relations Eq. (4) translate into the suggestive com-
pact formula

VAT AR = 20 1y (11)

where n*” are the components of the Minkowski tensor.
It turns out that under Lorentz transformations v =
(7°,91,72,+43) transforms as a vector and the Lorentz
covariance of the Dirac equation means that there is a
corresponding representation of the Lorentz group acting
on V.

Shortly we will examine some of the noteworthy achieve-
ments of the Dirac equation. Before going on, when one
sees these 4 x 4 matrices a natural question shows up
pointing an inconvenience. The physical meaning of the
extra dimensions is unclear. The wave function was orig-
inally, as the name suggests, a function representing a
wave, afterward it became a vector (a 2-spinor to be pre-
cise) to encode the two possibilities for the spin of the
electron but we now have two more coordinates. The full
answer is not easy and it is related to Dirac’s self-criticism
in [1, §1]. The equation contains information about two
particles, the electron and the positron and they cannot
be separated because they are excitations of the same
quantum field [7, 37.4]. Then ¥ actually represents a field
and the Dirac equation is a starting point of quantum
field theory.

Nevertheless there is a symmetry between both parti-
cles, better expressed with Eq. (10), that implies that the
new two extra components do not add degrees of free-
dom. Namely, when Eq. (10) is substituted in the Dirac
equation mc¥ = ihy*0, ¥ we conclude that the first two
components are determined by the two last components
and vice-versa. As said in [2, §4.3], the four components
are only necessary “to make room for the Dirac matrices”
fulfilling Eq. (4). It motivates that in the applications we
discuss, at some point we select one half of the 4-spinor V.



III. THE SPIN OF THE ELECTRON

The spin and particularly the spin of the electron baf-
fled the pioneers of quantum physics who saw that atomic
spectroscopy in some aspects confirmed the theory and
in some other did not. It is enlightening the last sentence
in the seminal paper by Schrodinger [8] in which after
noticing some contradictions with the experiments, he
claims “The deficiency must be intimately connected with
Uhlenbeck-Goudsmit’s theory of the spinning electron.
But in what way the electron spin has to be taken into ac-
count in the present theory is yet unknown”. We address
the reader to [9] to read from a master how the concept
of spin evolved and how influential was.

A major advance was provided by Pauli (and also Dar-
win contributed) who according with the abstract of his fa-
mous paper [10] arrived at “a formulation of the quantum
mechanics of the magnetic electron by the Schrodinger
method of eigenfunctions”. Pauli matrices appear there
by the first time.

There is something slightly discomforting in the equa-
tion introduced by Pauli, in fact he was not satisfied with
it. In some way, it is not fundamental, it is created hav-
ing in mind that it has to reflect the expected magnetic
moment. In this section we are going to see that the equa-
tion that Pauli got is a kind of nonrelativistic limit of the
Dirac equation (created from first quantum relativistic
principles) and the spin of the electron is embodied in the
equation. Dirac considered it “an unexpected bonus”.

To couple Eq. (6) to an electromagnetic field, the natu-
ral equation (minimal coupling) is

itho, U = (ca (p— ZA) + Bmc? + e@)\I/ (12)

where, as usual, A is the vector potential and & is the
scalar potential.

Recalling the form of 8 in Eq. (5) we note that we
are adding the rest mass in the two first coordinates
and subtracting it in the two latter coordinates. As we
will promptly see, this causes that in the nonrelativistic
setting the upper half ¥; of the spinor W is “large” and
the lower half U is “small”. Writing Eq. (12) in terms
of U; and W, we get

ih0y V), = co - (p— SA)U, +mc®¥; + edV,, (13)

ih0y U, = co- (p— SA)U; —mc?V, + ePV,.
If ¥ is an eigenstate with energy &, in nonrelativistic
situations, £ should be close to the rest mass mc? and then
the second equation can be approximated by 2mcV¥, =
o-(p—£A)Y; leading to v/c as the ratio of the size of W,
to the size of ¥y, so the “small” part ¥, is actually small
in this situation. When we substitute the approximate
second equation into the first, we obtain

. 1 e
ih0, W, = %(a (p— EA))Q\I/l + mcPT, + e@T,. (14)

Recalling the well-known formula
(c-u)(og-v)=u-v+io- (uxv), (15)

which is also valid for operators, we have

ihd ¥, = —(S + P +mc?)¥, (16)

1
2m
where

1 e
S=—(p—-A)?+ed 17
5o (P~ —A) +e (17)
gives the terms that would appear using the Schrodinger
equation and

P:—ifo'~(p><A+A><p) (18)
c

is a new extra (Pauli) term. Using the vector calculus
formula for V x (pv) we have

(p x A+ A X p)\l’l = —zh(V X A)\I/l = —ihBVY;,. (19)
Finally, renaming ¥; as We~"m<"t/% which corresponds to

omit the contribution to the energy corresponding to the
rest mass, we arrive to the Pauli equation

ih9, U = (21

m

(p—CA) red— T s B)v. (20)
c 2mec
The term involving o - B would not appear with
Schrodinger’s scalar wave function approach and shows
an intrinsic coupling to the magnetic field with a gyro-
magnetic ratio e/m which doubles the one of a classic
electron in a circular orbit. In other words, an electron
behaves as a magnet with a strength that doubles the
corresponding one to a classical spinning electron. This
quantum property is, of course, the spin.

From the historical point of view, Eq. (20) was intro-
duced by Pauli in [10] looking for something behaving
as an angular moment to match the experiments. They
suggested a new degree of freedom and motivate the in-
troduction of vector wave functions with two coordinates.
Ironically Kronig should be considered as the pioneer who
introduced the spin but Pauli opposed to his idea and he
did not publish it [9, §2], [11]. In a curious twist, later
Kronig criticized the new view of the spin.

We have got Eq. (20) as a consequence of Dirac equa-~
tion that is, so to speak, fundamental but a certain uneasy
feeling persists because perhaps something is lost in the
approximation and in principle the spin could be a non-
relativistic shadow of a more complex concept. Now,
following [1, §5], we show another form to arrive to the
spin without using any approximation.

Let us consider the Dirac equation in the form Eq. (6)
for the free electron (Dirac also allows a central potential
but it does not make any difference). A calculation proves

[H, L.] = ihc(a1pz — aspr). (21)



A similar calculation applies to the rest of the coordinates
showing [H, L] = —ihca X p. It is then apparent that
angular momentum is not conserved. This suggests that
there is an internal spin of the electron compensating
the missing angular momentum (this was taken by Pauli
as starting point). Dirac just writes in his paper the
formula for the corresponding operator S and checks
[H,L + S] = 0. Here we give some insight about how to
deduce or guess such term. We look for S, Hermitian
such that [H, L, + S,] = 0. When we impose that the
coefficients of p; and the independent term vanish we get
the equations

— thag = [SZ,OQ], thay = [Szua2] (22)

and

[Szaa?)} 207 [SZ)/G] :0 (23)
The latter commutation formula implies that S, is
block diagonal and the former establishes a relation be-
tween both blocks. In this way we can write S, =
ihdiag(A, 03A03) with A a 2 x 2 Hermitian matrix. On
the other hand, the equations Eq. (22) imply

2i02 = AO’l + iUQAO’g, 727;0'1 = AUQ — 0'1A0'3. (24)

In a more symmetric form, post-multiplying by o3,

2i01 = 09 A — Aoa, 2i0o = Aoy — 01 A. (25)
We recognize immediately the commutation relations for
Pauli matrices and the equations suggest A = o3 leading
to S, = Lhdiag(os,03). In general the missing angular
moment is 1A diag(o, o). In other words, we are just
duplicating the usual spin matrices to match the four
coordinates of the 4-spinor.

A last comment is that although Eq. (25) suggests
A = o3 it does not imply it, any diagonal matrix with
a1 — agy = 2 verifies it. One can avoid this ambiguity
imposing that A2 is a multiple of the identity. This
proxy of 032 = Id comes from considering eigenstates of
the angular moment, or some sort of symmetry. The
resulting equality S2 + SZ + 8% = %hQ proves that we are
in the case of %—spin.

IV. THE FINE STRUCTURE HAMILTONIAN

We now focus on the case of the hydrogen atom model
via Eq. (13) with ® = —e/r and A = 0 (no external
magnetic field). To emphasize that the same arguments
work for any central potential we write V = e® and we
only assume V =V (r).

For an eigenstate of energy £, Eq. (13) acquires the
time independent form

Er = co - pYs + mcY + Vi, (26)
5% =COo - pd}l - mc2'(/)s + V'(/)s

Our target is to find a kind of relativistic correction of the
Schrédinger equation. For comparison, it seems natural
to separate the rest energy mc? and try to write Eq. (26)
with some degree of approximation as

Hy=FE¢y  where E =& —mc (27)
where 9 is a 2-spinor related in some way to ; and ;.

Recall that in Bohr model, as seen by Sommerfeld, the
fine structure constant is the ratio of the electron velocity
to ¢. Then the ratio of the relativistic kinetic energy to
ﬁpQ is 1 plus something comparable to o?. Hence to
keep the relativistic corrections we focus on a higher order
in o®. Namely, we do not distinguish between a factor 1
and a factor 1+ O(a?).

After these preliminary considerations, we are going
to get a valid Eq. (27) following two approaches. The
first one is taken from [12]. It is simpler but produces
a nonstandard form of the result. The second approach
(in which we follow mainly [13]) is more technical but
suggests a general method that we do not explore here.

81. The fine structure Hamiltonian via a direct approach
and perturbation theory.

We proceed as before eliminating s but this time we
do not use any nonrelativistic approximation. In this way
we arrive to the exact equation

FCo-p2me® +E—V) o p+ Vip = By (28)

If we parallel the procedure to derive Pauli equation
we should consider (2me? + E — V)~! as the constant
(2mc?)~! but then we would lose the relativistic correction.
We instead note that E —V is the kinetic energy, which is
O(mc2a2) in the Sommerfeld model (see the comments
above), and we infer

emet4B-v)t = (1—E2n;c‘2/)+0(n;“—;). (20)

Note that the simple identity [p, V] = —iAVV shows

o--p(l—E_V) _ (1—u)a-p— ih

2mc? 2mc? 2mc?

o-VV. (30)

Let us approximate in the right hand side the kinetic en-
ergy E —V by 55-p?. Then we get substituting Eq. (29)
and Eq. (30) in Eq. (28) our tentative form of the Hamil-
tonian

1 p? ih
H=— (1— ) 2_ W
2m 4m?2¢c? p 4m2c2

(o-VV)(o-p)+V. (31)

Appealing to the same heuristic argument as before, in
the last approximation we are losing a factor 1+ O(a*)
and we are under the allowed error.

The only remaining point is to simplify H to get a
manageable expression and to identify the physical mean-
ing of each term. The simplification repeats part of the
strategy used in the Pauli equation: The application of
Eq. (15) allows to write dot and cross products in terms



of electromagnetic data that here are very simple because
V' is a central potential. Namely, V necessarily verifies
VV = 1dVp and Eq. (15) gives

dv r . dvVr
(0 VV)(o-p) = T prio- (T xp) (32)
dV 0 1 dV
__Zhﬁa+rdrU'L

where we have used r -V = rm and the definition of
angular momentum. If we substitute this in Eq. (31)
and put S = %0’, we finally obtain the fine structure
Hamiltonian

4 2
p h* dV 0 1
H=Hy-—————— 4+ ——— S L
07 8m3c2  4m2¢2 dr Or ' 2m2cir dr (33)
where
p?
Hy=-—4+V 4
0 om + (3 )

is the part coming from the Schrédinger equation and the
rest of the terms are the corrections. The first one is the
natural relativistic correction of the energy linked to the
approximation of the relativistic energy

2 4

3 2,4 ny L

Vp2e2 +m2ct = mc? + o S (35)
The last term in Eq. (33) takes into account the coupling
between the spin and the orbital angular momentum,
it is the spin-orbit term and shows once again that the
spin of the electron is embodied in the Dirac equation.
Finally, the middle term is a little more mysterious. It is
named the Darwin term and it can be interpreted as an
effective smearing out of the potential due to the lack of
localization of the electron (see [14] for more comments
on this).

Actually Eq. (33) is the Hamiltonian as it appears in
[12] but the form of the Darwin term seems to enter in
contradiction with the rest of the texts we have checked
([5], [13], [15], [6], [14]). In them — dV. 0 g yeplaced

5 477}"3202 dr or
by 52— V?V. The hint to solve this paradox came to us
from a sentence in the old classic on atomic spectroscopy
[16]. Note that these terms are of the lowest order. Ac-
cording to time independent perturbation theory they
contribute to the energy as their expectations

K2 dV 81/1
4m202< |

We are going to see that they coincide and then both
terms give similar spectra to the limit of application of
perturbation theory. We have for ¢)(r) = R(r)Y (6, ¢)

2
2 (o] dvaw // dVdR |Y|“ddQ 37)
SQ

and integrating by parts in the inner integral, this is

Lok

h2
> and W<¢|V2V|¢>~ (36)

RZIY\2 drdQ = (V|V2V[v), (38)

5

where we have employed r2V?V = 4 (7’2%) because V

is radial.

82.  The fine structure Hamiltonian via a Foldy-
Wouthuysen transformation.

Now we are going to show another approach that leads
to the fine structure Hamiltonian in its standard form. To
deduce the Pauli equation we showed that the equation
Eq. (13) becomes decoupled in the nonrelativistic limit,
getting Eq. (14). When we kept the relativistic terms,
Eq. (28) was not entirely satisfactory because the left hand
side that we would like to be the Hamiltonian depends
itself on the energy. A clever idea introduced in [17]
to deal with Eq. (13) keeping higher order terms is to
introduce an artificial unitary change of basis U such that
the system turns to be approximately decoupled. Roughly
speaking it is like looking for a near to optimal choice
of the small and large spinors. Recall that in our case
A =0,V =ed (a central potential) and renaming, as
before, the energy &£ in Eq. (26) as E + mc?, we look for
U such that

V co-p v+ (H O
U(ca‘~p V2m02>U - (O H’)’ (39)

In honor to the authors of [17], U is called the Foldy-
Wouthuysen transformation. In principle the method can
be pushed to get any degree of approximation [18] [5]
but the calculations become very complex (in an early
published version of [18] the method is said to be “hor-
rendous”). Here we only consider the first step that
corresponds to

K ZP 2
U( 2”“) with K =/1- -2 . (40)

o-p 4m202
2me

Note that U is unitary and Hermitian, U = Ut = U1,

Before doing any calculation, let us examine the admis-
sible degree of approximation in Eq. (39). We have that
H is an approximation of z—p®+V then H' must be com-
parable to mc?. If f is the 51ze of the actual off-diagonal
blocks in Eq. (39), the second couple of coordinates, our
new small spinor, is suppressed by a factor O(f/mc?)
with respect to the first. Then the off-diagonal upper
block affects to H as O(f?/mc?) and with f like O(E«)
we get for H the admissible error O(Ea*) we want (recall
that £ ~ 2m(ca)? with Sommerfeld’s heuristic).

Let us decompose the middle matrix in Eq. (39) as

(VO O co-p
My + M, = <O V> + <ca-p _chg). (41)

When computing UMy UT, it is clear that in the off-
diagonal blocks V' is multiplied by a factor o - p/mc and
this is absorbed by the admissible error O(E«). On the
other hand, the first diagonal block coming form My is

Hy = KVK +

1
22’ pVo - p. (42)



In the same way, the off-diagonal blocks of U MpUT are
third powers of p divided by m?c and this is O(Fa). The
first diagonal block coming form M, is

1 1
H,=—Kp*— —p’ 43
P p 2mp (43)
The Hamiltonian H), + Hy is consequently valid but it is
too cumbersome to be useful. So we simplify it employing

p?
K~1- 44
8m2c? (44)
with the admissible error O(a*). Hence
2 4
Hy,~ P (45)

2m  8m3c?’

as expected from Eq. (35). For Hy we obtain, substituting
Eq. (44),

1 2 .2
Note that p?V = —h2V2V+2(pV)-p+Vp?. A calculation
involving Eq. (15) shows that o-pVeo-p—(pV)-p—Vp?
is

24V

hdV
ho-(VV xp)=——0o-(r xp) ;%S\L. (47)

r dr

And we arrive to the fine structure Hamiltonian in its
standard form

4 2
p R, 1 av
AL vE3 VAR
8m3c2  8m2c? + 2m2c2r dr

with Hp as in Eq. (34).

V. DISCUSSION

The Dirac equation is a central topic in quantum me-
chanics and it opens the gate to QFT. It has many signif-
icant features from the theoretical and applied point of
view. Some of these features treated in this paper are:

1. Tt allows to “factorize” the relativistic Schrodinger
equation (a.k.a. Klein-Gordon equation) avoiding
the unwanted properties of it that motivated that
Schrodinger himself abandoned the relativistic ap-
proach and focused on the nonrelativistic version
bearing his name.

2. It gives a theoretical basis for the existence of the
spin of the electron. This is a major achievement
because in the early times of quantum mechanics the
spin was a source of misunderstandings (e.g. Stern-
Gerlach experiment, anomalous Zeeman effect) and
it had been introduced “by hand” to avoid the
disagreement with the experiments.

3. When applied to the hydrogen atom, it produces a
Hamiltonian that gives fine corrections on the energy
levels that can be computed via perturbation theory
and checked experimentally.
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Direct State Tomography using weak
measurement, strong measurement and
probe-controlled-system

Kieu Quang Tuan
June 19th, 2019

1 Introduction

Direct state measurement means that complex state can be measured directly via
outcomes of pointers without any further complicated calculation of tomography.
There is a efficient way towards direct state measurement, that is weak values.
Since being introduced in [1], weak value is an interesting subject that physicists
have been doing research about it. Let us begin with the definition of weak value

i (Wl Al
(A) = =t (1)
where A is an operator, 1; and 9 are initial and final states, respectively.
When we choose A = |z)(z|, the weak value is

{polz) (x]t)
(pol¥))

which is proportional to wave function in x basis.
From this idea, physicists have invented many methods to measure quantum
state directly; and in this paper, I will present three of them: weak measurement,
strong measurement and probe-controlled system.

(|lz){z[)w = ~ Y(x), (2)

2 Weak measurement

In 2011, J. S. Lundeen et al. [3] pointed out a new way to measure wave function
in quantum mechanics which is called weak measurement based on weak value
and weak interaction. In weak measurement, we have a system which weakly
interacts with a device, this device is usually a qubit system. Due to weak
coupling, the wave function after being measured is just slightly biased but not
collapsed like in projective measurement. So in each time of measuring, we
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Figure 1: Weak measurement of the photon transverse wavefunction

extract a little bit information of the desired system; then, we have to do many
times and use statistical average.

The first step of this method is preparation of identical photons having state
U(z), then they will be weakly biased by a half-wave plate with a small angle «
in x direction. The pointer here is the linear polarization angle of the photon;
then, they did post-selection p = 0 by using a slit. Finally, the probability
of polarization of photons is measured by detectors after passing through a
polarizing beam-splitter [3]. A disadvantage here is that this method requires
moving the half-wave plate throughout the x direction, so the calculation to
reconstruct the wave function has to take into account time retardation; of
course, it will be more difficult for higher dimension systems.

Here we do some calculation for this method. The initial state is chosen as
1:)]0), the unitary operator is U (6) = e~#4®% where A ® 6, is the interaction
Hamiltonian and 6 is a small coupling constant.

The wave function after interaction is

e~ 04BN |0) = [T — i0A ® 6, + O(6%)]]1:)]0)

= [¥:)]0) + 0.A[)[1) + O(6%)

(3)

After being evolved, the system is projected onto [¢ ;) and the device is projected



onto |£)[| £14)] to get probabilities.

P(£) = (] (£le~ 0490 [y;)|0) 2
= |(wsl(= <|wi>\o> +0A[)1) + O(6%)))?
1 2 2
= (7 |bs) fiewfww» I+ 0
= Sl £ 00| A0 (i) £ 805147 + 00D
= (90?2 00y Alyn) + (Wil Al 5)0(e?)
il 4 02Relts VAL
2<|<wf|¢z>| £O2Re(lig) (glv) L +0(67)
= (s lapi) |2 < +0Re(A),,) + O(6)
Similarly,
P(+i) = |<wf|<iz'|e*i”®%|wi>|o>|2 .
|<wf|wz>|< + 0Im(A),) + 0(6?)
Do some rearrangements, we get
P(+) + P(=) = [(t]ts) 2 (6)

P(+) = P(=) +i[P(+i) = P(=i)] = 26| (¢ [¢3)[* (A)w + O(6%) (7)

Hence, if 6 is known, <A>w can be calculated, and particularly, if we choose
= |z)(z| the transverse wave function of photon in this case will be derived
directly. Keep in mind the notation P(+%)(P(—%)) is the same as Pp, (Pg).

3 Strong measurement

Instead of using weak interaction in section 2, here we use strong couple between
the system and the device, and the result is indeed better than weak measurement.
The word ‘strong’ can be understood that arbitrary strength measurement is
used, the stronger the coupling is, the better the result come out, and the ideal
case is that 0 = 7.

Because of the similarity of these two methods, here I show the procedure for
weak measurement again in the figure below, the strong one has difference at
bigger angle 6.

I will do calculation for both pure states and mixed states.

e Pure states
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Figure 2: Scheme of weak measurement method

Let’s begin with the unitary operator U, () = e~*™=®%y where 7, is x-projective
operator , ) = m;,Vn > 1 and o, is a Pauli operator.

, (—if)* 2, (—i0)° 3
Us(0) =L, ® Ix + (—i0)(m, ® 0y) + T(W:c ®oy)” + T(ﬂ'x ®oy)® +
92 . 3 '
=1L L —idn, ® oy — gﬂx ®Hﬂ+i§7rx®ay+
. 03 o 6> ot
=1L L, —i6— a1 +5 —...)7r3,7(§z>o—y+(—5 +J — )T 1,
=1, ® I —isinfn, @ oy + (cos — 1), @ L
=1, @L;— | z)(z | ®[(1 — cost)L, + isinfo,]
(8)
The pointer state after the momentum post-selection is
lo)p = (PolUs(0) Vi) (9)

Next I do the right part of above equation

U (0)| 04,y = {I; @ Lz — |x){z| @ [(1 — cosb)L; + isinfoy,|}x) @ |H)
= [V)x ® [H) — ¥a|x) @ [(1 — cost)|H) + isinfo,|H)]
=[V) ® |[H) — ¢a|x) @ [(1 = cosd)|H) + isind|V))] (10)
= [¢) @ |H) + ¢, |z) @ [(cosd — 1)|H) + sinb|V)]
= [¥)x ® [H) + ¢a|z) @ |X)

where |x) = (cosf — 1)|H) + sinf|V) and ) = > . ¥z. We can choose the phase



of the wave function such that ¢ = [¢)|. Then

|6)p = (po|U(0)[Win)

1 1
= W(Z@')W’ﬁ ®[H) + ﬁ(Z@fI)I%Ix) ®|x)
1

1 T
= 722 vl + e
1
Vi

From here, the probabilities can be derived, so I calculate the first case, the

following cases are done similarly. Defining ey = 2sin2g.

x

[1H) + X))

x
Vd

= 5[152 + 1])(8089 —1)2Retp, + (cosh — 1)2|¢,|?] = 5[1/52 — 269’(/;R6(1,[}x) + 3, ] =

P = [(01)[? = [(H[)[? = | —= (4 + ¢u(cost — 1))

77[;2
d

d
Pf) _ ;[; — (eg — sinb)YRe(y) + (1 — sinf)eg|1h,|?] ~ i[g + 0Re(¢,)]
p@) — ;[1/;2 — (e + sinf)YRe(1h,) + (1 + sind)eg|ib,|*] ~ i[f — 0Re(Yq)]
P = ;[f + sinfPTm () + €o(|ta]* — Y Re(ty))] ~ fl’[f +0Im(yy)]
P ;[dj — sinfPIm () + ep(|9a]” — dre(vs))) = Z’[ﬁf — 0Im(¢,)]

(12)

By algebraic rearrangement, we have what we are desiring: the real and imaginary
of wave function.

d (@) _ pla) 4
Re(vhy) = ——— [P — P 4 2tan(= P* 13
¢(t) 2¢sin9[ 4 an(5 Py] (13)
Im(,) = ——— [P — P (14)
2 sinb L R

When we choose § = 7/2 for the strong case, we will have better results than
weak measurement [4]; because the later uses weakly couple, so the extracted
information will be dimmer, simply.

o Mixed states

This job is similar as the pure states, but because of the instructive purpose and
dealing with mixed states in real experiments, I show it here.



We begin with the initial state of the system and the probe.

p=px ®[0)p (0], px = Z Pa,ylT) (Y (15)
z,y=1

The evolution operator U, () = e~*1#(zI®7y and the final state pI = U,(0)pUL(0).
Then, the system is projected onto the momentum state |p) = f Zy e e T2 Y)
(the reader can learn more about this Fourier transformation in Chapter 5 of [2])

to become

poo(@, p) p01(ff7p)> (16)

pz,p (plpzlp) = (pm(x,p) p11(z,p)

Let’s begin to verify it. First, we have

Ul(0)lp) = e’ 0 '®"y

HM&

‘ (i6)? (i6)3 1 <
= L T+ iblz) (2] ® oy + -l (ol © 1+ o [2) (2] @y + .J%;
) 1 2rizp (i0)% 1 zriep 9
=Ip) @I+ (’9)(ﬁe |z) ® oy + T(ﬁe T |z) ® (o)
(29) 2mizp 3
— (ﬁe #12) @ (0,)%) + ..
1 2mizp . 20 2 20 3
~ 9 @ T+ (e o)) @ (0, + o+ Gl
1 27\'111) iOo
:Ip>®ﬂ+(ﬁ6 |2)) @ ("7 —T)
(17)
Using Hermitian conjugate, we obtain
I —2micp —ifo
(plU=(0) = (pl @ I+ (ﬁe T (2]) @ (77 ) (18)
Combining them all
(p|U=(0)1pUF(O)Ip) = {plpx|p) ©(0)2 (0]
1  2rizp 0o
+ Ipxlﬁe T |z) @ |0)p((e?7r — 1)
+ 2= F (aloxl) © (7 DI0)p 0
1 —2mixp 27\'L.Lp —ibo 00
VA <9U|PX|f |z) @ (e77v = 1)|0)p(0[(e’7" —T)
=A+B+C+D

(19)




Because of complication, I do calculation separately.
The second term in the RHS is

d
1 2mi(z—y)p 0o
= (3 P T  [10) (0167 — [0) (0]
y=1

o (20)
2ri(z—y)p .
= g(z_: pyce T ) ®[[0)(0](cost — 1) +10)(1]sind]
The third term is the complex conjugate of the second one
1 mi(y—x)p .
= 20 ey ) @ [10)(0)(cost — 1)+ [1){0)sing]  (21)
=1

The fourth term is

D = 2 Gl(3 puale) o)) @ [(cos6l0) + sind|1)) ((0]coss + (1]sind)

— (cos8]0) + sind|1))(0] — |0)((0]cos® + (1|sind) + |0)(0]]
= épx,x ® [|0)(0|(cos?d — 2cosf + 1) + |0)(1|(cosfsind — sind)
+ [1)(0](sinbcosd — sind) + [1){1|sin>0)]

= épw,m ® [|0)(0[(1 — cos8)? + |0)(1|(cosh — 1)sind + [1)(0]|sind(cosd — 1) + [1)(1|sin?f]

(22)
Combine the results, we gain these things
2mi(y—x)p 2mi(y—=)p 9
poo(z,p) pr ye 7 —2sin fz (Peye T +cc)+4dsin? 2pz ),
T,y Y
1 Ti(y—z)p 0
prole,p) = Goind[3 poae T = 2sin?pel,
p()l(xap) = plO(xap)*a
1 5,
pui(x,p) = 881n20p1,x-
(23)
From above equations, we can derive that
N 0 2mi(z—y)p
Py ~ dtanz g ypri (@, p) + ;6 T p1o(x,p) (24)
For strong case (60 = 7/2)
2ri(z—y)p
y d(sz,ypll(xap) + Z € d plO(xap) (25)

p



As you readers can see, to gain the final goal, we must have p1; and p1g. Actually,
they are calculated through P, P_, Py, Pr , which are probabilities when the
final state of probe in equation 16 is projected onto these polarization. By
defining P"* = (i[p} |i) and from equation 16, we can easily get that

1 x, x, . x, x,
proa,p) = S[(P{P) — PUP —i(Pp" — Pio?)] (26)
and
pui(z,p) = P{"P (27)

After long and complicated calculation, we have proved that the either pure
or mixed states of the system can be reconstructed directly by measuring the
probabilities of the final state of the probe. It is indeed worth doing that.

4 Probe-controlled system

4.1 Fundamental concepts

We examine the combined system Hg ® Hp, where Hg is for the desired system
and Hp is for the qubit probe. The Pauli operators are

e = 0) (1] + [1){0] = [+){(+] = [=){~|
oy = —i|0)(1] +2[1)(0] = [ + ) (+i] — [ — ) (] (28)
. = [0)(0] — [1)(1]
Here, T use notations |£) := (|0) & [1))/v/2, | £ 1) := (|0) £ 4|1))/v/2. A
Let the total system undergo the probe-controlled system transformation 7"
T =Ty 2 0)(0 + 1 @ 1) (1] (29)

where Ty and Ty can be chosen later for desired purposes.
Next, we calculate the probabilities that the total system undergoes the
transformation and then are projected onto |¢f), |£)[| & ¢)] basis.

P(£) = (Wil T (lp5) (5| @ [£)(ENT1W) = i(|<¢f|TAo|¢i|2 + (|1l
+ 2Re (4| T 195 ()51 T [43))
(30)
P(i) = (Wil TV (j9hy) (s | @ | £ )i D) = i(|<¢f|T0"l/}i>|2 + (| Tl

& 2Im (|5 |¢) (6 1 Ta i)
(31)
Use clever arrangement, we have the following equation
P(+) = P(=) +i[P(+i) = P(=)] = (il T [0 5) (w5 Tl ss) (32)

which quickly reminds us the weak value, and we can exploit it to rebuild the
wanted wave function.



4.2 Transformation rules

From the result in the last part, we use a trick that is commonly used to calculate
cross section in Quantum Field Theory.

(il T3 [oy) (g [ Tlbs) = (i) (T )a (10 ))o (1) e(T1)callfi))a
([))al(@iD)a(T)an(1)o (W5 e (Th)ea
(
=tr

T (3)
| ><w2|)da(T )ab(|wf><wf|)bc(T1)cd

(i) i T3 1) s )
For the case of mixed states, the complex value is tr(ﬁifg ﬁffl). Since the

cyclic permutation does not change the trace, we can figure transformation rules,
which are extremely useful.
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Figure 3: Transformation rules

In this picture, Fig. 2(a) and Fig. 2(b) is the same if A can be spectrally
decomposed such as A = > ajlaj){a;| and A presents a positive-operator
valued measure (POVM), the reader can learn more in [2]. Fig. 2(c) and
Fig. 2(d) are obtained by rotating Fig. 2(b) clockwise and counterclockwise,
respectively. But the physical implication is indeed more meaningful than just
mathematical stuff. For instance, instead the system is projected onto |a;) in
the probe mode |1) and then is projected onto |t/f) in the both probe mode in
Fig. 2(b), the system is first projected onto [¢)f) in the mode |0) and then is
projected onto |a;) in the both mode in Fig. 2(c). Thank to that, experimental
devices can be arranged as well as possible.

4.3 Modified version for weak measurement

In Weak Measurement section, we see that there is O(6?) in the final result
(equation 7). Now we modify this method by using probe-controlled framework.
We choose the initial state |¥;) = |¢;)|+) and the transformation operator
T =1®]0)(0] +0A ® [1)(1]. Using equation 32 we have

P(+) = P(=) +i[P(+i) = P(=i)] = (¢iltoy) (W0 Als)

= 2P(0)0(A),, (39
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Figure 4: Modified weak measurement

where P(0) = [(¢7[¢:)|2/2 and {Ty, Ty} = {I,A}. Then we can choose
A = |z) (2| and measure the transverse wave function like section 2.
The idea is presented in Fig. 4(b), so we can think the weak interaction as a
small extraction of the initial state |¢;) from mode |0) to mode |1).

4.4 Derivation of new method - Probe-controlled system

In section 2, I have introduced weak measurement, which is considered as the
start of direct wave function using weak values. However, as you have seen, there
are some cons of it consisting low precision and moving half-wave plate along x
direction to measure the state.

And in section 4, a new framework and transformation rules are showed; in
addition, a modified version of weak measurement is a promising way to upgrade
the method of Lundeen et al.[3]. All of them created a new method for directly
measuring wave function called probe-controlled system. In this figure, there

@ (b)
1) )

|p0> & Half wave plate Tilted plane wave
Polarizer
- (D, A R, L)

V)i Lelzal—Ipo)

© ‘ I\
H) =0
--------- =) (| - po) (pol a
V) L2} (| —* (e) Polarizer

T p'mh{e (V)

7

@ — 1"
IH):  —=|po)(pol— .
e ) a e E\p =5
V) wix) f L f

Figure 5: Derivation new method from weak measurement

are conventional weak measurement - Fig. 5(a,b) and probe-controlled system

10




- Fig. 5(d,e), the Fig. 5(c) is a halfway step. Here I concentrate on this new
method.

First, we choose A = |z)(z| to measure transverse wave function. Next, we set
6 = 1 which is the maximum value for highest precision as in Fig. 5(c). Then,
we apply transformation rule for the clockwise case to transfer Fig. 5(c) to Fig.
5(d). In this scheme, the system is projected onto |pg) in the mode |H) and then
onto |z) in the both probe mode. The two modes |H) and |V') are the horizontal
and vertical polarization of the photons, respectively.

As you can see in Fig. 5(e), in mode |V'), the photons is let go through without
any obstruction, but in mode |H), only photons have p = 0 can get through,
which presents the projection onto |pg) in Fig. 5(c). Finally, photon’s polarization
is measured in {|%)} (diagonal polarization and {| =)} (circular polarization)
thank to a device such as a charge-coupled device (CCD) camera.

From the framework in part 4.1, we have {Tp, 71} = {|po)(pol,1}, so using
formula 32 follows

P(+) = P(=) +ilP(+i) — P(=0)] = (¢lpo) (pol) (z[¢) ~ ¢(x)  (35)

This thing means that the transverse wave function is directly measured in the
optical scheme depicted in Fig. 5(e). Furthermore, this method has advantages
concluding higher precision and scan-free arrangement than the conventional
way in section 2. The mathematical derivation for probe-controlled system is
similar to the thing displayed in section 3 for pure and mixed states, I think it
will be an instructive exercise for whom it may concern.

5 Discussion

Direct state measurement is a quite new and interesting field to explore the
quantum world, it is also a promising tool for quantum computation and quantum
information. This paper has introduced three methods to attain that goal. All
of them use probabilities of polarization of final states measured to reconstruct
quantum wave function. Especially, probe-controlled system is a powerful and
general way to upgrade and create other new methods for this purpose.
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Dynamical SU(n) Symmetry of the n-Dimensional Isotropic Harmonic Oscillator

Zhang Rundong
(Dated: June 20, 2019)

This paper briefly introduces the basic knowledge of Lie group, Lie algebra and representation
theory. Using this knowledge, the SU(n) symmetry of the n-dimensional isotropic harmonic oscillator
is demonstrated by utilizing ladder operators and generators of the symmetry group. This paper
also introduces the connection between this symmetry and the counterpart in classical mechanics.

I. INTRODUCTION

If a quantum system has some symmetry, then the
Hamiltonian of this system is invariant under certain
operations. For example, for a system with a spherically
symmetric potential energy function, the Hamiltonian
of this system would remain unchanged under spatial
rotation operations. Usually, for each spatial rotation
operation, there is a unitary operator associated with it
[1]. These unitary operators act on the Hilbert space and
they commute with the Hamiltonian. In this situation, the
eigenspace belonging to a certain energy level is invariant
under the action of these operators, and the eigenstates
pertaining to this energy level constitute the basis of
representation of the symmetry group.

However, many systems with spherically symmetric
potential energy functions actually have symmetry groups
larger than that of spatial rotational symmetry, we then
say these systems have dynamical symmetry. Two famous
examples of dynamical symmetry would be the SO(4)
symmetry of hydrogen atoms [2] and the SU(n) symmetry
of n-dimensional isotropic harmonic oscillators [3]. For
the dynamical symmetry group of a system, eigenstates
belonging to a certain energy level constitute the basis
of its irreducible representation. Thus, the degrees of
degeneracy of a system are related to the dimensions of
irreducible representations of its dynamical symmetry
group [3].

In this paper we mainly introduce the SU(n) symmetry
of the n-dimensional isotropic harmonic oscillator. The
arrangement of this paper is as follows: we first introduce
the basic knowledge of Lie group, Lie algebra and repre-
sentation theory in the second section. Then in the third
section we show the SU(n) symmetry of the n-dimensional
isotropic harmonic oscillator through two ways. We will
also point out the corresponding symmetry in classical
mechanics. Finally there are the conclusions.

II. LIE GROUPS, LIE ALGEBRAS AND
REPRESENTATION THEORY

A. Groups: Finite groups and Lie groups

A group (G,-) is a set G equipped with a binary opera-
tion “” that satisfies the following four axioms:

1.Vg1,920€ G, g1-92 € G.

2. There is a unique element e € G satisfies g - e =
e-g = g for every g € G, e is called the identity
element of group G.

3. For every g € G there is a ¢g~! € G such that
g-g ' =g ' g=e. Here eis the identity element.
4.V91,92,93 € G, (91 92) - 93 = g1 - (92 - 93)-

A typical example of group is the set of all unitary
operators O that leave Hamiltonian H invariant under a
unitary similarity transformation

O'HO = H. (1)

Here, the binary operation of this group is the multiplica-
tion of two operators. We use ¢ to denote this group.

A group can be classified as a finite group or an infinite
group according to the number of its elements. A Lie
group, or a continuous group, is an infinite group with a
manifold structure. In layman’s terms, a Lie group is a
group whose group elements are continuously dependent
on certain parameters 6;. We can write the element g of
a Lie group as ¢ (01,02,---) and let ¢ (0,0,---) =e. In
this paper, we mainly focus on Lie groups.

Suppose there are two groups (Gi,-) and (Gg, *), then
we say that map o : G; — G3 is a group homomorphism
if it preserves group multiplications:

a(g-9g') =0(g)xo(d'),V9,9" € G1. (2)

A group homomorphism ¢ is said to be an isomorphism
if o is bijective.

In physics, the most important Lie groups would be
the groups SO(n) and SU(n). They are all matrix groups,
so the binary operation of these groups is the matrix
multiplication. Where SO(n) is the group of all n-by-n
orthogonal matrices whose determinants are 1. SU(n)
group is the abbreviation for “n-order special unitary
group”, which is a group of all n-by-n unitary matrices
with unit determinants.

B. Lie Algebras of SO(n) and SU(n)

In this section, we will discuss the matrix groups SO(n)
and SU(n). One of their important features is that each
of their elements can be generated in the following way

M = e, (3)



Where M is an element of SO(n) or SU(n), and H is a
traceless Hermitian matrix. Moreover, H can be written
as a real linear combination of the bases of some vector
space V which is composed of specific matrices. We call
the bases of space V the generators of the corresponding
Lie group. In vector space V, the operation “[-,-]”, i.e.
the commutator of two matrices is closed. The vector
space V with the binary operation “[-,+]” is often called
the Lie algebra of the corresponding Lie group. Now let’s
look for the generators and Lie algebras corresponding to
SO(n) and SU(n).

We first consider the group SO(2). Notice that each ele-
ment of SO(2) represents a rotation on a two-dimensional
plane. To study rotations, one only has to study rotation
through infinitesimal angles, since a rotation through fi-
nite angle can always be achieved by performing a series of
infinitesimal rotations [4]. We notice that an infinitesimal
rotation can be written as

R(0) ~ 1+ A. (4)

Here A is a matrix of order #, and 6 is a small real
parameter controlling the angle of this rotation. Matrix
I is the identity matrix. When 6 = 0, R = I, there
is no rotation at all. Then we impose the condition of
orthogonality on R ()
R'"R~ (I+A")(I+A)

=TI+ (A" +A)+ATA=1 (5)

If we want the orthogonality condition to hold to first

order in 6, then we have AT = —A. Notice that there is
only one independent 2-by-2 anti-symmetric matrix

7 = <_01 (1)) . (6)

Thus, we know that A = 6.7, and an infinitesimal rotation
R (#) must have the form
RO)~I+07. (7)

You may ask: what if I want to have a rotation through
finite angle 67 Here is the answer:

0 N
o [ (%)
= lim (I—i— 9;?) =7 = A (8)

R(0)

N—oc0

A brutal calculation of the matrix exponent gives

o7 _ ( cos@ sind
€= <— sin 6 cos&) ’ ()

This is exactly the element of SO(2) group that we are
familiar with. Matrix .7 is called the generator of SO(2).
The way of obtaining a group element R () from the
generator .7 (as that in Eq. (8)) is called an exponential
map.

R(0) =

We now move on to the group SO(n). It is obvious
that Eq. (4) for infinitesimal rotations and Eq. (5) for
the orthogonality condition still hold, so does the con-
clusion that A must be anti-symmetric. But this time
there are more than one generators for SO(n), that is,
there are more than one linearly independent n-by-n
anti-symmetric matrices. Actually, all n-by-n real anti-
symmetric matrices form a vector space over R, and the
number of linearly independent n-by-n anti-symmetric
matrices is n(n — 1)/2. We can label them as F(;;, then
A can be written as

A= Z O k1) T ky- (10)

1<k<i<n
Here we select anti-symmetric matrix 7z to be [4]
Ttyij = 0ikbj1 — 6510k (11)

We would like to remind readers that those indices in
parentheses are used to mark matrices, and those indices
outside parentheses are used to represent elements of
matrices. One of the most important conclusions in the
group theory of matrices is that any element of SO(n)
can also be written as

R(0) = et = exp Z Oy T irry | - (12)
1<k<I<n
Here A is defined in Eq. (10). In physics, we usually

define
Jay = — i) (13)

to be an Hermitian matrix. At this point, Eq. (12) can

be written as

R(@ = exp 1 Z a(kl)J(kl) = eiH. (14)
1<k<I<n
Here H = —iA is a traceless Hermitian matrix. It can be

proved that R(#) given by Eq. (12) has unit determinant.
According to linear algebra, any Hermitian matrix H can
be diagonalized by a unitary matrix W and we can write
H = WTAW. Then

det(R) = det (eiW“W) = det (W)

SIS

— eztr(WTAW) _ eitrH. (15)

= det (WTW) det (

. n X
— et 2j=1 Aj— eztrA

Here we used the cyclic identity of trace. Since H is
traceless, Eq. (15) tells us that det(R) = 1.

Since the commutator of two anti-symmetric matrices
is still an anti-symmetric matrix, so it must can be ex-
pressed as a linear combination all generators, a tedious

calculation shows that
[y(kl)’ g(pq)] :5’@7(@/!) + 5lqy(pk)

+ 01y Tkq) + Okq Vi) (16)



This leads to commutators of matrices Jx)

[y, Jwa)) = i (OkpJaq) + S1qJ(ip)
+0up (k) + kg Tpny) - (17)

We conclude that any n-by-n special (unit determinant)
orthogonal matrices can be generated by n(n — 1)/2 anti-
symmetric matrices .75y through the way of Eq. (12).
Moreover, these matrices ;) form the basis of the real
vector space of all n-by-n (real) anti-symmetric matrices,
and there is a closed binary operation “[-,-]” in this vector
space.

For SU(n), we can use the similar method to obtain its
generators. We first write the n-by-n unitary matrix U
near the identity I to be

U~I+iH. (18)

Here H is a complex matrix with “very tiny” elements. By
asking UtU ~ (I—iH")(I+iH) = I—i(H'—H)+H'H =
I to hold to the leading order of H, we get Hf = H. Thus,
H has to an Hermitian matrix. Then, as the case in SO(n),
a general unitary matrix U can be written as

U =et. (19)

We then have to impose the property “special” on H, in
other word, we have to find the condition under which
the determinant of U is 1. Notice that according to Eq.
(15), we have det(U) = ¢®*# . This implies that H has to
be traceless.

All n-by-n traceless Hermitian matrices form a real
vector space with dimension n? — 1. To see this, we first
let H to be purely imaginary. We write H as

H = —iA. (20)

Here A is a real matrix. Then it easy to see that the
Hermicity of H requires A to be an anti-symmetry matrix.
Actually, in this case these traceless Hermitian matrices
H are just matrices J(;;). We then let H = S to be purely
real, then Hermicity of H requires S to be a symmetry
matrix. We define

2
Skiyij = Oikdj1 + 6k — Eéklaij- (21)

Matrices Sy in Eq. (21) are both symmetric and trace-
less, and matrices S(i;) with k = [ satisfy the identity

ZS(MC) =0. (22)

k=1

n

Since the commutator of two traceless Hermitian matrices
is still a traceless Hermitian matrix, so it must can be
expressed as a linear combination of all generators. Again,
a tedious calculation shows that

[Stktys Stpa) = 1 (Gt (kq) + St (k)
+0kpJ(1g) + OkaJ(p)) (23)

[Jk1ys Swa)) = 1 (0kpS(ag) + OkqSap)
—0ipS(kq) = g S(hp) - (24)

There are n(n — 1)/2 linearly independent matrices Jix),
and because of the existence of Eq. (22), there are n(n +
1)/2 — 1 linearly independent matrices Sy, put them
together, we have n? — 1 generators. For SU(n) we have a
parallel conclusion: any n-by-n special (unit determinant)
unitary matrices can be generated by n? — 1 traceless
Hermitian matrices Jij;y and Sy through the way of
exponential map. These matrices J(x;) and Sy also form
the basis of the real vector space of all n-by-n traceless
Hermitian matrices, and there is also a closed binary
operation “[,-]” in this vector space.

For a general Lie group G, suppose it has N generators
T, that form the basis of some vector space V. Usually
the commutators (not necessarily the commutators of
matrices now) between generators can be expressed as

[Taa Tb] = ifabCTCa (25)

with fupe referred to as the structure constants. In the
above formula we used Einstein’s summation convention.
The vector space V above, together with the map “[-,-]”
from V x V to V is referred to as the Lie algebra of Lie
group G.

C. Representation Theory

A linear representation o of group G is a homomorphism
from G to GL(V)[5]. Here, GL(V) is the group of all
invertible linear transformations that act on vector space
V. We assume that V is a vector space over C. According
to linear algebra, when a set of base vectors is selected
in the vector space V', an isomorphism will form between
GL(V) and GL(n;C), where GL(n;C) is the group of
n X n invertible matrices with complex entries. So, in
general, a linear representation of a group G can also be
considered as a homomorphism from G to GL(n; C).

In the context of quantum mechanics, the vector space
V usually appears to the Hilbert space H of kets. Then,
a representation o of a group G is a map from G to the
set of all invertible linear operators over H that preserves
the group multiplication

a(g1-92) = o(g1)o(g2)- (26)

In the above formula, the group multiplication at the
right side of the equal sign is the multiplication of linear
operators.

If there is a non-trivial subspace W of V that is in-
variant under the action of all o(g),g € G, then we say
representation o of G is reducible, otherwise we say o is
irreducible. If group G has an irreducible representation
over vector space V', we call the dimension D of V the
dimension of irreducible representation.

One of the most important results in representation the-
ory is that the dimensions D of irreducible representations



of a given group are limited. In other words, a group
cannot have an irreducible representation of arbitrary
dimension.

In order to understand the degeneracy of the n-
dimensional isotropic harmonic oscillator, we consider
a SU(n) tensor T with m lower indices. When the basis
of vector space V is transformed according to a matrix
U in SU(n), the components of tensor T' are transformed
according to the following rule:

T'ivigevim = UinjiUigja -+ U

tmJIm

Ty joee - (27)

Here, we used Einstein’s summation convention. It is
obvious that the component 77;,;,...;. is a linear combi-
nation of the components T}, ;,...;,,. Moreover, if all the
components of tensor T' are arranged into a vector, the
correspondence between the transformation matrix 2(U)
of this vector and U is exactly a homomorphism [4], this
means that 7 is a linear representation of SU(n). But
for a general tensor T', 2 is usually irreducible.

To see this, let’s consider a SO(2) tensor T with two
lower indices, and one of its components is T;;. Loosely
speaking, we can regard its components T;; as abstract
vectors marked with ¢ and j. At this time, the components
of T obeys the following transformation:

T'i; = R(0) R (0) ;T (28)

According to Eq. (9), we can know the transformation
law of the vector composed of T’s components is

T 11 Ty,
T T
T’;? =9 [R (0)] T;? (29)
T'99 1o
Where matrix Z [R (0)] is
cos? 6 % sin 20 % sin20  sin?0
—1sin20 cos?6  —sin®0 Lsin20 (30)
—% sin20 —sin?6 cos? 6 % sin 26
sin? 0 —% sin 260 —% sin26 cos? @

It can be proved that

Z[R(01)] 2[R (02)] = Z [R (01 + 02)]
=7Z[R(6)R(6:)]. (1)

This shows that Z is indeed a group homomorphism from
SO(2) to GL(4;C), and hence a representation of SO(2).
However, this four-dimensional representation is reducible
because the trace of T is invariant under transformations:

T'ii = RixRuTyw = RT i RuThy = 0Ty = Thi (32)

This means that the one-dimensional subspace generated
by T;; = 111 + 159 is invariant under the action of all
2R (0)].

For a general SO(n) or SU(n) tensor T' with two lower
indices, we know that

1

1
Tij = 5 (T + Tji) + 5 (T — Tji) = Sig + Ay (33)

Here S;; = (T;; + T;;)/2 and A;; = (T;; — Tj;)/2 are the
symmetric and anti-symmetric parts of 7;. The tensor T’
has n(n + 1)/2 independent non-zero symmetric compo-
nents and n(n —1)/2 independent non-zero antisymmetric
components. It is easy to prove that they also obey the
transformation law of tensors. Thus, the set of all com-
ponents of T have some subsets that any component in
one of these subsets only becomes a linear combination of
other components in this subset during transformations.

It can be proved that if a SU(n) tensor T is completely
symmetric about its m lower indices, then the transforma-
tion matrix of the vector formed by all T’s independent
components is irreducible [4], and the dimensional of this
irreducible representation is

D,y [SU (n)] = (m e 1) . (34)

n—1

In fact, Eq. (34) represents the number of independent
components of the tensor T'. It can be obtained by consid-
ering the problem of putting m indistinguishable balls in n
boxes. While for SO(n), T not only has to be completely
symmetric, but also has to to be traceless in respect to
any two indices [4], i.e.

o EliQ"‘im =0. (35)

1119
Here we use the trace in respect to the indices i; and
19, this is because T is completely symmetric. Equation
(35) further reduces the number of non-zero independent
components of T by D,,,_2 [SU (n)]. Then, the irreducible
furnished by T’s independent components has dimension

D [SO (n)] = <m+”_1) _ (m—2+n—1>

n—1 n—1

:n+2m—2<m—|—n—3). (36)

n—2 m

Finally, we point out the role of Lie algebra in con-
structing representations of a given group. Suppose we
have a real linear map ¢ between Lie algebras of group
G and GL(V) that also preserves the structure of Lie
algebra

P([X,Y]) = [¢(X), (Y)]. (37)
Then we can define a map o from G to GL(V') such that
o(e') = e, (38)

for every g = e of Lie group G. Using B-C-H formula
[5], one can verify that o is a (“local”) homomorphism,
in other words, o is a representation of G.

III. SU(N) SYMMETRY OF THE ISOTROPIC
HARMONIC OSCILLATOR

A. Symmetry in Quantum Mechanics

In many cases, quantum mechanical systems exhibit
some symmetry. The so-called symmetry is the invariance



of the system’s Hamiltonian under certain transformation
operations. For example, for a system with spherical
potential energy V' (r), the Hamiltonian of the system

2

H:2p—m+V(r), (39)

is invariant under the rotation transformation
r—7r =R 'r (40)

Here R is a special orthogonal matrix that depicts a
rotation in coordinate space, and r is the position vector.
Equation (40) is a symmetry operation of Hamiltonian
(39). All these operations form a group, and we use G to
represent it. For the Hamiltonian described in Eq. (39),
the group G has subgroup SO(3).

On the other hand, transformations in quantum me-
chanics are usually associated with unitary operators. We
donate the symmetry group ¢ of Hamiltonian H to be the
set of all unitary operators O that leave the Hamiltonian
invariant under transformation

O'HO = H. (41)

If |¢) if an eigenstate of H with energy E,,, then for any
Oec¥

HO|4p) = O(OTHO) [t) = OH i) = E,O |¢)) . (42)

This means O 1) is also an eigenstate of H with energy
FE,,, in other words, the eigenspace &, belonging to the
eigenvalue F,, is invariant under the action of O.

Generally speaking, group G and group ¢ are isomor-
phic [1]. Since elements of ¢ are linear operators, the
isomorphism between G and ¢ provides a representation
of G over Hilbert space H. This representation is usu-
ally irreducible when restricted to an eigenspace of the
Hamiltonian H.

One of the main points in analyzing the symmetry of
a given Hamiltonian H is that, when restricted to an
eigenspace &,,, the isomorphism between G and ¢ is an
irreducible representation of G over &, [1]. Therefore,
the dimension of the eigenspace &, is also the dimension
of an irreducible representation of G.

B. Symmetry via Ladder Operators

Consider the Hamiltonian of the n-dimensional isotropic
harmonic oscillator:

n
1 1
H= —p; + zmwz ). 43
We define the j-th annihilation operator a; to be [2]

1
a; = —— (ip; + mwz;), (44)
2hmw

its Hermitian conjugate is the j-th creation operator

T:

1 .

Using the canonical commutation relations [2], we readily
get

[ak, a;] = [a}i,a” =0, [ak,a” = Opy. (46)

By using annihilation and creation operators, the Hamil-
tonian can be rewritten as

H=hw) (agai + ;) . (47)
i=1

Then, one of the eigenstates belonging to the mth energy
level

n
B, = (m + 5) o, (48)
can be written as
) = al,al, ---al, 10), (49)
where |0) is the ground state, and values of i1,i9,- -+ ,im,
can range from 1 to n. It should be noted that since
L,a;rz, e ,a;rm are mutually commutative, state |¢) in

Eq. (49) is completely symmetric with respect to indices
01,82, " bm-

We say the n-dimensional harmonic oscillator has a
SU(n) symmetry, which means the Hamiltonian is invari-
ant under the transformation

a; — CL; = Z Uijaj, (50)
j=1

where U;; is the matrix element of the special unitary
matrix U that features the transformation. It’s easy
to verify that the Hamiltonian is invariant under this
transformation, since the new Hamiltonian 7 is

H = mi {(a;)T af + ;]
- mz (Z Z Ul Ugala; + ;)
= hw (Z Zékla,tal + ;)

- 1
= ( alax + 2) = H. (51)
k

Transformation (50) also preserves the structure of com-
mutators

lak, ai] = aja; — ajay
= UkiUlj (aiaj — ajai) = 0, (52)



(@) (@)'] = (@) ()" = (@) (@) = 0. (53)

Here we used Einstein’s summation convention. We also
have

ok (a))"] = UniUaca} - Uy Ussalay

= U U} (aia; - a;ai)

= UpUj50ij = UUfy = 0. (54)

Under transformation described in Eq. (50), the eigen-
state is transformed to:

) = (ai,)" (ai,)" -+ (a,.) " 10)
= Uiy Uijy - Usjmal al ---al 0).  (55)

imJm @5 Wy 7

Note that the eigenstate |¢) transforms like a completely
symmetric tensor with m lower indices, so Eq. (34) tells
us that the degeneracy of F,, should be

dm_<m+”1). (56)

n—1

For n = 3 we have

1
dmzi(m—&—l)(m—i—Q), (57)
which is far beyond what SO(n) implies in Eq. (36) when
n=3:

A = 2m + 1. (58)

C. Symmetry via Generators

A clearer and more elegant way to construct the rep-
resentation of SU(n) is by using Lie algebra. Note that
we have found the Lie algebra of SU(n), if we find all
generators of symmetry group ¢ and the map ¢ satisfies
Eq. (37) then Eq. (38) will automatically give us the
desired representation.

We define [6]

TpPr — TkPl .
Jk:l = T =1 (akag — G/Lal) . (59)

Then Jy; is anti-symmetric in respect to k,[, and define

2 1 1 1
Spi=7— 1|75 —mw? — —H¢
W= <2mpkpz + oMW Tk — kl)
2H
= a;ial + akalT — %5]@1. (60)

Then Sk; is symmetric in respect to k, [, and we also have

> Sk =0. (61)
k=1

There are n(n — 1)/2 linear independent Ji; and n(n +
1)/2 — 1 linear independent Sy;. Thus, the total number
of linear independent Jj;s and Sis is n? — 1. It is easy to
verify that all of them are conserved quantities, in other
words, all of them commute with Hamiltonian H

[Jkl,H] = [S}Cl,H} =0. (62)

Noether’s theorem tells us that each generator of con-
tinuous symmetry corresponds to a conserved quantity.
Therefore, it is natural to guess that each conserved quan-
tity should also correspond to a generator of the symmetry
group. A somewhat tedious calculation shows that the
commutators of Jy;s and Sy;s are

[th Jpq] =1 (5/617*]111 + 5qukp + 6117qu + 5qupl) ) (63)
[Skl7 Spq] =1 ((squkp + 5lkaq + 5qulp + 5kalq) ) (64)

[Tkt Spql = @ (OkgStp + OkpStq — 01g:Skp — OipSkq) - (65)

They have the form same as Eq. (17), (23) and (24). This
means the symmetry group ¢ of Hamiltonian H of the
n-dimensional isotropic harmonic oscillator (generated by
Jris and Sy;s) has the same structure constants as that
of SU(n).

Let ¢ denotes the linear map that maps generators J(y)
and Sy of SU(n) to Ji; and Sy of ¢ respectively. Then,
Eq. (37) holds and Eq. (38) gives the representation of
SU(n).

IV. CONNECTION WITH CLASSICAL
MECHANICS

In classical mechanics, if a mechanical quantity F' does
not explicitly contain time, then the necessary and suffi-
cient condition for it to be a conserved quantity is that it
commutes with the Hamiltonian H [7], that is

[F,H] = 0. (66)

Here “[-,-]” is the Poisson bracket in classical mechanics.
For two mechanical quantities ¢ and v, their Poisson
bracket is

N~ (99 O 9y 0¥
po=S (e tenny g,

a=1
Here q,, and p,, are generalized coordinates and canonical
momentum, s is the degree of freedom of this system. If
F' is conserved quantity, then the infinitesimal canonical
transformation (7] generated by F

_ OF (q,p)
Qo = qo + op (68)
Py = po — ng (69)

0qa



leaves the Hamiltonian H unchanged, since

°\ [ 0H OH
5H = Z (%5(]@ + apaépa>

a=1
. (OH OF OH OF
_5(;(%%_%%)
— c[H,F] =0. (70)

That is to say, F'is a generator of the canonical transform
group that keeps the Hamiltonian unchanged. By analogy,
we can find that mechanical quantities defined as

Jii = Tppr — TPk, (71)

2 1 1 1
Spr == | =—prp1 + ~mw?agr; — —Hog | - (72)
w \2m 2 n

are all conserved in classical mechanics, that is, they all
commute with the Hamiltonian H of the n-dimensional
isotropic harmonic oscillator. And moreover, commuta-
tors (Poisson bracket) of them are closed:

[Jkl, Jpq] = Jpl(skq + quélp + Jkp(slq + quékp, (73)
[Skh Spq} = 5lq=]kp + 5lpjkq + 5kq<]lp + 5k'p‘]lq, (74)

[Jkl, Spq] e 5k.qSlp + 6kpSlq — 5qukp — 6lp5kq. (75)

Equation (73), (74) and (75) will have the same form
as Eq. (17), (23) and (24) if one further multiplies Jy;
and Si; in Eq. (71) and (72) by an imaginary unit “”.
This means that the n-dimensional harmonic oscillator in
classical mechanics also has the SU(n) symmetry [7].

Actually, if we define a similar quantity a; in classical
mechanics using Eq. (44), then the real and imaginary

parts of the transformation (50) will give a canonical
transformation of the generalized coordinates and the
generalized momenta [8], and this canonical transforma-
tion keeps the Hamiltonian unchanged.

V. DISCUSSION

By using the basic knowledge of group theory, we
demonstrated the the SU(n) symmetry of the n-
dimensional isotropic harmonic oscillator through two
different ways.

We first studied the SU(n) symmetry of the harmonic
oscillator by using ladder operators. After defining the
annihilation and creation operators, we can directly give
the unitary transformation that keeps the Hamiltonian
invariant. The annihilation operators then transform
like m-dimensional vectors while eigenstates transform
like completely symmetric tensors, whereby we give the
degeneracy of the isotropic harmonic oscillator.

We then demonstrated the SU(n) symmetry of the n-
dimensional isotropic harmonic oscillator using generators.
We found the generators of those unitary transformations
that keep the Hamiltonian unchanged, and they have
exactly the same Lie algebra structure as that of the
SU(n) group.

Finally, we point out that, in parallel with its quan-
tum mechanics counterpart, the n-dimensional isotropic
harmonic oscillator in classical mechanics possesses the
same symmetry property. We also give the generators of
infinitesimal canonical transformations.

In summary, the n-dimensional isotropic harmonic os-
cillator provides a good model for studying the dynamical
symmetry.
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Energy Levels of the Hydrogen Atom Via Sommerfeld’s
Old Quantum Theory and The Relativistic Dirac Equation

Mark Weitzman
(Dated: June 11, 2019)

The exact energy levels of the Hydrogen atom (up to fine structure but excluding hyperfine,
Lamb, and finite nuclear size effects), can be obtained by solving the relativistic Dirac equation, via
separation of variables, in a manner similar to Schrédinger’s non-relativistic solution. These energy
levels are given by a formula that is relatively complex involving nested square roots. In this paper
we discuss and compare the remarkable calculation, almost a full decade before Dirac, by Sommerfeld,
using the old quantum theory extended to take into account the relativistic velocity of the electron
in its elliptic orbit, with Dirac’s calculation using his celebrated wave equation. Sommerfeld’s theory
has no spin and no wave mechanics. Dirac’s theory was the first relativistic wave mechanical equation
which naturally incorporated spin 1/2. Yet the two theories are in exact agreement on the Hydrogen
atom energy levels. We conclude with a very brief discussion of a resolution of this ”Sommerfeld
Puzzle” by Biedenharn [1], using the underlying symmetries of the problem.

I. INTRODUCTION

The calculations by Bohr, Sommerfeld, and Dirac of the
energy levels of the Hydrogen atom and their remarkable
agreement with experiment represents one of the high
points of 20th century theoretical physics. Bohr’s calcu-
lation using circular orbits and quantization of angular
momentum was the first application of the developing
quantum theory, pioneered by Planck, Einstein, and De-
bye to modeling atoms [3]. But Bohr’s calculation was
limited, in that they applied only to circular orbits, and
single electron atoms.

In a series of papers in 1915-1916, and exposited in his
influential book [2], Sommerfeld extended these calcula-
tions to elliptical orbits using what are now known as the
Bohr-Wilson-Sommerfeld quantization conditions. This
extension of the old quantum theory had some limited
success in treating effects of electric and magnetic fields
on atomic states[3]. But its greatest success was in the
calculation of the fine structure of the hydrogen atom
spectrum.

Using elliptical orbits, phase space quantization con-
ditions, and classical mechanics extended to relativistic
dynamics, Sommerfeld was able to arrive at an exact ex-
pression that completely agreed with experiment. This
was a remarkable achievement for the old quantum the-
ory, and led to the incorporation of some of the most
advanced techniques of classical mechanics in the devel-
oping old quantum theory formalism. These techniques
included Hamilton-Jacobi theory, action angle variables,
and perturbation techniques from celestial mechanics [4].

Modern quantum mechanics began with Schrodinger’s
wave mechanics and Heisenberg’s matrix mechanics for-
mulations, which Dirac and others later showed to be
equivalent. While both were successful at reproducing
the Bohr energy levels, Schrodinger’s attempts at a rela-
tivistic generalization (using what is now referred to as
the Klein-Gordon equation) failed to agree with the fine
structure spectrum [5].

Dirac [6] successfully tackled the problem by develop-

ing his famous relativistic spin 1/2 equation. The Dirac
expression for the hydrogen fine structure energy levels
agrees completely with Sommerfeld’s expression devel-
oped a decade earlier. This agreement between two quite
dissimilar theories, the first by Sommerfeld which has no
wave mechanics and no spin, and the second by Dirac
which is a relativistic wave equation that naturally incor-
porated spin is sometimes referred to as the “Sommerfeld
Puzzle”.

In section II we discuss Sommerfeld’s derivation of
the hydrogen atom energy levels including fine structure.
In section III, we discuss the Dirac calculation using
the separation of coupled differential equations. Finally
in section IV we briefly discuss Biedenham’s symmetry
arguments and resolution of the “Sommerfeld puzzle”.

II. SOMMERFELD’S CALCULATION

The Bohr model begins with the assumption of cir-
cular orbits, and the quantization condition mvr = nh.
Sommerfeld extended these quantization conditions to all
canonical variables in the problem

_%pk qu = nkh. (1)

For the case of elliptical orbits in a plane (Sommerfeld
also treated the case of three dimensional orbits) there
are now two variables which need quantization r and ¢,
and the quantization conditions are

prdr =nph.  (2)

orbit

2m
7{ ppd® = ngh and
0

Sommerfeld’s result for the energies (we opt to show
the relativistic calculation below rather than the non-
relativistic calculation), leads to the same values as the
Bohr energy levels

2 2,2
E:_Ei‘lw (3)
2 (ny+ngy)



with the main difference being the added degeneracies in
the energy levels, due to their being two integer quantum
numbers. In a more exact relativistic calculation, these
degeneracies will be broken, and will lead to the fine
structure.

We choose to closely follow Biedenharn [1] in avoiding
the Hamilton-Jacobi/action angle variables techniques [7],
and instead proceed with a direct calculation of phase
integrals using relativistic Kepler orbits. For an electron
bound to a nucleus of positive charge Z, the Coulomb
potential is ® = @,A = 0 (our notation is e < 0),
and the relativistic Hamiltonian can be obtained by the
usual substitutions £ — FE — e®,p — p — eA/c in the
relativistic energy momentum relation

B? = p?c® + (mc?)?, (4)

(H + 2:2)2 =p?c® + (mc?)% (5)

As in the classical Kepler problem we use radial and
angular components of momentum with the corresponding
relativistic expressions,

mr
DPr =
[1 _ 2
C2
mr2e

Py = ——= = ymr’¢.
/1 _ 2
c2

Continuing to mimic the classical calculation we define

u= % and observe that ;’—; = —g—g. Substituting into Eq.

(5) leads to:

H+ Ze*u\’ Do \2 | [du ? 9
<m2) =1+ () (m) tu

Upon differentiating the above equation, one obtains an
easily solvable linear differential equation for the orbit.

= ym7 (6)

(7)

(®)

d2
dT;; +T?u = CT? where, (9)
Z2 4
1—— 62 =T? and (10)
c’py
Ze*H
= 11
pif202 (11)

The solution can be verified as

el () o
1
C= M7 (13)

where we have chosen the constants to correspond to the
standard parameters for an ellipse with semi-major axis
a, and the eccentricity of the orbit e.

Actually because I'® is the parameter of the cosine
function, our solution is not an ellipse but a rotating ellipse
whose perihelion is precessing in the same direction as the
orbit see Figure 1. The precession per orbit is 277(% - 1),
and if we substitute Ze? - GMm, and use Kepler’s 3rd
law along with Eq. (10), we obtain a precession per orbit
for a planet of

TGM
ca(l —€?)

which is 1/6 of the well known general relativistic result.
8], [9]-

(14)

Figure 1. Precession of elliptical orbits

Thus the true periodic action angle variable is 1 = I'¢.
We now use the quantization conditions stated earlier Eq.
(2) noting that whereas for py, we integrate from ¢ = 0 to
¢ = 27, for p, we must integrate from ¢ = 0 to ¢ = 27
in order for the radial variable to repeat (perihelion to
perihelion):

¢=2m
/ pyde = ngh (15)
$=0
Y=27
/ prdr =n.h (16)
$=0

Since, angular momentum is conserved for a central
force potential, we immediately obtain from Eq. (15)

Py = ngh (17)
To solve the radial momentum integral, we earlier ob-
served that 2= = —g—“, which implies
Py
1dr\? sin? ¢
ndr = ) dop= r—— __dy, (18
Prél =De (rqu) =P T o cos gV (18)

using Eq. (9). Substituting into Eq. (16), we obtain the
radial quantum condition.

1 /d’_27T e2siny dy  n,
21 Jy—o (1+ecosy)?  TIny’

(19)



The integral is elementary, and the LHS evaluates to
(1—£2)~2 —1.This now gives us one of the orbit parameters
¢ in terms of the quantum numbers n, ,ny4 (note that I'
is given by Eq. (10), and py is given by Eq. (17)),

1
v
(14 1)

The second orbit parameter a, can be obtained from Eqgs.
(11), (13), and (17),

e2=1- (20)

nilﬁhc

T ZaH(1 -2y

(21)

Substituting the values of the orbit parameters a, e into
the orbit equation (12), and then into Eq. (8) leads
after a couple of pages of unilluminating algebra [10], to
Sommerfeld’s celebrated equation (Note the corresponding
equation (20) in Biedenharn’s paper is missing a square
on the bracketed term in the denominator)

D=

(22)

III. THE DIRAC CALCULATION

Dirac developed his landmark equation [6] with the
intention of finding a relativistic equation for the electron
which overcame some of the difficulties of the relativistic
Schrodinger /Klein-Gordon (KG) equation. One of the
main difficulties concerned the lack of a positive definite
conserved probability current. This problem was traced
to the appearance of a second order time derivative in the
KG equation, which follows from the relativistic energy
momentum relation Eq. (4). In contrast a positive definite
conserved probability current is readily obtained for the
non-relativistic Schrdinger equation due to its being first
order in the time derivative.

Dirac looked for an equation that was first order in the
time derivative, and also first order in spatial derivatives,
in order to treat time and space symmetrically as is re-
quired by relativity. The coefficients of the spatial and
time derivatives could not be ordinary numbers as then
the equation would not even be rotationally invariant, let
alone Lorentz invariant. Thus Dirac tried a linear first
order equation with matrices, and this led to tremendous
success as it was found to naturally incorporate spin and
antiparticles, and had the correct non-relativistic limit.
Aditionally as first shown by Darwin it leads to the correct
fine structure for Hydrogen [11].

Below we will show the Dirac equation including the
incorporation of electromagnetic potentials, develop con-
stants of the motion, and then separate the equation in
a central potential. Finally we will solve the coupled

differential equations for the exact energies in a Coulomb
potential, and compare with Sommerfeld’s equation. Dis-
cussions of the Dirac equation and its solutions in the
Hydrogen atom are treated in the following well known
texts: [5], [12], [13], and [14].

A. Dirac Equation in Electromagnetic Potentials

The Dirac equation in non-covariant Hamiltonian form
is

0
zha—lf = (ca -p+ Bmcz) P, (23)
where v is a four-component object, known as a Dirac
spinor, and a, 3 are a set of four 4-dimensional matrices
satisfying

al=p"=1
{ai, 0} = a0 + aja; = 20 (24)
{ai, B} = aip + Bai = 0

In the Dirac-Pauli energy representation they can be
explicitly represented as

w=(n %) 2= ) o

where the o; are the standard Pauli matrices, and 1 is
the two dimensional identity matrix. Following the previ-
ous classical prescription for introducing electromagnetic
potentials (minimal coupling), and working with energy
eigenstates, we obtain

(E—ed)y = (ca . (p - iA) + Bmcz) . (26)
For a central potential V = e®, and A =0,

Hi = EY = (ca- p + fmc® + V) 1. (27)

B. Constants of the Motion

The Dirac equation incorporates spin 1/2 particles, so it
is no surprise that the total angular momentum operator
would involve orbital and spin angular momentum, and
be conserved in a central potential. Thus we define the
relativistic spin operator as X (basically just the diagonal
4 dimensional version of the Pauli matrices, and the total
angular momentum operator (an operator like L not in
matrix form is assumed to be multiplied by the four
dimensional identity matrix) as

= <‘g 2) (28)



Using the usual commutation properties of angular mo-
mentum operators, [L;, S] = 0, [L;, V;] = ihe; Vi, where
S,V are respectively scalar and vector operators it is
easy to show that J commutes with the Hamiltonian
(although we sometimes use the explicit Dirac-Pauli rep-
resentation, all of these properties can be established in a
representation-free independent manner). Below we use
Einstein summation convention for repeated indices.

[H,L,] = [ca -p+ Bmc +V(r), Lw}

= claipi, L] + [V (7), Ly

= —ihcayp, + ihca,p, (30)
[H,%,] = [caip; + fmc® + V (1), 5]

= clay, Bylpi = —2ica,py + 2icayp, (31)

From Eqs. (30) and (31) it follows that [H, J,] = 0, and
thus generalizing to all components, J is a constant of
the motion.

The next constant of the motion physically involves
whether the spin is parallel or antiparallel to the orbital
angular momentum i.e. whether in the non-relativistic
theory j = 1+ 1/2, or j =1 — 1/2. The situation is a
little more complicated relativistically and we define an
operator K = (X-L+h). We will show that the operator
K is conserved using an explicit representation of H, K

"= (””ZJ B —mig—il-lz/(r» (32)
K:<U.[6+h _(a.%+h))' (33)

In computing [H, K], using [L, V(r)] = 0 (since V(r) is a
scalar) we only have to verify

—c(o-p)(o-L+h)—clo-L+h)(oc-p)=0 (34)

which follows using the commutator for [L;, p;], and the
identity (o - p)(o-L) =io-p x L, since p-L = 0. Using
the same techniques it follows also that [J, K] = 0.
Finally we have that in a central potential the oper-
ators H, K,J?,J all commute with each other, and we
can use simultaneous eigenfunctions with corresponding
eigenvalues that we will denote by E, —xh, j(j + 1)h?, j.A.

C. Separation in Central Force Potential

We write ¢ = (:ﬁA) where ¥ 4,1¥p are each two-
B

components spinors. In the non-relativistic approxima-
tion, the upper components 14 correspond to the usual
Pauli two-component spinor for the electron, and the bot-
tom two components ¢p are smaller by a factor of v/c.
In the Dirac-Pauli representation the K, and 3 operators
are diagonal - this enables us to make use of the usual
two-component Pauli formalism in constructing angular
eigenfunctions of K, J2, J,.

The operator L? when operating on the two-component
spinors is equal to J? — ho - L — %hQ, so any eigenfunction
of J2 and K - see Eq. (33) - is also an eigenfunction of L.
Thus although the complete wave function ¢ will not be
an eigenfunction of L? (since it does not commute with
the Hamiltonian, and K operates differently on each of
Ya,1R), the separate pieces will be eigenfunctions of L2.

To get the relationship between j, x, and [ values for
Y a,v 5, we make use of the following

K?=1%4+h¥-L+h? (35)
J2:L2+h2-L+§h2 (36)
K?=J?4h%/4 (37)

This implies £2h% = j(j + 1)h* + h?/4 = (j + 1/2)?h? or
k=% +1/2). (38)
To get the corresponding relations for the values of 14,15,

we use Eq. (36), along with (o - L + h)Yp4 = —khpa in
the two dimensional subspaces

3
L2Ya =la(la + 1)h%py = (J2 —ho - L — 4h2> ha
. 3
= (g(g + 1)h% + (k+ 1)h% — 4h2> Ya (39)
which implies {a(la +1) = j(j + 1) + £+ 1. A similar
analysis for ¢ 5 leads to Ig(Ip+1) = j(j+1)—k+ 3. Table

I (copied from p.124 of [14]) summarizes the relations
among 7, k,la,lp.

Table I. Relations among &, j,la,lB

la Ip
K=j+1/2 j+1/2 j—1/2
k=—(+1/2) j—1/2 j+1/2

With these relations we can construct the full angu-
lar parts of the eigenfunction for 14,1 5. The Pauli
two-component theory (addition of angular momenta)
[15],[13],[14], gives

I+3+33 YjS—%
1
+ 2l+1 11 . 1
s = [UHE—iayrda+1/2 (j_l+2> (40)
20+1 l
I43-js yis—s
- 1
- _ 211 L1 o, L
o= | Ve s | (=) @
20+1 l

Notice the two ’s have opposite parity, since their [ values
differ by 1. When grouped together in a four component
spinor, the spinor will be a parity eigenstate, since the
parity operator in the Dirac theory is given by 3, so the
opposite signs from the [ values will be canceled by the
opposite signs from the § operator.



The wave function 1 can then be written as

val _ g(r) ‘Pﬁﬁ
<¢B> - (iﬂr)%) )

where ¢4 = ¢t 8 = ¢~ for K = —(j + 1/2), and
ot = ¢, 0P = ¢t for k = (j + 1/2). Additionally the
radial wave functions depend on k. The Dirac equation

using the explicit form of the Hamiltonian operator Eq.

(32) is then

co -pYp = (E -V —mec*)pa
co-pYa = (E -V +mc*)p (43)

To make progress we use a trick (see [13],[14])and rewrite

O..p:r%(a'.x)(a~x)(0'~p)
_ (Ur;() (_W; +w-L>. (44)

We also use the fact that Z* is a pseudo-scalar operator,
and acting on ¢, B, gives —?, —p4 respectively (with

the phase conventions we are using in Eqs (40), (41).

This is because under a pseudo-scalar operator J2, J,, L2
won’t change, but the parity will change. Additionally
the operator applied twice is just the identity operator,
so the phase change must be +1. This action can also be

painfully verified by using spherical harmonics identities.

Therefore using Eqgs. (42),(44),

. B
o pyp= (Urz}() (ihrc’)r e L) gt
_ i(Ur'QX) <_m7~flj; ik — 1)ﬁf> 1, (45)
d —K)h
— (hdj; - wf ) s (46)

In exactly the same manner we also obtain
dg .(1+k)h
o-pYa= (thh'+2(7’)f) gpfj3. (47)

Now substituting in the Dirac Equation (43), the angular
parts cancel and we obtain coupled differential equations
for the radial wave functions f(r), g(r)

—chd—J; — %]" =(E-V —mcyg (48)
dg n (1+k)he

h
Cdr

g=(E -V +mcf. (49)

D. Solving the Coupled Differential Equations

As in the non-relativistic radial equation we substitute
F(r)=rf(r),G(r) = rg(r) to obtain

he <‘fl1:’; >—(EVm02)G (50)
he (‘flf + ’:G> —(E—V +m®)F (51)

With V = —ZTez, and the following substitutions

mc? + F me? — E
aq he ) (&%) fic ( )
Ze?
p =/ ajaar, v = e = Za
we will have dimensionless coupled DE’s
dF
_KF:( OQ_'Y)G (53)
dpp o p
dG
+”G=( 0‘1+7)F. (54)
dp  p a P

We attempt the usual power series solution, and try
oo oo
F=c?p" ) amp™, G=e’p" ) bup™ (55)
m=0 m=0

where ag # 0, and by # 0 (From the coupled equations Egs.
(53),(54) we can see that s the smallest non-zero power
of p must be the same for both F,G). Using the power
series in Eqgs (53), (54) leads to the following equations
for the coefficients of the p*p~! for ¢ > 0

(s+q—K)ag— ag—1+7bg — Vas/arbg_1 =0 (56)
(s+qg+rK)bg —bg—1 —vaq —Vai/asag—1 =0 (57)
For g = 0, the indicial equations are

(s —K)ag+7bo =0 (58)
—vag + (s + Kk)bp =0 (59)

Since both ag, by are non-zero, the determinant of the
above system must vanish, so

s =+v/K%—92 (60)

Only the positive root is allowed as otherwise the wave
function will diverge at the origin more rapidly than p_%,
and thus [1|(p)|? will also diverge.

We can obtain the asymptotic limit of the power series
by first multiplying Eq. (56) by /a7 and subtracting Eq.
(57) multiplied by /o

aq (Vai(s +q— k) + /azy)
— by (Va3(s +q + k) — /@) (61)
— ag = by as/ar (¢ = 00) (62)



Substituting this back in Eqgs. (56), (57), and again taking
the ¢ — oo limit, we find

Aq

2 2
== == 63
. . (63)

Ag—1
This implies that both the a, and b series asymptotically
approach e”, and the solutions F, G will diverge. To avoid
this both power series must terminate, and we will assume
that they terminate with the same integer power (the self-

consistency of assuming this will be shown below). So we
assume their exists an integer n’ such that

aw #0, by 20 (64)

Putting ¢ = n' + 1 in Egs. (56),(57) leads to ay/ /by =
—+/aa/ayq from both equations (this justifies our previous
assumption). Comparing this ratio with that given by Eq.
(61) and using Eq. (52) leads to

Jon— ) = Va2 1 2)  (69)
(s +n')\/(mc2)2 — E2 = Ey (66)

A little manipulation, and remembering the value of
Eq. (38) and s Eq. (60) we finally obtain

Ap/'4+1 = bn’+1 = Ou

F—__mc (67)
72
V1t e
ch
E= (68)

1+ Lo :
{n’—&- (j+%)2—Z2a2}

which is identical to the Sommerfeld result Eq. (22)
upon identifying the corresponding integers n,. <+ n’, and
Ng <+ J + % This is truly remarkable!

IV. BIEDENHARN’S ANALYSIS

In his paper on The “Sommerfeld Puzzle” Revisited and
Resolved [1], Biedenharn uses very sophisticated symmetry
arguments and calculations to explain the Sommerfeld
and Dirac calculations. It would be almost impossible
in this short paper to discuss the details of Biedenharn
calculations and argument, and probably also well beyond
the competancy of the author. Instead we will attempt
to summarize some of the more interesting aspects of
Biedenharn’s conclusions.

One explanation of why the Sommerfeld and Dirac
calculation’s agree is that somehow offsetting errors in
Sommerfeld’s calculation cancel. Biedenharn quotes an
explanation from the monograph of Yourgrau and Mandel-
stam [16], “...a valid theory of fine-structure must include
both wave mechanics and spin. Sommerfeld’s explanation
was successful because the neglect of wave mechanics and
the neglect of spin by chance cancel each other in the case
of the hydrogen atom.”

Biedenharn argues that this cannot be correct because
Sommerfeld’s calculation for the non-relativistic Kepler
problem (see Eq. (3)) gives the same energy levels as
the non-relativistic Schrodinger calculations, therefore
“(nonrelativistic) wave mechanics per se makes no change
in the answer.” Indeed Biedenharn goes on to argue
that the proper analog to Sommerfeld’s non-relativistic
calculation is not the non-relativistic Schrédinger theory,
but the non-relativistic Schrodinger-Pauli theory of a spin-
% particle moving in a Coulomb potential. The spin in
this case is an extra degree of freedom that is dynamically
independent thus leading to the same energy levels.

The advantage of incorporating spin is two-fold. First
it makes certain operators (including Hamiltonians) much
easier to factorize as for example

L?=(oc-L)(c-L+1) (69)
J2=(0-L+3/2)(c-L+1/2). (70)

Second it enables a symmetry for circular orbits to be du-
plicated and enforced between the classical and quantum
calculations. Biedenharn shows that the analog of the
of the classical eccentricity (which vanishes for circular
orbits) for the non-relativistic quantum system without
spin is

(71)

2yly1]?
€= 1—7]\72 .

This does not vanish for quantum mechanical circular
orbits (node-less radial probability density) I = N — 1.
But for the non-relativistic spin—%7 the corresponding
eccentricity operator

e=(1—k?/NH1/? (72)

does vanish for circular orbits.

Using these symmetries Biedenharn establishes the rela-
tionship between the Sommerfeld non-relativistic Kepler
problem, and the Schrédinger-Pauli theory with a dynam-
ically independent spin. He then goes on to establish that
the transformation from the classical non-relativistic Ke-
pler problem to the relativistic Kepler problem, (namely
a transformation to a rotating reference frame), is mim-
icked by a similar transformation from the non-relativistic
quantal Schrodinger-Pauli theory to the Dirac theory.

This transformation brings certain operators to diago-
nal form, and is given by

S =exp —%a -#tanh ' (aZ/H) (73)

and as Biedenharn explains S is a Lorentz boost with
an operator-valued angle, which in the classical limit
corresponds to a Lorentz transformation tangent to the
orbit, and having velocity which exactly reproduces the
I' factor used in ¢ = I'¢ for the precessing ellipse in
Sommerfeld’s calculation.

To summarize the logic in Biedenharn’s puzzle resolu-
tion is that symmetries involving circular orbits/operators



lead to the same energy levels for the non-relativistic Ke-
pler problem, and the quantum Schrédinger-Pauli theory
with dynamically independent spin. This equivalence is
extended by similar transformations involving Lorentz
boosts, to the classical relativistic Kepler problem and
the Dirac theory. While this analysis is subtle and convu-
lated at times it does seem to go a long way to explaining

the equality of Eqgs (22) and (68).
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Entanglement-assisted Quantum Error-correcting Code

Evan Ong
(Dated: June 18, 2019)

Intrinsically, the possible quantum errors on qubits can be modeled as n-fold tensor product of
single qubit Pauli operators, generating a group . A quantum error-correcting code of length n can
be succinctly constructed by choosing a stabilizer subgroup S of G, which constrained to be abelian.
The resultant code is called a stabilizer code and as its name suggests, the code space is invariant
under the action of those operators in its stablizer S. This paper is devoted to study on the usage
of the pre-existing entanglements shared between the sender and receiver in removing the abelian
constraint on S, thus arising to a more general and effective quantum error-correction scheme than

the stabilizer formalism.

I. INTRODUCTION

One of the main applications of quantum mechanics is in
the field of quantum computing. In a quantum computer,
words are represented by n spin-1/2 states with some
known Hamiltonian. Each spin-1/2 state is termed as
a qubit, which can be expressed as a superposition of
spin up | 1) and spin down | ), that is, a| 1) + b| |) for
some a,b € C. For convenience, we use |0) and |1} to

denote | 1) and | |) respectively. Writing |0) —<(1)) and

1) = ((1)> isomorphically, they form a basis for the two

dimensional complex vector space C2.

While representing an n qubits state, the notion of
tensor product is used to concatenate the qubits. An n-
qubits state is written as a superposition of some n-tensor

n
product of single qubit states, each in the form of ) |a;)
i=1

(laras ... a,) for brevity) for a; € C. As a result, each
n-qubits state is viewed isomorphically as an element in
the 2" dimensional complex vector space C2".

Quantum states are generally fragile as they could easily
interact with the environment, results in the occurrence
of decoherence during transmission. It is well known that
classical error-correcting codes protects classical comput-
ers from bit errors[1], one of the ways is through repetition.
However, for the quantum case, the famous “No Cloning
Theorem” [2] seemed to suggest that quantum error cor-
rection is strictly infeasible.

Fortunately, the first systematic framework of construct-
ing quantum error-correcting codes was introduced by
Calderbank[3] in 1997, where the construction of quan-
tum error-correcting codes are transformed to the problem
of finding classical error-correcting codes over the finite
field with four elements which are self-orthogonal[4]. The
resultant codes are called stabilizer codes.

In Section 2, stabilizer codes are studied from the point
of their stabilizers, using basic group theory. We provides
some examples of renowned quantum error-correcting
codes with good parameters. Section 3 is devoted to
generalize the notion of stabilizer codes to entanglement-
assisted quantum error-correcting codes. We show that
with some pre-existing shared entanglements between the

sender and receiver, the codes can comparitively achieve
better parameters, thus better performance than the sta-
bilizer codes[5-7].

II. QUANTUM ERROR CORRECTING CODE

As a starting point, the notion of group is introduced.

Definition 1 Let G be a set and - be a binary operation.
Then, (G,-) is called a group if the following conditions
hold:

I.a-(b-c)=(a-b)-c forall a,b,c € G,

2. There exists a unique e € G, called the identity such
that For everya € G, a-e =a = -a,

3. For every a € G, there exists a unique a™' € G,
called its inverse, such that o' -a=e=a-a"*

In addition, if a-b =b-a for all a,b € G, then G is called
an abelian group. The order of G is the total number
of elements in G, denoted as |G|. For every element in
a € G, its order, denoted as ord(a) is the smallest k € Z*
such that a* = 1. Let H be a subset of G’ which forms
a group by inheriting the binary operation of G, then
H is called a subgroup of G. For any subgroup H of G,
its centralizer Z(H) is the set of all elements in G that
commute with every element in H, that is Z(H) = {g €
G|gh = hg,Vh € H}. Note that a centralizer is also a
subgroup of G.

Consider a single qubit state |¢)) = (Z) Each possible

error operator can be expressed as a 2 x 2 matrix over C,
that is, an element in My 2(C), the vector space of all 2x 2
matrices over C. Note that the set of all Pauli operators
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CHES

((1) (1)> L = <(1) 01> Y = <? _Ol>} forms a basis for

Msy5(C). The set generated by the Pauli operators forms
a multiplicative group G with |G| = 2%.

Generalizing to n qubits state, each error operator are
expressed as an n-fold tensor product of elements in P,

together with the identity matrix, P = {I =



thus with an overall phase of +i, forming the multiplica-
tive group G,, = {i¥ ® Px|Vj € {0,1,2,3},VP, € P}.
k=1

The weight of an error E € G,,, wt(E) is the total num-
bers of its tensor component P, which are non-identity.
Note that |G| = 227+2.

Also, it follows from the property of Pauli’s opera-
tors that for every pair of elements F,, Ey € G,, ei-
ther [El,EQ] =0or {EhEg} =0 y where [El,EQ] and
{E1, E2} denote the commutator and anti-commutator
of E; and FE5 respectively. Moreover, every F € G,, is
either of order 2 or 4, thus either E> =1 or E? = —1. To
correct an error F, we basically apply the error operator
again to recover the original quantum state.

An encoding is a function that introduce redundant
qubits into the original message space, resulting in a
codespace with larger length. Mathematically, it is a
linear transformation f : C2* — C2" for some k,n € Z+
such that n > k. The resultant quantum error-correcting
code is C = Im(f), a k-dimensional subspace of C2".
Each [¢) € C is said to a codeword and C' is of length n
and dimension k.

The decoding of a quantum error-correcting code is a
process which determine the most likely codeword that
might be sent, based on the received word. We introduce
the concept of detectable error. An error operator E € G,
can be detected by a code C' if the received codeword
E|¢) is always outside of C'(E|v) is not a codeword in
).

Definition 2 Let C be a quantum error-correction code
of length n. An error E € Gy, is said to be detectable by
C' if for every codeword |p) € C, E|¢) & C.

Example 3 Consider the quantum error-correcting code
C with an encoding function f defined as:

£ :10) = |000)
£o]1) e [111)

Then, f : al0) 4+ b|1) — a|000) + b|111) for every a,b € C.
Every codeword in this code is in the form of a|000)+b|111)
for a,b € C. Unlike classical codes, it can be seen that a
quantum code has infinitely many codewords. This code is
of length three and dimension one and it is analogous to
the classical repetition code of length three. This quantum
error-correcting code can correct all single bit flip errors,
for instance, if a bit flip error X1 acts on the first qubit,
the codeword |11) = a|000) + b|111) is changed to |th9) =
a|100) + b|011). In the decoding algorithm, the decoder
always search for a smallest weight error acting on |1s3),
transforming it to a codeword in C. As wt(X;1) =1, the
decoder applies X1 and the error is successfully corrected
Xilh2) = ¢b1).

On the other hand, suppose that the phase flip error Zy
occurs when |11) = a|000) + b|111) is sent, then Z1|1) =
al000) — b|111) = |3p2) € C, thus the error operator Zy is
not detectable. In fact, it can be easily seen that both Z
and Zs are not detectable by the code too.

An important parameter of C' governing its error-
correcting ability is the minimum distance d, that is the
minimum weight of error operator that transforms a code-
word to another codeword in C. Mathematically, d =
min{wt(E) | Eli1) = |12),V|t1),[1h2) € C,VE € Gp}.
Thus, the code illustrated in Example 3 has minimum
distance 1. In general, a code with minimum distance d
can correct all errors up to weight [451].

We usually illustrate a quantum error correcting code
by highlighting its three parameters as follows.

Definition 4 A quantum error-correcting code of length
n, dimension k and minimum distance d is called an
[[n, k, d]]-code.

III. STABILIZER QUANTUM
ERROR-CORRECTING CODES

The construction of a stabilizer code of length n is
started by choosing a stabilizer subgroup S of G,,. The
resultant code C' is a subspace of C2", such that every
state in C' is invariant under every operation in S. In
other words, C' is the intersection of the eigenspace of
each of the error operator in S with eigenvalue 1.

Definition 5 Let C be a quantum error-correcting code
of length n and S is a stabilizer subgroup of G,,. Then, C
is called a stabilizer code with stabilizer S if C' = {|1)) €
C*" | Sil) = |¢),¥Si € S}.

We now study the necessary conditions that a stabilizer
subgroup must fulfill. First of all, if the error operator

-1 I € S, then by Definition 5, for [¢1) € C, we have
k=1

~1 @ Ip|t1) = |[¢1), that is:
k=1

=) =1¢) (1)

Note that there are no non-trivial n-qubits state |1)) which
satisfy (1), thus resulting the code to be trivial. Similarly,
suppose that S is non-abelian, then there exists F1, Fo €
S such that F; and E5 does not commute. In our previous
discussion, every pair of elements in GG, either commute
or anti-commute, then FyFEs = —FE3F,. Similarly, this
results in:

By Es|) = —EaEr 1))
Er|[¢) = —Es|)
) = —[1)

Hence, the stabilizer code C' with stabilizer S is trivial

unless S is abelian and —1 Q) I, € S
k=1

Proposition 6 Let C be a non-trivial stabilizer code with

stabilizer S. Then, S must be abelian and —1 Q) I, & S.
k=1



Stabilizer codes are robust in practice. One of the
reasons is that their dimension and minimum distance
can be determined from the properties of its stabilizer

n
S. Since —1 Q) I € S, for every error operator FE € S,

k=1
n

ord(E) # 4, otherwise E? = —1 @ I, € S. Hence, we
k=1

have ord(E) = 2 or E? = 1. This special type of group
which every non-trivial element in it has order 2 is called
an elementary abelian 2-group. Every elementary abelian
2-group S with |S| = 2! has presentation in terms of [
generators, that is, S = (51, Sa,...,S;). A stabilizer code
with |S| = 2! has dimension k = n — [.

For the discussion of the minimum distance of a length
n stabilizer code C, we need to go into the details on
partitioning those errors in G,, which are correctable by
C from those which are not correctable by C'. First of all,
note that S C Z(S) C G,,. Then, G,, can be partitioned
into G,, = SU(Z(S) — S)U (G, — Z(9)).

Firstly, for every E € S, it can be easily seen from
Definition 5 that E has no effect on the codespace C,
thus those errors are correctable for C'. Next, consider
an operator £ € Z(S) — S. Note that since E € Z(95),
then we have ES = SFE. This implies that when F
acts on a codeword [|¢) € C, then for every S; € S,
SUEIG)) = ($1E)e) = (ES[Y) = E(S:|)) = Elw)
for some Sy € S. This implies that Ely) is another
codeword in C such that El¢) # |¢). Therefore, E
is not detectable, hence not correctable. For the third
case, suppose that £ € G, — Z(S5), then there exists
S1 € S such that E does not commute with, thus ES; =
—S1E. This results in Ely) = E(S1]y)) = (ES1)|v) =
(—SLE)p) = — S (BJw)). Since ) = Sy (Bl)). 1)
is not stabilize by S; € S, thus E|¢) is not a codeword
in C. The error is detectable by C. Putting all these
together, this leads to the following theorem.

Theorem 7 Let C be a stabilizer code of length n with
stabilizer S. Then, C can detect an error operator E if

and only if E € SU (G, — Z(S)).

Corollary 8 Let C' be an [[n,k,d]|-stabilizer code with
stabilizer S consisting of | generators. Then, k =n —1
and d = min{wt(E) |VE € Z(S) — S}.

Example 9 Let n=5. We let S be a stabilizer subgroup
of G, with representation S = (S1, Sa, S35, S4) where:

S$1=X®RZQZ9XI
So=IXRIQZX
S3=XQRI®XQRZRZ
Si=ZXQIXQZ

Then, we have |S| = 2* = 16. The length 5 stabilizer code

thus have dz;mension 5—4 = 1. Its encoding function

f:C% = C% maps:

f :0) —10). = |00000) 4 |10010) + |01001) + |10100) +
|01010) + |00101) — |11110) — |01111) —
[10111) —|11011) — |11101) — |01100) —
|00110) — |00011) — |10001) — |11000)

£ ]1) =[1)e = |11111) + [01101) + [10110) 4 [01011) +
10101) + [11010) — [00001) — |10000) —
01000) — [00100) — [00010) — |10011) —
111001) — |11100) — [01110) — |00111)

For each of the S; € S, it can be verified that S; is
an error operator that has no effect on every codeword
in the code as S;|0). = [0). and S;|1). = |1).. Also,
one of the minimum weight operators E € Z(S) — S is
EFE=XX®X®I®I wth wt(E) = 3. Note that
E|0), = —|1). € C. Hence, the error operator E is not
detectable by C, that is C has minimum distance three.
Thus, C is a [[5, 1, 3]]-stabilizer code, It can be verified that
all error operators of weight 2 must be in G5(S), thus they
are detectable by the stabilizer code. Indeed, researchers
had shown that 5 is the smallest possible length for a
stabilizer code with k =1 and d = 3. More details on this
code are illustrated in [8].

IV. ENTANGLEMENT-ASSISTED QUANTUM
ERROR-CORRECTING CODE

In this section, we illustrate the main idea of construct-
ing entanglement-assisted quantum error-correcting codes
through an example of length four code.

Recall from Proposition 6 that, a necessary condition
on stabilizer group S of a stabilizer code is being abelian.
Now, we choose a non-abelian subgroup of G4. Let S be
a subgroup of G4 such that S = (S1, Ss, S5, S4) where:

S1=Z20X7ZxI1
S$H=7Z07Z117Z
S3=XY®X®I
Sy =XXIX

Note that |S| = 2* = 16. As S; and S are either commut-
ing or anti-commuting pair for distinct i, € {1, 2, 3,4},
we enumerate their commutation relations as follows.

1. [52753] =0,
2. {51,8;}=0 for all j € {2, 3,4},
3. {S4,8;}=0 for all j € {2,3}.

The following lemma on properties of S is needed in
order to continue the discussion.

Lemma 10 Let S be a subgroup of G,, with |S| = 2! for
somel € ZT. Then, there exists a set of | independent gen-
erators for S, that is {Z1,Za, ..., Zm, X1, X2y ..., Xi—m }
for some 1/2 < m <1 such that the following conditions
are satisfied:
1. [ iij} = [X“X]} = O fOT’ all i,j,
(20, Xj) = 0 for all i # j,

2.
3. {Z;, X;} =0 for all i.



Note that we use the conventional symbols of Z; and X j
as the commutation relations above are exactly the same
as the commutation relations of Pauli operators Z; and X;.
The subgroup G; = (Z;_ i1, .., 2;) is called a isotropic
subgroup of S and Gs = (Z1,..., Z1—m, X1, -, Xi—m)
is called a symplectic subgroup of S.

For our subgroup S = (51, S2, S3, S4), one of the choices
for the set of generators is:

I =20X02x1
X\ =2Z0201%7Z
Z,=YXX®Z
Z3=72Q0YRY®X

Here, we choose two generators of S, Zo = S»S5 and
Zs = 8159354 to replace Sy and Ss;. In this case, our
isotropic and symplectic subgroup of S are V; = (Zs, Z3)
and Vs = (71, X1) respectively. As S = (S1,S2,53,5,) =
(Zy, X1, Zo, Z3), we can define a group automorphism of
S, that is, ¢ : S — S such that:

¢251HZ1
(ZS:SZ'_)ZQ
¢IS3I—>23
¢ZS4D—>X1

Such automorphism turns out to be acquiring the fol-
lowing property.

Lemma 11 Let S be a subgroup of G,, with two group pre-
sentations S = (S1,59,...,5) = (V1,Va,...,V|) where
1 =|S|. Then, there exists an automorphism ¢ : S — S
such that ¢ : S; — V; = U 'S;U for some unitary
Uea,.

Back to our example, the goal now is to extend the non-
commuting generators of S to a new set of commuting
generators, which results in an abelian group. This can
be done by appending a Pauli operator Z at the end of
Z1 and a Pauli operator X at the end of X1, followed by
an identity at the end of Zy and Z5. Thus, we have:

Z/=720XRZ0I17Z
X =221 7Z3X

Z)=YQXQXQZQI
Z,=20YoYoX®l

Here, let B = (Z], X}, Z}, Z4),Bs = (Z},X}) and By =
(Z5, Z%). Asillustrated above, B is an abelian subgroup of
G5. Then, the codespace is defined similarly as for stabi-
lizer codes, that is C' = {|y) € C*" | S|sb) = [4), VS € B}.
As a result, we have:

£:10) = |0). = |0,0000,) + |1,0001,)
fl1) = 1) = [0,0010,) + |1,0011,)

The first and the fifth qubit state is a maximally entan-
gled state shared between the sender and the reciever, that
is ﬁ(\OSOQ +|151,)). Because of the usage of entangle-

ment in the code construction,the resultant code is called
an entanglement-assisted quantum error-correcting code.
We use the notation [[n, k, d; c]] to denote an entanglement-
assisted quantum error-correcting code of length n and
minimum distance d that encodes k qubits(k dimensional
code) with the help of ¢ ebits(entanglement qubits). The
number of ebits ¢ needed for the encoding us the number
of anti-commuting pairs of generators in Vg. Note that
our example code constructed above is a [[4,1, 3; 1]]-code.
We end this paper with some discussions on the error-
detection condition of the entanglement-assisted quan-
tum error correcting code. Firstly, the fifth qubit(the
receiver’s) is always assumed to be error-free. If an error
E, ® I, € (G5 anti-commutes with at least one of the
operators in B, then by a similar argument as in the
discussion of stabilizer codes, the error is detectable. This
case will only happen when E anti-commutes with one of
the operators in S = (7, X1, Zo, Z3), that is to say that
Es € G4 — Z(S) or equivalently E; € G5 — Z(B). On the
other hand, if E5; ® I, € B or equivalently F; ® I,. € By,
then the error has no effect on the code. As a conse-
quence, we have C can detect an error operator E if and
only if E € By U (G5 — Z(B)). The last theorem gives a
general description on the error-detecting capability of an
entanglement-assisted quantum error correcting code.

Theorem 12 Let C be an [[n,k,d;c]]-entanglement-
assisted quantum error-correcting code with a stabilizer S
extended to an abelian subgroup B. Then, C' can detect an
error operator E if and only if E € By U (Gpye — Z(B)).
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The path integral formulation provides an alternative description of the time evolution of quantum
mechanical states, equivalent to the Schrodinger and Heisenberg formulations. In this paper, we will
introduce Feynman’s idea and try to justify it, appreciating what kind of new insights we can get
from it. Despite its intuitive appeals, assigning a rigorous mathematical meaning to the Feynman
path integral is quite subtle and elusive. We will also try to understand what’s the nature of the

difficulty.

I. INTRODUCTION

Feynman’s path integral approach to quantum mechan-
ics, which was first presented in [1], provides a way to
describe time evolution of quantum mechanical states.
It’s a postulate about the time evolution, alternative and
equivalent to the Schrédinger and Heisenberg approaches.

In this paper, we will introduce Feynman’s idea in com-
parison with the Schréodinger picture and demonstrate
their equivalence. As an overview, be noted that the
Feynman formulation generalizes Lagrangian mechanics,
especially the action principle, while the Schrédinger for-
mulation is based on Hamiltonian mechanics. To follow
this paper, no knowledge about Lagrangian or Hamil-
tonian mechanics is necessary, except for the principle
of least action, about which enough explanation will be
given at some appropriate place in the paper.

In the following section, we will first present the path
integral formulation with a heuristic definition of the
path integral. Then, we will attempt to justify the idea in
various ways. Before concluding the paper, we will touch
on the issue of the mathematical basis of what we’ve
been discussing and try to see things from mathematical
perspectives.

II. PATH INTEGRAL FORMULATION

Let’s first recall how the Schrodinger picture describes
time evolution. We restrict our interest to the simple
case of a particle of mass m in R? subject to a potential
V' that only depends on positions. Let state vectors be
written as

W, ), (1)

where t is the time parameter. Then, in this picture, the
time evolution is represented by the Schrodinger equation

0 5
Zha |\I/at> =H ‘\Ilvt> ) (2)

where the Hamiltonian operator H is given by

In the position basis, Eq. (2) can be written as

iﬁ%kﬂ(x,t) = (-2@% + V(x)> U(x,t)  (4)

oz2

i

d
with V2 = 3 2% and U(x,t) = (x|, ).
=1

Time evolution can also be presented in terms of unitary
time-evolution operators U as

W, ) =U(t,t') |w,t) (5)

for times ¢' and ¢. The relationship between the Hamil-
tonian operator H and the time-evolution operator U is
explicitly known. Actually, U depends only on the time
difference t — t' and is related to H as

U(t—t’):exp{—;-(t—t/)f[}. (6)

Now, let’s see how time evolution is represented in Feyn-
man’s path integral formulation.! Define the propagator
K to be

K(x,t;x',t )= x|Ut-t)x), t>t (7)

for x’,x € R Then, in the path integral formulation,
time evolution of states is described by representing the
propagator K as a sum — or an integral — of equal-weight
contribution ¢[y] from each path v, taken from the collec-
tion Fi}ft, of all paths ~: [t/,t] — R? with v(#') = x” and
~(t) = x, with some normalization factor C:

K(X7 i X/a t/) =C- Z ¢h/] (8)

ey,

Here, the contribution ¢[y] of v € Fi}ft, is given by

oly] = exp <; Sh]) , (9)

L Straightforward adaptation from 2.2 and 2.4 of [2] and 8.1 of [3].



where S[y] is the action of the path « defined, from the
classical Lagrangian L(x,%) corresponding to H, as

shi= [ 103)ar (10)

The normalization factor C would depend on the time
interval t — ¢’ and be determined considering the system —
that is, the Lagrangian — of the problem.

Simply inserting the formula (9) for the summand into
Eq. (8), we can write the propagator as

Kt t)=C Y eo(pshl) (v

very’,

and this sum — or integral — over paths in Fi}ft, is called
the Feynman path integral. We adopt the notation

Keixt) = [ e (pal)obl  a2)
vergt,

to express this. In this notation, the normalization factor
C is absorbed into the “measure” D[y].

Before concluding this section, note two things. First,
we still didn’t specify clearly what kind of paths should
constitute the domain of integration F;;’ft,. Second, the
summation on the right-hand side of Eq. (11) would be
an uncountable sum since I‘;;tt, would more likely be an
uncountable set, which means we need a careful definition
of the sum — or the integral. We will come back to this
issue in a later section.

III. PHYSICAL MEANING OF THE
FORMULATION

The propagator K (x,t;x’,t") as defined in (7) repre-
sents the probability amplitude for a particle to travel
from the position x’ at time ¢’ to the position x at time
t. If, in Eq. (8), we can interpret each contribution ¢[v]
as the probability amplitude associated to the path -,
what Feynman’s path integral formulation roughly says
is that the probability amplitude of a particle traveling
from x’ to x is the sum of probability amplitudes of all
possible alternative paths between the two points, which
should be properly normalized if its absolute square would
be interpreted as probability. Note that this is a simple
restatement of experimental facts we learned from Mach-
Zehnder or Davisson-Germer.

Being probability amplitudes, it seems natural to set
¢[y] = exp (i aly]) for some real afy]. The choice afy] =
+8[y] would be justified from the classical limit of the
path integral formulation as we will soon see below.

IV. JUSTIFYING THE FORMULATION

For simplicity, in the remainder of the paper, we fo-
cus on the case of the one-dimensional space R'. The

Hamiltonian operator H would then become

. ik
H=—+V(). 13
P v (13)
This time, let’s write the corresponding classical La-

grangian L explicitly as
L(z,2) = —mi? — V(x). (14)

and accordingly, the action S[y] for v € Fi}ft, as

’

Sh] = / Ly 4)dr
- [{Baer-vae}an o9

Note that the results below can be easily modified for
more general cases.

A. The Classical Limit

In classical mechanics, the principle of least action
dictates that the system favors the path, out of all the
possible paths, which minimizes the action. In other
words, if there is a path 7 which makes the inequality

Sh) < Shi (16)

satisfied for any v € Fﬁ}ft,, then the system gets to follow
5 from time ¢’ to t. We call 5 the classical path.

The classical path 4 being an minimum point of S, for
a small change §v in 7, the change in S should be zero
to first order in J+:

S + 7] — SHl = 0+ O(6+?). (17)

In this way, we can call the principle of least action the
principle of stationary action. Here, 7y should be chosen
from Fg:i, to satisfy dv(¢') = 0 and dy(¢) = 0, so that
5 + & belongs to Fi;ft,.

If 7 is favored classically, in any reasonable quantum
mechanical formulation, the same path should also be
favored in its classical approximation — that is, in our
case, when the magnitude of S is much larger compared
to h. But how can it be like this? Recall that in the
path integral formulation of time evolution in (12), each
path from Fi}tt, contributed with the same weight to the
propagator. ’

Here, the stationary phase principle comes to our res-
cue.? In the integral expression in (12), due to the oscilla-
tory nature of the integrand exp (%S [’y]), only such path
at which the change $0S[4] of the phase to first order

2 This is basically the explanation in 2.3 of [2] and 8.2 of [3].



in §vy vanishes can provide meaningful contribution to
the result of the integration. That means, the classical

path 7 should actually be favored in the integration. So.

approximately, we always can insist
K(z,t;2',t') = C - exp (;i S[ﬂ) (18)

for some normalization factor C' depending on the time
interval ¢t — ¢’

The case in which we can be the most dramatically
convinced that this approximation should really hold is
when the potential V is given as a quadratic function
of positions, which includes the free particle and the
harmonic oscillator:

V(x) = a+ br + ca? (19)
for real coefficients a, b, and ¢, any of which can be zero.3
With such quadratic potential, we get to have “exact
equality” in the approximation (18).

To see this, let ¥ be the classical path of our system
and note that for any v € Fi}ft/ there exists appropriate

0,t C e
€ € I'y,, satisfying

Y=9+¢€ (20)

so that we have
Shl =8 +€ (21a)
:/t, {?(§+é)2_V(§+e)}dT (21b)
=SMH+ /t/t (% e — 062) dr, (21c)

where we simply ignored all the terms of first order in
e and € because S[¥ + €] — S[7] is zero to first order in
those variables as we noted in (17). Now, the propagator
integral becomes

K@ad )= [ e (psp)on e
verst,
— [ eo(jsEra)or o)
eely,
= C-exp (; sm) : (22¢)

where the normalization factor C' is given by

C = / exp {/tt % (% & ce2) dT}'D[e]. (23)

0,t
EGFO o

3 Taken and adapted from 3.5 of [2] and 8.6 of [3].

It is obvious that C' depends on the time difference ¢ — ¢’
and is independent of the end points 2’ and x of the
propagator. Also, note that we assumed equivalence of

“measures” D[y] and D[e] when we arrive at Line (22b)

from Line (22a).

B. Deriving Path Integral Formulation from
Schrodinger Picture

Here, we will see how the Schrodinger formulation im-
plies — or, at least, motivates — something that can be
interpreted as the path integral formulation. For this
purpose, we are to express the propagator

(Yl U(T) |z) (24)

in a form which would remind us of the path integral
formulation. We will derive the result solely within the
Schrédinger picture.?

K(y,T;x,0) =

_First, let’s consider the simple case of free particle. Let
Hj be the Hamiltonian operator for a free particle of mass
m in one dimensional space:

2
v p
Hy=— 25
=L (25)
and Ky be the corresponding propagator. Then, within
the Schrodinger picture, by considering the momentum
basis |p), we can make the propagator Ky look like the
formula in (22c):

oy, T (26a)

folrnp -

4 AN
=/ (y[p) < p| exp (—h Ho) sc> dp (26¢)
o
< —iTp?
/ (ylp) - ( S ) {p|x)dp (26d)
3 iTp2 =izp
:/ erl-e_’};nifi- eﬁldp (26e)
—co (2mh)2 (27h)2
]. o0 i(y—z)p iTp
= % 6% 27:nn dp (26f)
= %6%/ 6_277’1:71(1)_ (T >)2dp (26g)
m_\? im (y — )’
= : 5F T (- 26h
(27rifiT) eXp { on T } (26h)

By noting that the free-particle classical Lagrangian Ly
of this case is

1
Lo(z, &) = 5mj:2 (27)

4 Presenting arguments from 1.2 and 1.3 of Chapter 5 of [4] with
some ideas taken from 21.1 of [3].



and that the classical path gy of a free particle should be
a straight line:

W) =+ L1251, (28)
T
we conclude that
im (y — z)?
Ko(y,T;x,O):C-exp{%(yT)} (29a)

0

i [ -
=C - exp (ﬁ/ Lo(%0,70) dT) (29Db)

= C - exp (; SO[%]) , (29¢)

where Sy is the corresponding free-particle action and the
normalization factor C' is given by
m

o= (zar) 30

Now, let’s consider the case of a particle subject to a
potential which is represented by the Hamiltonian in (13):

H = Hy + V(&). (31)

Note that we cannot write

exp {Z;‘ip (ﬁo + V(yz)) }
= exp (—Zg ﬁ()) - exp (—Z"ﬁr V(ﬁ;)) (32)

because the operators Hy and V(&) do not commute. In-
stead, according to the Lie-Kato-Trotter product formula,’
what we can actually say is

exp {_;T (o + V(:ﬁ))}

= lim {exp (;ZH()) exp (;ZV(:@)> }n (33)

To make our equations look less messy, let’s adopt the
notation

An(p) = exp (h ~ ZH) (34)

Bo(z) = exp (-% - Tvm) . (35)

n

Then, the propagator can be expressed as

K(y,T;z,0) (36a)
= <y exp {;LT (ﬁg + V(i))} x> (36D)
= lim (2| (A - Ba)" |wo) (36¢)

= lim
n—o00
Rn—1

n—1 n—1
<H <Ik+1| A, - By, |Ik>> H dxy, (Sﬁd)
k=1

k=0

5 See, for example, Theorem 1.1 in Chapter 5 of [4].

where we first used Eq. (33) to arrive at Line (36¢), then
set
To =7, Tn=1Y, (37)
and inserted n — 1 resolutions of the identity
for k=1,2,---,n — 1 between each B, and A, in some
appropriate order.
Note that, in Line (36d) above, the terms of the product
inside of the integrand can be easily simplified:
<xk+1| An(p) : Bn(m) ‘xk>
= (k41| An(p) [zk-1) - Bn(z)

(39a)
(39b)

e {; = (7; (?fﬁ)Q - vm)) } (390)
= C' - exp {; : % (% 22— V(-Tk)>} (39d)
:C’/-exp{:i -:L(:Jck,x'k)}7 (39%)

where we used the free particle propagation formula
in (26h) to arrive at Line (39c) from Line (39b) and
set

Axk = Tk+1 — Tk (40)
A.%‘k
= —— 41
Tk T/n (41)
1
2
o=(—"_)". 42
(27riﬁT/n> (42)
For small enough %, if we are allowed to approximate
T [PER]
— L(mk,fk) ~ / L(l‘k, CU.]C) dr (43)
n th

with t;, = %, we can finally express the propagator in a
more recognizable way as

K(y,T;x,0) (44a)
. i n—1 T n—1
= 7}1_{1;0 C exp (ﬁ Z g L(:I:k,xk)> H dxy,
Rt k=0 k=1
(44b)
i T
= /exp (ﬁ/o L(z, ) d’T) D*[z], (44c)

where we adopted an integration notation

n—1

* — : !/ !

/-~-D ] = lim C / T dm) . (45)
Rn—1 k=1
The path integral “expression” derived in this way is
called the configuration space path integral. Now, we can
see that the resulting form in Line (44c) of the propagator
looks almost the same as the form of the Feynman path
integral in (12).



V. MATHEMATICAL CONSIDERATIONS

We still didn’t provide any concrete mathematical mean-
ing to the Feynman path integral. To discuss how to do
this is the purpose of this section.

To begin with, recall what were the requirements from
Section II. For sure, we wanted the Feynman path integral
to be some sort of “integral”, where we evaluate the
integrand for each point v — which actually is a path
— from the domain of integration Fi}ft, and accumulate
evaluated values with respect to some “measure” D[y]
to get the result. Also, quite obviously, to evaluate the
Lagrangian in the integrand, the domain of integration
Fﬁ}ft, — which is a collection of paths — should consist
of differentiable paths, where some limited number of
singular points can be allowed.

A. Definition via Configuration Space Path
Integral Expression

Let’s first try and see if we can provide a meaningful
definition via the formula for the configuration space path
integral in (44).

n—1
Considering the form of “measure” [] dxj at the end
k=1

of Line (44b), it seems to be suggested that the “measure”
D*[x] should be compatible with the usual Euclidean vol-
ume. Such measures are called Lebesgue-type measures
and it’s a well-known fact, from the measure theory, that
an infinite dimensional Lebesgue measure cannot be con-
structed meaningfully. To get a glimpse of what has gone
wrong here, note that an n-cube in R™ with edge length a
has volume a™. So, when n becomes infinity, the volume
of a oo-cube can be only one of three values: zero, one,
infinity.

In conclusion, D*[x] cannot be related to a Lebesgue
measure, and in fact the formula in Line (44c¢) should be
interpreted as a sequential limit, not as an integral in the
sense of the measure-based integration theory.®

B. Schrédinger Equation as Parabolic PDE

What if we think purely mathematically? Note that
we can write down the general solution of parabolic
PDEs(partial differential equations), in case of real coef-
ficients, as an integral over paths with respect to some
measure, using what is called the Feynman-Kac formula.”
Since the Schrodinger equation is just a parabolic PDE
with complex coefficients, we might be able to utilize, in
some way, the Feynman-Kac formula of the real case to

6 As is mentioned in [5].
7 See, for example, 4.4 of [6].

represent the general solution of the Schrédinger equa-
tion. Then, we might be able to pick out the kernel part
to write down the propagator in some appropriate form
separately.

In fact, we can do so.® After a change of variable,
replacing t by —it in the Schrédinger equation, we obtain

h%\l}(m,t) - (;n : % - V(a;)) U(z,t),  (46)

which is a real-coefficient parabolic PDE. Now, we can
apply the Feynman-Kac formula and then change back
into our original time variable. This surely will give a
correct mathematical formula. But, the major problem
with this approach is that almost all® the paths exploited
in the Feynman-Kac formula are nowhere differentiable.
Remember that we needed differentiable paths with which
the Lagrangian can be computed. This approach might
result in a meaningful formula, representing the propaga-
tor as an integral over paths with respect to a concrete
measure, but at least it can never be used to realize Feyn-
man’s idea. As is pointed out in [4], in this representation,
we can no longer see the action and the connection with
classical mechanics is lost.

C. Highly Oscillatory Integral

As it turns out, providing a proper mathematical defi-
nition to the Feynman path integral is a bit beyond the
scope of this paper in terms of required technical sophis-
tication. But, at least, we can state what is the right
direction to explore. The key is to recognize that the in-
tegrand of the Feynman path integral is highly oscillatory
and lots of cancellation should occur in the process of
integration. We noticed it when we applied the stationary
phase principle in deriving the classical limit of the path
integral formulation.

The conventional measure-based integration theory is
not fit for handling such oscillatory integrals. It’s quite
obvious from its construction. So, let’s briefly review how
integrals are defined in that theory. Assume a measure p
on a set X is given. As the first step, the integral | < 9du
is defined only for non-negative functions g : X — [0, c0)
as some non-negative real number, which possibly can
be infinite. Then, as the second step, for real-valued
functions f : X — R, the integral [ f dp is defined as

/deuE/Xf*du—/Xf‘du (47)

only when both [, f* du and [ f~ du are well-defined
as finite real numbers, where non-negative functions f+

8 See Chapter 6 of [4].
9 By “almost all”, we mean “with probability one” with respect to
some probability measure.



and f~ are given by

[ () = max (f(x),0) (48)
[ (@) = —min (f(x),0), (49)

so that they satisfy
f=r—r. (50)

As the last step, for complex functions h : X — C, the
integral [ hdpu is defined as

/thpE/XRe(h) du+i-/XIm(h) du (51)

only when both [, Re(h)du and [, Im(h) dp are well-
defined as finite real numbers, where Re(z) and Im(z)
are the real and imaginary parts, respectively, of complex
number z. Now, at least, we can clearly see that under
these definitions all possible oscillations and cancellations
are simply ignored.

To handle strongly oscillating integrands, special math-
ematical devices are needed. Various approaches have
been developed in this direction and we refer interested
readers to [5].

VI. CONCLUSION

We began this paper by directly presenting Feynman’s
path integral formulation itself. Then, we tried to assign
appropriate physical meaning to it. Our next step was to
justify the formulation first by observing how its classical
limit behaves and then by analyzing its relationship with
the Schrodinger picture. Finally, we discussed how to
provide concrete mathematical meaning to the formula-
tion. It wasn’t easy. We reviewed several options, but
no satisfactory answer was found. We were able to point
out the right direction to advance the discussion, and
referred readers to a more advanced source for further
information.
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The Forced Harmonic Oscillator

M. E. Lacy
(Dated: May 25, 2019)

The behavior of an oscillator subjected to a time-dependent force is of importance in many contexts.
When the oscillations are those of a small massive system, such as a molecule, the force can often be
approximated as being constant over the dimensions of the unforced motions (dipole interaction), and
is described by adding the potential Zf(t) to the Hamiltonian. In the case of radiation, the unforced
oscillations are those of the modes of the free electromagnetic field, while the sources responsible for
emission and absorption of radiation add the term j-A to the Hamiltonian of the free field. After
Fourier analysis, the latter also add a term of the form 2 f(t) to each mode oscillator. The discussion
that follows is therefore relevant to a wide range of phenomena.

I. INTRODUCTION

For many applications, especially in many body and
field theory, it is desirable to consider the dynamical
effects produced by the addition of a time-dependent
interaction that is linear in  to the Hamiltonian of the
harmonic oscillator:

where X (t) is a real-valued function of ¢. This perturba-
tion corresponds to an external time-dependent force that
does not depend on the coordinate x (dipole interaction).
With no additional effort, we may generalize the Hamil-
tonian even further by introducing a velocity-dependent
term:

=P e EX(t) — pP(t) (2)

where P(t) is also a real function of t.
As in the case of the unforced harmonic oscillator, we
introduce the following non-Hermitian operators

TR
“=\ 2n (aH_zmw)’ (3)

R mw, . . p
i’ = \ 25 & i), (4)

which satisfy the commutation relation
la,af] = 1. (5)

With the substitutions (3) and (4), the Hamiltonian (2)
may be cast in the form

H = hw (a*a + ;) + fta+ fr(t)al (6)
— (a*(t)a(t) " ;) i) + a7

in either the Schrédinger or Heisenberg picture, provided
that we define the complex-valued function f(t):

F(t) = —ﬂ/%xu) + i,/hmT”P(t). (8)

II. DISCUSSION

In most applications, we are interested in the changes
produced by the time-dependent forces in an initially un-
perturbed harmonic oscillator. It is therefore reasonable
to assume that the disturbance f(t) # 0 acts only during
the finite time interval Ty < t < T} and that before Ty
and after 77 the Hamiltonian is that of a free oscillator.

The time development of the forced harmonic oscil-
lator can be solved in the interaction picture, in which
time evolution is separated into two parts, one subject
to a model, unperturbed Hamiltonian, and the other to
an interaction, time-dependent Hamiltonian (for a full
treatment of the interaction picture, see [1], §14, and also

[2))-

A. The Forced Harmonic Oscillator Hamiltonian in
the Interaction Picture

In the interaction picture, we regard the Hamiltonian of
the forced harmonic oscillator as the sum, H = Ho+V (t),
of an unperturbed Hamiltonian

Hy = hw(a'a + ), (9)
and an explicitly time-dependent ”interaction” term,

V(t) = f(t)a+ f*(t)al. (10)

Time-dependent Hamiltonians require a more careful
treatment than time-independent ones, because in the
general case, the interaction operators at two different
times do not commute.[3]

We choose the unperturbed Hamiltonian operator fIO
as the model Hamiltonian to define the interaction picture.
Note that if the model Hamiltonian is time-independent
and thus conservative, the time-dependent unitary trans-
formation Up(t) is

Up(t) = exp <;ﬁot> : (11)



The transformed interaction operator is then

V(t) = Ul (t)VU(t) (12)

— eiw&*&t(f(t)d_’_f*(t)&'i')e—iw&*&t. (13)

The interaction operator can be evaluated using the fol-
lowing commutator identity:

eMBe M =eMB, if [A,B]=+B, [4] (14)
since [afa,a] = —a and [a'a,al] = af. We thus obtain
V(t) = f(t)ae ™" + f*(t)ale’". (15)

The equation of motion for the instantaneous eigenstate
in the interaction picture is then

zh% (1)) = (f(t)ae ! + f*(t)ale™) [W(t)). (16)

B. Time-Ordered Products

Likewise the instantaneous eigenstate, the time develop-
ment operator U(t1, tp) in the interaction picture, defined
as

Ult1,to) = U (1)U (t1, o) Uo(to), (17)

also satisfies the equation of motion:

d - .
ih%U(t, to) =V (OU(t, o). (18)
Integration of Eq. (18) over the interval (¢g, ) and the use
of the initial condition U(tp,ty) = 1 produce an integral
equation for the time development operator:

0t 1) _1—7/ VYO t)dt . (19)

A formal solution of Eq.
successive iteration:

(19) can be constructed by

.t
U(t,to):lfi/ V(t') dt’
h )y,

+ (;)2[ V(') dt /tt V) dt ... (20)

It is sometimes convenient to write this series expansion in
a more symmetric form by using the time-ordered product
of operators. We define time ordering of two operators as

~ N f/ t ‘7 " " < t
)= JUVED TS
Vv ¢ <t

That is, time ordering orders timed factors from right to
left, with the rightmost operator the earliest.

This convention can be generalized to products of any
number of time-dependent operators

TIV(E)V(ty) ... V()] =
29 (th, >t > >t )

VE,)V(t,) ... V(E, ), (22)

P1 P2 p

where the sum is over all the permutations p, and 6(x) is
the Heaviside step function.

With it we can prove that if ¢t > tg, the time develop-
ment operator may be written in the form

- — 1/ i\" /[
U(t,t0)=1+zn'(—h) /t/t
n=1 0 0

/t dtydty . ..dt, TV () V(th) ... V(t)], (23)

to

or formally and compactly as

Ult,to) = Texp (_;1 /t: V(t) dt’) . (24)

C. Time-Ordered Product of the Forced Harmonic
Oscillator Potential

If Eq. (24) is applied to the forced linear harmonic
oscillator with the interaction potential (15), we obtain

Ult, to) =

T exp (—; /tt (f(t')de—iwt' + f*(t’)dfei“’t/) dt’) .
° (2)

This is a compact expression for the time development
operator, but because of the unwieldy time ordering oper-
ator T, it is not yet in a form convenient for calculating
transition amplitudes.

In order to get the time development operator in a
more manageable form, we can consider the case of the
potential V(¢) having additional general properties. We
will see that commutation of V (t) at different times is
too strong a condition for the forced harmonic oscilla-
tor problem; but commutation with the commutator, i.e.
7). [V v
ited by the forced harmonic oscillator.

To begin, we use the group property of the time devel-
opment operator

} = 0 is exactly the property exhib-

Ulta, to) = U(ta, t1)U(t1, o), (26)
and write
U(t, to) = lim e"Ve'VTleVv=2 | V2eVh (27)
N—oo



where, by definition,

Z‘ to+ne ~
Vo = ——/ V(t') dt’
t

and Ne=1t—1ty. (28)
h o+(n—1)e

Equation (27) is valid, even if the interaction operators do
not commute at different times, because the time intervals
of length € are infinitesimally small and are not subject
to internal time ordering.

Equation (27) can be further reduced if the commutators
{f/(t’), V(t”)} are numbers for all ¢ and ¢”. This is indeed

the case for the forced harmonic oscillator, since according
to Eq. (15),
@), v =
f(t/>f*(t//)e—iw(t’—t”) _

which is a complex number.
The Baker-Campbell-Hausdorff (BCH) relation, also
known as the Hadamard lemma [4],

f*(t/)f(t//)eio.J(t/—1‘,”)7 (29)

1
oAB — A+B+11A, B

if [A,[A4, B]] =0, (30)
can then be applied repeatedly to give

. N 1
Ul(t,tg) = 1\}51100 exp (Z (Vn + 3

n=1

n

Vo, > Vi

k=1

or, if the limit N — oo and € — 0 is carried out,

. t
Ult,to) = exp (- % V(t') dt'—

ol [ o

For the forced harmonic oscillator, inserting Eq. (15)
and Eq. (29) into Eq. (32), we thus obtain the time
development operator in the interaction picture in the
desired form:

U(t,to) = €5 exp (—(* (. to)a + ((t, to)al) ,  (33)
where we have defined
.t
(o) =~ / et P ()t (34)
to

This expression can be connected with the Fourier integral
of the applied force:

o(w) = / et )t / T gty e, (35)

To —0o0

that is,

g(W) = 7’Lhc* (Tl,To) = 71771(* (+OO, *OO). (36)

The real phase § in Eq. (33) manifests when eliminating
the time ordering operator, and stands for:

5(t7 tO) =

. t t
LQ / dt' / A" (f(t/)f*(t//)eiw(t't”)
202 Jy, to

i f*(t/)f(t//)eiw(t/t”)> ) (37)

D. Coherent States and the Forced Harmonic
Oscillator

If the initial state at t = ¢ is a coherent state |a) ([1]
§10.7(10.110), and also [5]), the state at time ¢ is

D)) = Ut to) o) (38)
_ eiﬁ(t,tg)efc*(t,to)fl+<(t,to)&lfeadea*& |0) (39)
— @iB(t:t0) p—¢ at¢a +aal —atat(Ca”~("a)/2 0)

40

41

42

43

= €iB(t:10) o(CFa)al —(¢T+aM)at(Ca’ ~C"a)/2 )
= ¢iBt:t0) g(Ca” =C7 @) /2 (CHanal —(C"+a")a | g

_ ei'y(t,to) |Ol + C> ,

(40)
(41)
(42)
(43)

where we applied the BCH relation (30) in the second to
third line, collected terms on a' and @, and moved the
(commuting) one-half term in the exponential to the left;
so that ~, like 3, is a numerical phase.

We arrive at the intriguing and important conclu-
sion that, under the influence of the (dipole) interaction
f(t)a+ f*(t)at, a coherent state remains coherent at all
times, because the time development operator (33) is a dis-
placement operator ([1] §10.98, and also [6] §4.2(c)(108))
for coherent states.

Thus, what we have discovered is the property that co-
herent states in the forced harmonic oscillator evolve into
other coherent states (under spatially uniform forcing).
The immediate consequence of this is that we now see
how to physically create coherent states: reduce (e.g. by
cooling) harmonic oscillators to their ground state, and
then apply a (spatially uniform) force pulse.

As an aside, we know from classical mechanics ([7], §22)
that a forced harmonic oscillator Hamiltonian produces
oscillations displaced from their unforced motions. This
similarity between classical and quantum mechanics can
be taken as a starting point for building an Ansatz based
on the displacement operator, in order to solve the forced
harmonic oscillator by other methods (see [6], §4.2(c)).

E. Scattering Operator

Of particular interest is the limit of the operator U (¢, to)
as tg — —oo and t — oo. This limiting time development



operator is known as the S (or scattering) operator and
is defined formally as

S = U(+o0, —o0). (44)

For the forced harmonic oscillator with a finite duration
interaction during the interval (Tp,T}), the S operator is

s = exp (- pai - po@al).| @)

where we have denoted

ﬁ = /8(+OO’ _OO)? (46)

and g(w), defined in Eq. (35) is the Fourier transform of
the generalized force f(t). Substituting the expression for
g(w) according to Eq. (36), we obtain

S =
_ i [T . .
e exp (—h [m (f()ae™ ™t + f*(t)ate™?) dt> .41

If the oscillator is in the ground state before the start

of the interaction, what is the probability that it will
be found in the nth excited oscillatory energy eigenstate
after the interaction?
The interaction produces the state S |0), which is a coher-
ent state with eigenvalue o = —i/fi g*(w). The transition
probability of finding the oscillator in the nth energy
eigenstate after the interaction is a Poisson distribution
(see [1], §10.7(10.110), and also [5]):

[ (n] S10) |* = | (n] = i/h g"(@)) | = Pu(a)  (48)

L g@) ™" _jge/m
— <TL> e—<n>7 (50)
n!

a fact of great significance in radiation theory: These
results can be interpreted in terms of a system of n quanta.
The interaction term in the Hamiltonian is linear in &' and
a, and creates and annihilates quanta. The strength of the
interaction determines the average number (n) of quanta
present, and characterizes the Poisson distribution, which
represents the probability that a dipole interaction pulse
incident on the vacuum state of our system of quanta
leaves after its passage a number of n quanta behind.

These features of the dynamics of the forced or driven
linear harmonic oscillator can then help understand the
creation and annihilation of photons. [1] §23

F. Time Evolution in the Schrédinger Picture

Finally, we use the results from the interaction pic-
ture to deduce the time development operator in the
Schrodinger picture. From Eq. (17) we infer that

Ulty, to) = e~ @/MHNTT (1, 40)eli/ M Hoto, (51)

If we employ the oscillator Hamiltonian (9) for Hy and
the time development operator (33) in the interaction
picture, we obtain

Ulty, to) = e'Pli o)

exp ( — (*(t1, to)a e +((t, to)a! e““)

e—(i/h)ffo (t1—to) (52)
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Fractional statistics in two dimensions

Diwakar
(Dated: June 18, 2019)

In 3 dimensions, particles are grouped in two categories: bosons and fermions, depending on
whether they follow Fermi-Dirac or Bose-Einstein statistics. But in 2 dimensions, there exists a
continuous range of statistics between these two extremes and the particles that follow them are
called ”anyons”. Bosons have integral spins and fermions have half integral spins, but 2-D anyons
can have fractional spins. The main practical application of anyons and fractional statistics is in
condensed matter systems where it has been used to explain fractional quantum hall effect. The
paper will start by explaining how a 2D system called ’cyon’ acts as anyon followed by calculation
of partition functions and end with discussion of fractional quantum hall effect.

I. STATISTICS AND WAVEFUNCTIONS

Suppose we have two particles labeled as 1 and 2. The
wavefunction associated to them is ¢(1,2). Next we in-
terchange the particles. In case of fermions, the new
wavefunction will differ from old wavefunction by a mi-
nus sign while in case of bosons the new wavefunction
will be same as old wavefunction.

If instead of interchanging particles, we rotate one parti-
cle around the other by an angle A¢ in plane, the wave-
function transformation can be written as

¥(1,2) = e™29%(1,2) (1)

v is called the statistics of the particles. It can be seen
by taking A¢ = m(which means we are interchanging
particles) that for bosons, ¥=0 and for fermions, v=1.
For anyons, v can be arbitrary.

II. CYON ACTING AS AN ANYON

A cyon consists of an infinity long and thin solenoid
with a charged particle inside it. Suppose the solenoid is
oriented along the z direction and passing through origin.
The magnetic field of the solenoid will be solely along z
direction.

B =Bz (2)

The motion of the charged particle in the z direction
is free because no Lorentz force will act in z direction.
The motion in (x-y) plane is governed by the following
Lagrangian:

mv? + S5 A (3)
c
,where v = 7
and ¥ = xZ + yy
and A is the vector potential for the magnetic field B

We assume the following magnetic field created by
solenoid:

We can see that:

/ dr’B = (5)

Hence @ is the flux of the magnetic field due to
solenoid. -
The vector potential for B is:

N ¢ —yr ay
Af) = —(—— + — 6
(=5 ("5 +22) (6)

Note that r2 = 22 + 32. Everywhere in the discussion
of cyon, r is only in (x-y) plane and the z direction is
not included anywhere.

The canonical momentum is defined as

oL oL eA
= =muv+ —

i A

We can now calculate the Hamiltonian

va

H:ﬁ?fL:ﬁﬁfL:T (8)
It is the Hamiltonian for a free particle. But effect of
magnetic field is there as it shows up in the relation
between canonical momentum and kinetic momentum
as seen in (7).

The Lagrangian (3) is rotationally invariant. The con-
served quantity associated with this rotational symmetry
is canonical angular momentum .J,

Jo=7TXp

Using expression of p from (7)

=4 = N eFXA - e(I)
J. =7 X muv+
c 2re



where J is the kinetic angular momentum.
It has been shown (Jackiw and Redlich, 1983) that eigen-

values of J, are integral multiples of A. Hence

J_; =mh m € 7
This gives us the following value for kinetic angular
momentum

f:h(m—@)

Z 1
e m € (10)

Hence in the presence of magnetic field, the values of
kinetic angular momentum are shifted from the integal
multiple of A

Spin of a cyon is defined as

s = > = (11)
In general, s is neither integer nor half-integer. So we
expect cyon to behave like an anyon. To find the statistics
of a cyon, we consider two cyons and their wavefunction
is 9(1,2). Now imagine that the one cyon is rotated by
27 around each other. Particles in both the cyons would
acquire a phase due to rotation in the magnetic field of
the solenoid of the other cyon. The phase acquired by one
particle on such rotation around closed loop L is given
by Aharonov Bohm effect:

—1ed
he

)

This is the phase acquired when one cyon particle is
rotated around another cyon solenoid enclosing flux &.
But the second particle will also acquire similar phase
since it will also seem to rotate around the first cyon.
So, total phase acquired by two cyons are given complete
rotation is twice of this

exp(

Note that on the right hand side above, it is h instead
of ii. Comparing this with equation (1) and noting that
A¢ = 2w, we get

—2ed
= 12
Y hc (12)

Comparing equation (12) with equation (11), we get the
following relation between statistics and spin
v=2s

Thus in general, a cyon is an anyon and the standard
spin-statistics relation is satisfied.

III. STATISTICAL MECHANICS OF ANYONS
A. Partition function

Suppose a constant particle number system has energy
levels: Fy, Es, ...., En. Then the partition function of the
system is defined as

N
Z="7 eup(~BE;) (13)

n=1

where £ = kpT, T is temperature of system
This is called canonical partition function. Here the num-
ber of particles in the system are fixed.

B. Calculating partition function for 2 particles

Calculating partition function for fermions and bosons
is easier than for anyons. Here i have calculated partition
function of bosons and fermions for single and 2 particle
system.

The system we consider is a 2D harmonic oscillator in a
plane. The energy levels for one particle in 2D oscillator
is given by

E(ny,j1) = (n1 +j1 + 1)hw (14)

where nq,71 =0,1,2, .....
CASE 1: Single particle

Single particle partition function can be calculated as

7y = Z Z exp(—BE(ni, j1))

n1=0j;=0

=Y > eap(—Bn1 + 1 + 1)hw)

n1=0j;=0
= exp(—Bhw) Y | exp(—Bnihw) > exp(—Bjihw)
n1=0 71=0

© 2
= eap(—tw) (Y eap(~fnhw))
n=0
The infinite series is convergent and converges to

1
1 — exp(—pw)

Hence,



exp(—pw) _ 1
(1 —exp(—fw))®  4sinh?(52)

7, is same for bosons, fermions and anyons since there
is no statistics to speak of in case of single particle.

CASE 2: Two particles

In case of two particles, energy is given by

E(n17j17n27j2):(n1 +j1+n2 +J2+2)hw (16)

The 2 body partition function for bosons is given by

Zgos — Z

[n1,51,n2,72]

exp(E(n1, j1,n2,j2)) (17)

The sum over all 4 integers is not independent of each
other. The new state given by interchanging particles
in a given state is not to be counted. For example the
difference between states (n1 = 1,51 = 2;ne = 3, j2 = 4)
and (n; = 3,j1 = 4;n9 = 1, jo = 2) is just interchange of
particles 1 and 2. These two states have to be counted
only once.

With a little manipulation, the ’restricted sum’ could be
converted into ’independent sum’ by noting the following

oo

> =2 >y (18)

n1=n2=0,j1=72=0 [n1,41,m2,72]

%) o
> >+
n1,j1=0nz2,j2=0

Using this, we have

Zgos —
5 0 Yo o €p(—Bhw(ny + i1 +ng+j2+2))+

Z;L“jjzo exp(—Bhw(2n +2j + 2))]

_ L_cmp(=2h) cap(-25hw)
2 (1 exp(Bhw))t (1 - exp(2Bhw))?

B cosh(Bhw)
B SSiHhZ(%)siﬂfﬂ (Bhw)

bos

(19)

The fermionic 2 body partition function can also be
calculated in a similar way

der _ Z

[n1,41,m2,52]

exp(E(n1, j1,n2, j2)) (20)

Just like for bosons, the sum is restricted here also.
The states obtained by interchanging of particles have
to be counted just once. Additionally, due to Pauli’s
exclusion principle, both the particles cannot be in the
same state.

Here also we convert the restricted sum to independent
sum but the equation will get modified to include Pauli’s
exclusion principle.

> Y-y -2 Y e

n1,71=0n2,72=0 n1=n2=0,51=752=0 [n1,51,m2,j2]

Using this, we have

der _
3 =0 o a—o €ED(— Bl (n1 + 1+ 1o+ ja+2)) -

Z;ﬁj:o exp(—Bhw(2n + 2j + 2))]

_ }[ exp(=2fhw)  exp(—2fhw) |
2°(1—exp(Bhw))* (1 — exp(2Bhw))?

ZfeT‘ — . . Bhwl . ; (22)
8sinh?( =5~ )sinh?(Bhw)

Calculations for higher N particles partition function

is also possible in similar way but the equations (18) and
(21) become more and more complicated as N becomes
higher and higher.
However, this method cannot be used to calculate par-
tition function of anyons. The partition function for
anyons of any general statistics, v has been derieved in
”Lecture notes on anyons” by Alberto Lerda (Chapter 7,
page 96-98). Here, i have directly written the formula for
two particle anyon system

_ cosh((1 —v)Bhw)
Zs(v,0) = 88mh2(%)sinh2(ﬂm})

(23)

Note that we recover eqn (19) for v = 0(bosons) and
eqn (22) for v = 1(fermions)

IV. QUANTUM HALL EFFECT

Quantum Hall effect is observed in 2D system at very
low temperatures (few degrees kelvin) and very high mag-
netic field ( 10 Tesla). Under these conditions, electrons
in the system can move only in the layer perpendicular to
the direction of magnetic field. In Quantum Hall Effect
(QHE), the Hall conductance (o) is given by

e2



where v can be an integer (Integer QHE) or a fraction
(Fractional QHE)

The quantum number, v is actually equal to a physical
quantity called ’filling factor’ which is defined as number
of electrons per number of Landau levels available. In
the presence of magnetic field, the energy spectrum of
electrons split into Landau levels. For a finite sample of
area A, the number of Landau levels is given by

A

— 2
271(2) (25)

lp is called magnetic length and is given by

lo = \/g (26)

The filling factor thus becomes

N N N
V="4 = 4ABe ~— & (27)
273 “he b0

where N is number of electrons in the system, ¢ = BA
is magnetic flux and ¢ = % is flux unit.

The proof that the quantum number, v appearing in
(24) is indeed the filling factor v of (27) can be found in
book Prange and Garvin, 1990.

If v is integer (integer QHE), it means that all the Lan-
dau levels are filled. If v is fraction (fractional QHE), it
means that only a fraction of the Landau levels are filled.

When v = % where m is odd integer, the ground state
wavefunction is given by (Laughlin, 1983)

— >y |l

I<J

) (28)

where 27, z; are coordinates of Ith and Jth electrons
respectively and N, is normalization constant.

We can produce excitations in this system by bringing
about change in the number density of electrons, for ex-
ample by changing flux at some point. These excitations
can be of two types 'quasi-particles’ and ’quasi-holes’.
We want to prove that these excitations have fractional
charge as well as fractional statistics. I have considered
the case of only quasi-holes here.

For a system with filling factor v = &, the wavefunction

m’
with one quasi-hole at z, can be written as

Yoo = Nz, H(ZI — Za)Vm (29)
I

where 1), is ground state wavefunction of (28).

We want to see the charge and the statistics of the
these quasi-hole excitations. We shall see that the charge

4

of quasi-hole is % of electronic charge,e. And the statis-
tics is equal to the filling factor v = % This will prove
that quasi-hole excitations are anyons.

The charge of quasi-hole will be calculated by looking at
the phase that the wavefunction acquires when the quasi-
hole is moved adiabatically in a closed loop around a flux
o.

Since the motion of quasi-hole in a closed loop around
flux ¢ is adiabatic, the phase acquired by the wavefunc-

tion is equal to

exp(—iy) (30)
where,
v==i [l o) (31)

Here ty and t; are respectively the times when the
quasi-hole starts the loop and comes back to the initial
point after completing the loop.

Eqn (30) is called Berry phase.

We can calculate « by putting expression of wavefunc-
tion from eqn(29) into eqn(31). Note that wavefunction
in eqn(29) will be treated as function of time because po-
sition of quasi-hole z, is function of time as it is going
around in a loop. The calculation is skipped here (check
Lecture notes on anyons, Alberto Lerda, pg 115). The
final result is equal to

v = 2mNe (32)

where N, is number of electrons inside the loop traversed
by quasi-hole. According to Aharonov-Bohm effect, when
a particle of charge q is moved around in loop encircling
a flux of ¢, the wavefunction picks up a phase

—iq¢

33
eap(—2%) (3
Comparing this with the phase we have obtained

q¢

— =27, 34

b = 2T (34)

We can find the relation between ¢ and N, using equ(27)

1 bo
== =N2 35
YT m 0] (35)
Using this in eqn (34), we get
e
= — 36
¢=_ (36)

proving that quasi-holes have fractional charges.

The other kind of excitation called quasi-particle also
equal but opposite charge to quasi-hole.

The next task is to prove that quasi-holes have statistics
of % and are thus anyons.

For this we consider two quasi-holes at positions z, and



z3. The wavefunction will be the generalisation of eqn
(29)

5 = Ny [[ 1 — 20)er = 200 (37)
I

Just like in the case of calculating charge, here also we
will move z, in a loop while keeping 2 fixed and calculate
the Berry phase

v= i [ i) e oy 69

In the above integral z, is a function of time while z3
is constant. If the loop followed by z, does not include
23, the result of the integral will be

v = 27N, (39)
where N, is the number of electrons inside the loop just

like we got in eqn (32). If zg is contained inside the loop
then the integral will be

7=2m(N. — ) (40)

which has a physical interpretation of a quasi-hole acting
as % fraction of an electron.

Comapring (40) and (39), we see that wavefunction
picks an extra phase

2
eap(—il\y) = exp(i—) (41)
m
The moving of one quasi-hole around the other in
closed loop corresponds to A¢ = 27 in eqn (1). Thus
the statistics of two quasi-holes is given by
1
=— 42
v=- (42)

which is equal to the filling fraction.

When m=1, the two quasi-holes system is fermionic
but for m=3,5,..., quasi-holes are anyons.
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Further explanations on Runge-Lenz vector

Rui Yin

The Kepler problem is about a two body system interactng by inverse square force, whose solution
curve turns out to be a conic section. Classcially, Runge-Lenz vector is conserved for Kepler problem
and has close relationship with the eccentricity of the ellipse orbit. Same analogy works for quantum
mechanics. Moreover, a conserved quantity corresponds to a symmetry of the system. As a result,
conservation of Runge-Lenz vector reveals some hidden symmetry in higher dimensions.

I. INTRODUCTION

The Kepler problem is a two-body system, in which
the interaction force f(r) goes like -5 or potential V (r)
goes like % between them. The solution orbit can be
circle, ellipse, parabola or hyperbola for different energy
and initial conditions. Here we mainly focus on the case

of ellipse where the target object is bounded with F < 0.

II. CLASSICAL DESCRIPTION OF
RUNGE-LENZ VECTOR

A. Definition

Suppose the Hamiltonian of the system takes the form:

ok

T om v

Then the corresponding Runge-Lenz vector is given by
L1 .
R=—(pxL-

(P )

=<3y

B. Conservation and derivation

—

Since the interaction is a central force f(r) equal to
T%, the Hamiltonian H and angular momentum L are
constants of motion. We can see that the Runge-Lenz
vector is also a constant of motion by checking:

U
!

ﬁ((p x L) = o x L
= f(r) x L
(=
= fr) x (7> p) (2.1)
= f(T)Fx (7 x m¥)
r
_ mfr) (F x 7 x )
r
Using the equality
axbxé=(a-&b—(a b)e (2.2)
The above equation can be written as
d, ., = mf(r) . . L s
(D) =" dgr—eomiy (23)

dt r

In order to get a constant of motion,we need to rewrite
the right hand side as a total derivative. Notice that

7or=r? (2.4)
Pt =t ip e Ldr® (2.5)
~ 2 UTow T T ea T
We get
d . = mf(r), o-
- ) = _
(< L) (= i)
_ 27 TT (2.6)
mf(r)r (- = 3)
= —nfr) )

To get a new constant of motion, we need to make the
coefficient f(r)r? unchange, which leads to the inverse
square force or Coulomb potential. Thus, unlike energy
and angular momentum, Runge-Lenz vector is a special
constant of motion of the system under Coulomb poten-
tial. Besides,the second term in the parenthese of Runge-
Lenz vector (—Z) contains the information of potential,
which proves our point.

C. Geometric representation

First of all, what is the direction of Runge-Lenz vec-
tor? The below two pictures give the behavior under
% potential without and with little perturbation respec-
tively. FIG.1 and FIG.2 shows that a small deviation
from % potential causes the rotation and shape change
of the ellipse. Under little perturbation, it is reasonable
to believe that Runge-Lenz vector has also changed for
the reason that it is highly dependent on the 1 potential.
As a result, we tend to make a connection between the
Runge-Lenz vector and some geometric features. Candi-
dates are the direction of semi-major axis, eccentricity,
envolope area of ellipse and so on. Actually, the direction
of Runge-Lenz vector is along the semi-major axis, point-
ing to the perihelion, and the magnitude of Runge-Lenz
vector is proportional to the eccentricity of the orbit.
FIG.3 below can give intuition about these facts.

Next, we want to clarify some notations. See FIG.4
below. The sun stays at the focus on the semi-major axis.
We denote the length of semi-major axis as a, length of



orbit under -1/r potential
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FIG. 2. Orbit with perturbation

FIG. 3. Runge-Lenz vector demonstration

FIG. 4. Elliptical orbit

semi-minor as b, foci as ¢, eccentricity as e = <. Besides,
the relation a? = b?+c? holds. Also, we denote the vector
from sun to perihelion p as 7, the vector from sun to

aphelion a as 7. Finally, we want to show R= e%.

o (2.7)
=@ p)r— (P 7)p
At the perihelion, ' is perpendicular to 7, we get
- 9 L?
(Fx L), =pr, = T—Qr}’, (2.8)
p

We now need to find the expression for L? in terms of r,.
In spherical coordinates, the Hamiltonian can be written
as
2 L? k
2m  2mr?  r

where p, represents the radial momentum of the mass
point. At the perihelion and aphelion, p, = 0, then

L? k
E = - — 2.9
2mr2 o, (2.9)
L? k
= 5= — (2.10)
2mry Ty
Eliminate the E term, we get
I? 1 1
—(—+—)=k 2.11
2m(7"a + rp) ( )
L? = 2mk—a"P_ (2.12)
Ta +7p
Plug in 7, = a + c and r, = a — ¢, we have
2_ 2
L2 =omk L€
2a
2_ 2
— kg ® 20 (2.13)
a

= mka(1 — €?)



Similarly, eliminate L? term, we have

k
E=—— 2.14
52 (2.14)

Plug back into Eq(2.8), yielding

o7 L?
(p X L)p = ']"727‘17
p
_ mka(l —€?)
(a=c)rp (2.15)
mk(1 —e?)
=——Tp
(L=e)rp
mk(l+e)
= ’]“p
Tp
Finally, we get
1 ST T
~ (px L)= -2 p
mk (7> L) Tp Tp

D. Other properties

We know that an mass point in 3D space has 6 de-
grees of freedom, 3 for position and 3 for momentum.
Given the restriction of ellipse orbit, there is 5 degrees of
freedom remains. On the other hand, there are 3 quanti-
ties conserved, i.e. energy F, angular momentum L and
Runge-Lenz vector R , 7 degrees of freedom totally. It
shows that there are 2 dependent quantities or 2 unknown
restrictions. Take the energy and angular momentum to
be independent, there will be 2 dependent relations for
Runge-Lenz vector in both direction and magnitude as-
pects. We will give the conclusion directly.

L-R=0 (2.16)
) 2EL?
R=1+"—07 (2.17)

Eq(2.16) makes sense for the reason that Runge-Lenz vec-

tor R lies in the plane of orbit while Lis perpendicular
to the plane. To get Eq(2.16) explicitly, on the left hand

side, ignore the constant prefactor ﬁ, we have
- ., - T
LHS=L -(pxL—-
r
L xID)- ‘0.7
=1. _ L.
P r (2.18)
1
=0——(Fxp) 7
r
=0

Since p’ x Lis perpendicular to L and same relation for
7 x g and . Eq(2.17) is just expressed R? in terms of F
and L? using Eq(2.13) and Eq(2.14).

III. QUANTUM VERSION OF RUNGE-LENZ
VECTOR

A. Review

To meet the requirement of Hermitian operator, the
quantum Runge-Lenz vector takes the form

r
= L-1L _
R 2mk(px X p) .

From 8.05, we know that

[R,H] =0 (3.1)
R-L=0 (3.2)
R?> =1+ i—zlz(ﬂ + h?) (3.3)

The above equations make good correspondence to clas-
sical ones, given i = 0 in Eq(3.3) for common life.

The energy level of Hydrogen atom is given by
E, = —%57 which is independent of quantum number
I and m. Each level has degeneracy n?. Compared with
3D harmonic oscillator with Hamiltonian H = fuww(INy +
N> + N3 + %), for the first excited state, 3D harmonic
oscillator has degeneracy 3, while Hydrogen atom has 4.
Hydrogen atom is more than 3D rotational symmetry,
where Runge-Lenz vector may play a role.

From another point of view, Noether’s theorem says
that every conservation law corresponds to a symmetry
of the system. We’ve heard that translation invariance
corresponds to momentum conservation and rotation in-
variance corresponds to angular momentum conserva-
tion. Then comes the question: what kind of symmetry
does Runge-Lenz vector conservation corresponds to?

B. Commutation relations

In the beginning, considering the commutation relation
for L,

[Li, Lj] = ’ihei]‘kLk

It is natural to think about the commutator [R;, R;].
Remember the equality p x L = —L x p + 2ihp, we
rewrite R as

1 r
R=— L —ihp) — -
mk(px ihp) r

With some calculation, we can show that

) —2H
[Ri, Rj] = Zheijk(W)Lk (34)
[Li, Rj] = iﬁeiijk (3.5)



Eq(3.4)(3.5) means that Runge-Lenz vector is a vector
under rotation and its commutation algebra isn’t closed
by itself alone. Contrary to the commutation behavior of
L, R is somehow mixed with L. Suppose we are working
in the energy eigenstate with energy , we can replace H

with £ in Eq(3.4). Set R =
Eq(3.4)(3.5) as

—mk2 .
=5 R, we can rewrite

[Ri, Ry] = ihe;jr Ly (3.6)

[Li, Rj] = iheiijk (3.7)
The rescaled Runge-Lenz vector R, together with angular
momentum L forms a closed commutation algebra, which
in fact make a generalization from 3D rotation to 4D
rotation. ~

We can also define two vector operators from L and R

1 -
Ji = §(L+R) (3.8)
1 -
Jo = g(L - R) (3.9)
Then the commutation realtions simply becomes
[J15, J15] = desjnd 1k (3.10)
[J2i, J2;] = i€ijrdan (3.11)
[J1,J2] =0 (3.12)

The above relations mean that J; and J, are decoupled
and constitute angular momentum algebra separately.

C. Group structure

We will first review our familiar structure of angular
momentum. All 3D rotation transform O form a group,
so-called SO(3), satisfying following two conditions:

070 =1,det(0) =1 (3.13)
The first orthogonal condition makes the inner product
of vectors unchange, in other words, the distance be-
tween two points is invariant under rotation. For ex-
ample, given a vector in 3D space ¥/, the length square is
a constant, put in matrix form:

vTv=c (3.14)
After rotation, v’ = Ow, and the length square becomes:
Ty = (0v)T (Ov) =vT0T0v = ¢ (3.15)

which shows the unitary condition. The second determi-
nant condition for O makes the right-hand coordinates

unchange under 3D rotations. Take a close look at O
near the neibhorhood of identity element. Then O can
be expressed by O = I + A6, where we let 6 to be a small
change of angles and call A the generator of O. Similarly,
OT =1+ AT. To achieve our orthogonal reqirement in
Eq(3.13), we get

(I+ATO)(IT+ A9) =1 (3.16)
T+ ATO+ A0+ ATAP> =T (3.17)

By ignoring the second order of 6, we get
AT+ A=0 (3.18)

which means the generator A can be represented by a
anti-symmetric matrix. The exact expression for O is
O = ¢4, as we encountered in course. Thus the deter-
minant condition requires that

det(e?1) = eftr(A) = 1 (3.19)

tr(A) =0 (3.20)

There can be 3 basis for anti-symmetric and traceless
matrices:

00 O 0 01 0-10
A1=100 —-1|,A,=|0 00]|,43=1|1 0 O
01 0 -100 0 0 O
with commutation relations [A;, A;] = —e€;j5 Ak
By set L; = —iA;, we get our familiar representation
for angular momentum(s = 1).
0 0 O 00 -1 0 10
L;=4¢|0 0 1|,Le=4(00 0| ,L3y=4i|—-100
0-10 10 0 0 00

where the anti-symmetric condition becomes the Hermi-
tian condition for matrix and the commutation relations
satisfy. The dimension of rotation group, or the numbers
of basis, equals the numbers of entries at the right-up
corner of matrix. For 3D case, it is 3 , and it is 6 for
4D rotation, which is exactly the sum of the numbers for
angular momentum and Runge-Lenz vectors.

Now we add a fictitious axis w in front of x, y, z axis.
Then the above 3D rotation basis, or angular momentum
operators become:

00 0 0 000 0 0 0
oo o0 o 000 —1 0 0
Li=ilgo o 11'"2=go0 o B=1|g 1
00 10 010 0 0 0

Hence, bt fufilling the left entries at the right-up cor-
ner, the expressions for remaining 3 basis in 4D rotation
matrices naturally come out as follows:

0 100 00 —10 00
- 1000l = |00 0 o] = 0 0
Ri=ilg ool B2=i]1 9 ¢ o' Re=1]g ¢

0 000 00 0 0 “10

OO OO
o O o



It is easy to check these matrices satisfy the relations
in Eq(3.6)(3.7) Eq(3.10)(3.11)(3.12) told us that the 4D
rotation group falls into 2 independent pieces of 3D ro-
tations. It is actually a special feature for 4 dimension
space.

Let us make a analogy for better understanding. The
most common 4D vector we may get reach to can be 4-
vector in spacetime expressed by x#(u = 0, 1,2, 3), where
t denoted by z°. The invariance is called proper time 7,
calculated by

(cdr)? = (cdt)? — (dx)? — (dy)* — (dz)? (3.21)
where d7 is the small segment of proper time, and c is
the velocity of light. Just like distance in 3D space, we
can treat proper time as distance in spacetime. From
passive perspective, the 4-vector x* in frame 1 can be
represented by z#/ in frame 2 with z#’ = Ta#, where T is
a 4D rotation transform. Then T can be decomposed into
2 kinds of transforms, one is the usual 3D rotation, the
other is the boost, the translation between two inertial
reference frames. The boost is an analogy for the rescaled
Runge-Lenz vector R.

IV. CONCLUSION

The central force without any orientation preference
provides 3D rotation symmetry. Furthermore, for po-
tential decreases precisely as %, there is more symmetry
added to the system with Runge-Lenz vector conserved
in correspondence. It turns out to be a 4D rotation sym-
metry which can be decomposed into two 3D rotation
symmetry.
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Grassmann Algebra to Fermionic Coherent States
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The Grassmann algebra captures the defining properties of fermions. The anti-commutativity of
Grassmann numbers corresponds to the state of a multi-fermion system being totally antisymmetric,
while their nilpotency is classically equivalent to the Pauli exclusion principle. After reviewing the
Fock spaces for bosons and fermions, we proceed to define the Grassmann algebra. Then we explore
Grassmann analysis, aiming towards Gaussian integration on Grassmann algebras. We finally define
fermion displacement operators (Weyl translations) for Grassmann variables and deduce some basic
properties of the associated fermion coherent states.

I. INTRODUCTION
A. Fock Spaces

Following [1], let us consider a quantum system of
an unspecified number of identical particles. Here, the
quantum state of each particle is an element of the Hilbert
space H, so that the states of systems of N particles are
in the Hilbert space H® = H @ --- @ H. If the number
of particles is allowed to vary then the total Hilbert space
is the Fock space:

F(H) = é HON, (1)
N=0

Let Sy denote the symmetric group of permutations
from the set {1,2,..., N} to itself, and let the group
homomorphism sgn : Sy — {1, —1} give the parity of
a permutation. According to the symmetry postulate,
a quantum system of N identical bosons is completely
symmetric with respect to the group action of Sy on
HEN: while a quantum system of N identical fermions
is completely antisymmetric with respect to the group
action [2].

We can express this formally using the symmetrizer
and antisymmetrizer:

HB(w1®-~-®wN)=% D ) @ @Uay (2)

TESN

e ®@---@¢N) = % Z SGN(T) (1) @ -+ @ Pr()

TESN
3)
where ¢1,...¥ny € H. We can then define the Fock
space for bosons as the subspace Fg(H) := g F(H), and
the Fock space for fermions as the subspace Fr(H) :=

e F(H).

B. Creation and Annihilation Operators (CAP)

In Fp(H) we have the boson CAP satisfying the canon-
ical commutation relations (CCR):
=0y, lai,a5) = [al,al) = 0. (4)

[&i’ d;r]

While in Fp(H) we have the fermion CAP satisfying the
canonical anti-commutation relations (CAR):

(e, 60} = 6i5, {ei, 65} = {el ely = 0. (5)
II. GRASSMANN ALGEBRA

From the CAR (5) above, we derive the nilpotent rela-
tion, (¢1)2 = 0; this demands the introduction of a new
type of number, the Grassmann number. Nilpotency can
be considered to be classically equivalent to the Pauli
exclusion principle which characterizes fermions, and the
Grassmann numbers provide a convenient mathematical
tool for computations in supersymmetric models of nature
[1].

The Grassmann algebra &, is an associative algebra,
with unit 1, over a C-linear space, with n generators
{61,...,0,} (called Grassmann numbers or g-numbers)

that satisfy the anti-commutation relation
HZHJ- = —9]‘97;, V’L,] = 1,...,n. (6)

This sign change, produced by changing the order of
the product of g-numbers is the key difference between
complex numbers (c-numbers) and g-numbers; as a con-
sequence, the g-numbers exhibit nilpotency:

P =0, Vi,j=1,....n (7)

with p > 2.

A. Grassmann Functions

We form a basis of &,, by collecting the sets of ,,Cy =
(1) distinct monomials {6;,6;, - -+ 6;, i1 < iz < -+ <y}
of degree k, where 0 < k < n (any monomial of degree
> n is zero because of (7)), and hence its demension is
ZZ:O 2Cr = 2™. A Grassmann function of n g-numbers
is an element of &, and can be expressed as a linear
combination of monomials, which requires a total of 2™
c-numbers:

/C:O il,...7lk



where the fi(ﬁ).__,ik are completely antisymmetric tensors

(permuting the indices in the paired monomial should
introduce a sign change, which should be met by an
accompanying sign change in the coefficient function; if
two of the indices are equal then that term should be
zero) with elements being c-numbers.

Following convenient notation from [1], we can intro-
duce the n-dimensional multi-index ¢ = (eq,...,e,) €
E[n] ={0,1}™, allowing us to write §° = 05" --- 65~. Ele-
ments of &,, are thereby elements of a linear vector space
(over a field C in this case) with basis {#°|e € E[n]}. There
exists a unique decomposition for every f(0) € &,, as:

F0) = f(0r,...00) = > fID@)6  (9)

e€&[n]

where fg(‘sl)(ﬂ) are c-numbers and |e| ;=€ + - -
the number of fermionic states occupied.

We then introduce the linear parity operator defined by
P(6°) := (—1)I¢lg=. Because the monomials in the basis
{6¢|e € &[n]} can be separated by the parity operator,
we have a direct sum decomposition &,, = &,, g ® &, o,
where the elements of &,, g are said to be even and ele-
ments of &,, o are said to be odd.

Elements in the subspace &,, g can be decomposed as
in (8), but with the first summation only over even k
(even monomials):

[n/2] 28)
Z Z 2(17 Ji2k O3, -+ Oiy (10)
k=0 i1,...,32%

= > V) (11)

e€&ln]
|e] even

+ e, is

this subspace consists of eigenvectors of the parity opera-
tor with eigenvalue 1, i.e. P(fg(6)) = fr(#). Similarly,
elements in the subspace &,, o can be decomposed as in
(8), but with the first summation only over odd & (odd
monomials):

n/2] e
- Z Z fll’ Si2k41 Z1 "'6i2k+1 (12)
k=0 i1,...i2541
= > o) (13)
e€&(n]
le| odd

this subspace consists of eigenvectors of the parity opera-
tor with eigenvalue -1, i.e. P(fo(0)) = —fo(8).
The product of Grassmann monomials satisfies:
0°6¢ = (—1)lelIclppe (14)

for e,¢ € £[n]. Then by examining the product of Grass-
mann functions f,h € &,

Z f(|5 |C|)( )969( (15)
e,(€€[n]

= > CDFEIRD @) 1D @) oo, (16)
e,(€€n]

we can determine how even and odd Grassmann functions
commute. From (14), we see that even elements commute
with every element of the algebra, while odd elements
commute with even elements but anti-commute with other
odd elements; as such, only the odd elements of the Grass-
mann algebra are nilpotent. Thus, since even functions
are only composed of even elements and odd functions
are only composed of odd elements, Vfg, hp € &,  and
Vfo,ho € &, 0 we have the following commutation rela-
tions:
[vahE]:[fE,hO]:[f07hE}:07 (17)
[fo,hol =2foho. (18)

Therefore, the center of the algebra is Z(8,,) = 6, o.
Furthermore, for arbitrary f,h € &,, decomposed as
f=fe+foand h = hg+ho, we obtain the commutation
relations:

[fs9] = [fe,hel + [fE, hol + [fo, he] + [fo,ho] (19)
= [fo,hol =2foho. (20)

Thus:
[f,[f,h]l = [fe + fo,2foho] (21)
= 2folfo,ho] = 4(fo)*ho = 0. (22)

Hence, the Grassmann functions themselves behave alge-
braically as Grassmann numbers [3].

This feature enables us to apply the Baker-Campbell-
Hausdorff formula to the Grassmann functions:

el el — ef+he%[f,h] — eI thefoho. (23)

As a result of (22), the exponential transformation law
for the Grassmann functions f, h € &,, reduces to:

Ihe ! = [+ IR LA+ (24
Sy (25)

B. Complex Conjugation

We can now introduce the notion of complex conjuga-
tion for Grassmann numbers by defining the antilinear
map * : &, — &,, which is an antiautomorphism and
involution; hence it satisfies the following properties:

0r)* = 0;, (26)
=0;ci +05c; = c;0; +c;07, (27)

(0,0,)* = 0307 (28)

(ciﬂi + ng )

V8;,0; € ®,, and Vc;,c; € C (where the star operator is
normal complex conjugation for the c-numbers). This
antilinear mapping is reminiscent of the Hermitian adjoint
in quantum mechanics.



We can also define the real and imaginary parts of for a
g-number, in an analogous manner to that for c-numbers:

O = %(9 +0%), (29
O = 2%.(9 — 0", (30)

such that 0x = 05 and 05 = 0% are self-adjoint like their
complex number counterparts.

If we include the conjugates with original n g-numbers
in the generator set, then we can compose 22" monomials
of degree up to 2n; elements of the Grassmann algebra
can be decomposed as a generalization of (8).

III. GRASSMANN CALCULUS

A. Grassmann Differentiaion

As a result of the general anti-commutation relation
(6), derivatives with respect to Grassmann variables can
provide different results depending on their direction of
action, left or right. The left and right derivatives of a
Grassmann function can be defined via their actions on
the basis {6%|e € £[n]} of &,,. For a basis element which
includes the Grassmann variable being differentiated the
process of differentiation is defined as follows: (a) in the
case of left differentiation we move the differentiated vari-
able to the leftmost position in the monomial utilizing the
sign change from anti-commutativity (sign rule), while in
the case of right differentiation we move the differenti-
ated variable to the rightmost position in the monomial
utilizing the sign rule; then (b) remove the differentiated
variable from the monomial; finally, (¢) the other Grass-
mann variables in the monomial are treated as constants
after the sign rule is fully exploited ([3],[4]).

The left derivative of a general degree k monomial,
01'1 9% € &, is then

—

3 k
0;, - 0;, = Z(_1>j_16iij9i1 SRR

8791' i1 " 'eikv (31)

Jj=1

where @j indicates that this Grassmann number is re-
moved from the monomial; the right derivative of the
same monomial basis element is:

A k
0;, 02"8% = Z(_l)k*j(gmgil @] el (32)
1 j:l

Higher-order derivatives are defined by successive appli-
cation of the differential operators ordered by proximity
to the Grassmann function being differentiated.

B. Grassmann Integration

Integrals over Grassmann numbers have no geometric
significance (as in real or complex analysis) and must

be formally defined ([5]). Firstly, we want to introduce
the Grassmann differentials {df,...,d6,}, which are
g-numbers in themselves, and thereby satisfy the anti-
commutation relations

{d6;,do;} = {6;,d0;} =0 (33)

Vi,j=1,...,n.

In analogy with the case for integration over reals of
75 f@)de = [T f(x + a)dz, the integral in Grass-
mann variables is postulated to be translationally invari-
ant under a shift by another Grassmann number 7 ([6]):

/f(e)dez/f(e+n) do. (34)

With f(0) = 0, this translational invariance yields

/ ndd =0, (35)

In general, for a set of g-numbers {61, .. .60, } we postulate
that

/ 0;df; = 5.5, (36)

Vi,j=1,...,n.

Multiple integrals are understood to be iterated inte-
grals. For example, the multiple integral of a monomial
basis element is:

/0i1~~9ikHdej:e(il,...,ik), (37)
j=1

where the Levi-Civita symbol in n dimensions €(iy, . . ., i),
is the parity of the permutation (i1 is...4x) of (12...n),
if it is a permutation, and is zero otherwise.

Consider a change of variables for a single Grassmann
variable, given by

0=an+¢ (38)

where a € C and ¢ is a constant Grassmann number ([7]).
By (36), the Grassmann integral yields:

1:/9d9:/(an+C)d9:/and9 (39)

1
= df = —dn. (40)

Now consider two sets of generators, {01,...,0,} and
{m,...,nn}, related by the change of variables 0, =

"1 Aijnj, for an anti-symmetric matrix A = —AT.
The products of all the Grassmann differentials (the inte-
gration measure) transforms as:

Hdni = H Z A,'J'ideji (41)
i=1

i=1j;=1

= > Ay AngaeGn i) [[ A0 (42)

J1sedn k=1

= det(A) f[ dby, (43)
k=1



which is the opposite of the change of variables case for
real or complex numbers.

C. Gaussian Integrals

In the case of the Grassmann algebra ®s,,, with gener-
ators {01,...,0,,0%,...,0%} ={6,0*}, with the complex
structure as established in the section on complex conju-
gation for Grassmann numbers, 2n-dimensional multiple
integrals are naturally defined iteratively as:

(44)

/ (0, 0) DO*DO = / ) ﬁd@;d@i.
=1

Following [1] and [7], let U € U(n), and consider the
change of variables § = Un and 6* = n*UT. By repeatedly
exploiting the sign rule for Grassmann differentials (33),
then applying (43), followed by another round of exploit-
ing the sign rule for differentials (33), the 2n-dimensional
integration measure transforms as

Dy*Dn = [ [ dn}dni

(45)

=1
= dnidmny - - - dnldn, (46)
= —dnidnsdndnadnidns - - - dnydny, (47)
= 1)z b H dn} H dn; (48)

= (—1)Zk= 1k det(U) det(U) det(U

Hde* H do; (49)

= (—1)Zi=L k=1 gpx g, H der H do;  (50)
i=2 Jj=2
== (~1)2Zi= R ] d6; db (51)
i=1
— DO*DY (52)

wherein we used |det(U)| = 1. Then the integral (44)
can be seen to be invariant under a unitary change of
variables:

[ #e0)

Again, let A be an n X n anti-symmetric matrix. Then
JU € U(n) which diagonalizes A, such that UTAU = A =
diag(A1, ..., Ay). Using the change of variables § = Un
and 6* = n*UT the following Gaussian integral transforms

DO*DO = /f(n*UT, Un) Dn*D. (53)

as:
exp(—n*UTAUn) Di*Dn (54

exp(

/e*"*”m*m -

—n*N\n) Dn*Dn (55)

\\

/ o) dtdn; (56)
/1—772 iTi dnzdnl (57)

nin; dnj dn (58)

|
E: Mi E: i z:

@
Il
-

&
—

. =det(A) = det(A),  (59)

Il

s
Il
—

wherein we exploited the fact that the exponential of a
Grassmann function is e/(®) =1 4+ f(6).

Comparatively, following [8], suppose A is a real n X n
symmetric matrix. Then 30 € O(n) which diagonalizes
A, such that OTAO = A = diag(\y, ..., A,). Applying the
change of variables x = Oy, with corresponding Jacobian
determinat |det(O)| = 1, we can see that the following
Gaussian integral transforms as:

/ eiéxTAxDajz/ eiéyToTAoyDy (60)
— [ ety (61)

= H/ em BNV dy, (62)

which is distinctly different from (59).

IV. FERMIONIC COHERENT STATES
A. Grassmann vectors and operators

In analogy to bosons, Grassmann vectors can be defined
in a fermionic Hilbert space as linear combinations of
basis vectors with g-number coefficients; these Grassmann
vectors are fermionic coherent states, which are a useful
tool for analyzing quantum systems that may consist of
an infinite number of particles. Similarly, we can form
Grassmann operators on the fermionic Hilbert space by
taking linear combinations of products of fermion CAPs
with g-number coefficients ([7]).

To facilitate these constructions, we note that g-
numbers commute with boson CAPs, anti-commute with
fermion CAPs, and naturally commute with the vacuum



state [0) ([3]):

0,a;] = [9,&}} =0, (64)
(0,6} = {acf} =0, (65)
[0,10)] = 16, (0[] = 0. (66)

From (65), we see that a product of an even number of
fermion CAPs (even operators) commute with g-numbers,
while a product of an odd number of fermion CAPs (odd
operators) anticommute with g-numbers.

B. Fermion Displacement Operator

The Weyl translation defined on the Grassmann alge-
bra &,,, with generators {6,60*} is the unitary fermion
displacement operator:

Dy(0,0%) : = exp (zn: (efo: - 0;@)) (67)

i=1
T elo, — 0r¢
il;[lexp (cﬂl 0; cl>, (68)

wherein each mode is associated with a particular g-
number.

We can further reduce this operator form by noting
that the square of each exponent is:

(éj@i - 9;&,;)2 = —élg,0re, —07eel0,  (69)
S GER (70)
— (2¢}e: = 1) 070 (1)

Then, by expanding each exponential, we can write the
displacement operator as

Ds(0,6") =] (1 + &0, — 07 + <Jc ~ ;) 9;&-) ;
=1
(72)

here the last term in this expansion form shows that the
fermion displacement operator contains monomials up to
order 227. The Hermitian adjoint of the displacement
operator is also given by

Dy(0,6%)" = exp (Z (67e - %)) (73)

=1
= Dy(—0,—6%). (74)

For an additional set of Grassmann numbers {7, n*},
we compute the commutator of the exponents of the
displacement operators corresponding to the two sets of
generators using (5) and (6):

n n

> [ore - élonmies - élng] = > tros —0m) (75)

i,j=1 i=1

Then we can use (23) to write the product of two Weyl
translations, D ¢(6,0*)D(n,n*), as

B * * 1 = * *
Dy(0+n,0" +n*)exp (22(ni9i_9ini>>- (76)

i=1

In addition, the Baker-Campbell-Hausdorff result in
(23) can be used to write the displacement operator in
the form

Dy(8,67) = eZielfig= Libicio=3 2, 606; (77)

While the exponential transformation law (25) can be
applied to the fermion CAPs to obtain the following
transformations ([3]):

Dy(0,60%)1 ¢ Ds(6,0%) = ¢ + 0, (78)
Dy(0,6%)1 &l Dy(0,0%) = ¢l + 67 (79)

Similar to how the bosonic coherent states are produced
by applying the Glauber displacement operator to the

vacuum state, the fermionic coherent state is the following
Grassmann vector:

10,6%) = Dy(0,6%)|0) (80)
n 1
=11 (1 +el0; — e + (c*c - 2) 9?@) 0) .
=1
(81)

This fermion coherent state can also be written as the
product of coherent states for each mode:

10,6%) =TT 16:.07) (82)
i=1

- eto. —0%¢.) |0,
il;[lexp (0191 9102) |0;) (83)

where |0;) are the vacuum states for each mode.
Similarly to the boson case, the fermion coherent states
are eigenstates of the fermion annihilation operator

éi |9a 0*> = 61' ‘05 0*> ) (84)

except here the eigenvalues are g-numbers as opposed to
c-numbers.

V. DISCUSSION

The direct sum decomposition of the Grassmann al-
gebra, exhibited by & = &g @ &, is the quintessential
property of super vector spaces. ® is said to be a super-
algebra, because the even and odd elements in this super
vector space satisfy the containment relations:

GpBp C O, By C @o, (85)
Gobp C Gp, oGy C Bp. (86)



Moreover, & is said to be super-commutative because
its homogeneous elements satisfy a graded version of
commutativity ((14) as reiterated here):

0°0¢ = (—1)llIclppe, (87)

In quantum physics, a theory is said to possess super-
symmetry if it enjoys a global symmetry which associates
to each boson a superpartnered fermion, and vice versa
([9]). As such, superalgebras are a necessary component
of any supersymmetric physical model.

The fermionic coherent states are utilized extensively
to compute fermionic path integrals. Specifically, the
resolution of the identity

= /DH*W 16,67) (0,671, (88)

can be inserted repeatedly between exponentials in the
evolution operator kernel, in a manner similar to how the
Feynman phase space path integrals are computed using
the resolutions of the identity in phase space ([5]):

1= /Oo dz|z) (2], (89)

— 00

- (90)

Furthermore, there are many green’s functions and
generating functions found in many-body theory that are
computed from partition functions of similar form to the
Gaussian integral considered here in (59).
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Harmonic oscillator by Path integral
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Harmonic oscillator is a very fundamental and important system in Quantum Mechanics. In
this paper, I will consider this system by a non-conventional method, the Path Integral, which was
invented by Feynman. The propagator of the harmonic oscillator calculated by Path Integral will
then be used to derive the energies and the wavefunctions of the harmonic oscillator. Finally, the
close relation between the Path Integral and Statistical Mechanics will be considered by deriving the
partition function of a system of harmonic oscillators by the Path Integral method.

I. DEFINITION OF THE EVOLUTION
OPERATOR AND THE PROPAGATOR

The main purpose of quantum mechanics is to solve
the Schrédinger equation [1]:

Ld A
i |V (1) = H ¥ (1)) (1)

The time evolution operator is used to find the wave
function at any later time if we know the wave function
at previous time, it is defined by

| (1) =U(t to) [¥(to)) (2)
Substituting the time-dependent wave function into the
Schrédinger equation (1), we can find the operator equa-
tion for evolution operator:
d

i
"

U (t,t0) |U(to)) = HU (¢, t0) |¥(to)
d

i
N

U (t,to) = HU (t,to) (3)

If the Hamiltonian of the system H does not depend on
time, the solution of Eq.(3) is quite simple

U (t,to) = exp{—;ﬁ(t — to)} (4)

We often choose tg = 0, so the common formula for the
evolution operator is:

U (t,0) = exp (-21%) (5)

From now on, we only consider the time-independent
Hamiltonian, so we use Eq. (5) in the whole paper. We
also consider only one dimentional problems. The general
case for three dimensions can be readily generalized.

By using the eigenstates |p,) and the eigenvalues E,, of
the Hamiltonian H as the basis, we can expand the evolu-
tion operator in terms of |¢,) by using the completeness

relation Y |¢n) (¢n] = 1:

06,0 =0 () 2 low (o

~ Yo (—;Ent) ) (oal  (6)

We can also write Eq.(2) in the configuration space by
inserting the completeness relation [ |z') (2| dz’ =1,

(x| W(t) = / (@ U(t0)]2") (" | ¥ (0))da’
U (z,t) = /K (x,t;2',0) U (2, 0)da’ (7)

Here the matrix element of the evolution operator in the
configuration space is called the propagator and is used
to find the wave function at any time by the integral in

Eq. (7)
K (x,t;2',0) = (x | U(t,0) | 2)
— Gl (~ ) ) ®
We only use the propagator for ¢ > 0, so we can put
K =0 for t < 0. The precise definition for K is:
K (z,t;2',0) = 0(¢) (x | U(t,0) | ")

— 000 (alexp (—£11) ) )

Where 6(t) is the Heaviside function (or step function).
Note that if t — 07, we have

lim K (z,t;2',0) = (z|2') = §(x — 2) (10)
t—0+

Expanding the propagator in terms the eigenstates of H,
we have:

K (z,t;2',0)

=000 (el exp (1) (Z o) <son|> )
00 o (~Eut) v @)ene) (D

The equation for the propagator K can be found by taking
the derivative of Eq. (9),

. a /
zﬁaK(x,t,x ,0)

= i (x| U(t,0) |z') %9(0 + (1) (] %U(t,()) |2/
= ili (x| U(t,0) [«) 6(t) + 6(t) (x| H(&,p)U(t,0) |2')

o o a EQ /
= ihd(x x)(;(t)JrH(x,iax K(x,t,2',0)



o .
[mﬁt - H} K (x,t;2',0) = ihd (t) §(x — ') (12)
According to the Green method to solve differential equa-
tions, K(x,t;2’,0) is the retarded Green’s function. Re-
member the condition for ¢ < 0

K (z,t;2",0) =0if t <0 (13)

II. INTRODUCTION TO PATH INTEGRAL
FORMALISM

Now we need to find the path integral form of the prop-
agator to see a relationship with Lagrangian mechanics.
In time-space coordinates, between two points (2’,0) and
(z,t), we divide the time interval [0,¢] into N uniform

segments of size € = %:

to=0, t, =ne, ty =t (14)
and for each instant ¢,,, a position x,, in space:
ro=21', ay =1z (15)

We will use the case when N — oo, and as a consequence
¢ — 0. Using the evolution operator product of two

consecutive intervals, we have:
U(ts,t1) = U (t3,t2) U (ta, 1) (16)

Similarly, the evolution operator can be expressed as the
product of N terms

U(t,0)=U (t,tn—1) U (tn—1,tn—2) ... U(ta,t1)U(t1,0)

(17)
Inserting each unity [ |z,) (z,| dz, = 1 between two
evolution operators of Eq. (17) and using Eq. (9), we

have:

K (x,t;2',0) = (x| U (¢,0) | 2’)

/d$N 1/d£ﬂN 2 /dl’lK(x,t;ﬂ?N—l,tN—l)

(eN_1,tN—1;TN—2, tN—2) ... K(z1,t1;2,0)  (18)

We always consider the case ¢t > 0, so we do not need to
use the Heaviside function in the formula.

We can now calculate a propagator as an example:|[2]

WEMIES

K(xnatnaxn 1atn 1) <xn

<xn exp(i; fjﬁvm)) xn_1>
oo (E2Y oo (vin) [
—<xn exp (Z;;Z) mn—1>eXP <Z§V($n—1)>

where we have omitted the terms in higher orders of € in
the expansion edeP = e(A+B)+1/2[A.Bl+..

By inserting the unity of momentum states into the
kinetic term, we have

oo (<52 [l )
~[Tew (5L wlne e 20

Using the eigenstates of momentum in z-space:

(x|p) =

e (21)

V2rh

we have

1 exp (_2;‘2])) eipacn/h e_ipxn—l/h dp
m

1 o

2rh

o [—.ﬁp + ﬁ( —xnl)p} dp (22)

2
[e'e) —am2+bm _ T b2
—o0 € dr = \/:(34(1

Using the Gaussian integral: |
Tp—1 >

)WGXP l"n@cn—xnl)z 1 (23)

_< m
" \27ihe 2he

We have the explicit formula for a propagator:

m )1/2

K(xnatn;wnfhtnfl) = <27T’Lfl€

[”“(2;)] o (<5 ) @)

Substituting this result into Eq. (18) we have the whole
propagator:

12 pN= 1/2
K (z,t;2',0) = (27mh5) / 1;[ (27”h5> o
expz [_x"l) - %SV (xn—1)]

(25)

exp

N

The integrand can be written as follows

eXpZ[ CL‘n 1) —Z;V(xnl)]

_ exp{é 5 [ (W)Q - v(x,“)} s}

n=1



If N — oo, then ¢ — 0 and we can write the infinite sum
as the integral

£ (=) )

n=1

:/Ot (;m&_V(x)>d7=/0tL(:c,o'c)dT=S (27)

S is the action of Lagrangian mechanics and Eq. (26)
is the discretized version of €*5/" using the compact
notation specific for path integral

N-—1
/Qm = (22&5)1/2/7111 (22}55)1/2“"

The propagator has the symbolized formula

K (z,t;2',0) = /@xeis/h
1

- /x f@[x (7)] exp {ﬁ /0 L) dT} (29)

III. THE PROPAGATOR OF HARMONIC
OSCILLATOR BY PATH INTEGRAL

First we consider the potential which is a quadratic poly-
nomial in z

V(z) =az? +br +c (30)

For each path, we change to the coordinate y by using
the classical path:

(1) = wa () +y(7) (31)
where z; is the solution of the Euler-Lagrange equation:
d OL 0L
— =0 32
dr 0% Ox (32)

All paths are fixed at two end points, so y (0) =y (¢t) = 0.
At each intermediate time 7 = ¢,,

Tn =2 (tn) = ey (bn) Ty (tn) =2 (tn) +yn (33)
The classical path is fixed for each potential, so
dx, = dy,

and

and the propagator is:

K (z,t;2",0) = /00 Dy(7)exp {iS [za (T) +y (7)]}

Expand the action S about z;:

S [ra + 9] :/0 L(z,4)dr

K oL oL
= L cls 'c a - !
/o (xlxl)-F(aI zc,y+3$ Idy
1 ( 0%L 9 2 0L
— R 2 Y I -2 d
> (a z| Y 8m8d;‘m01yy+ aiz|, |7
(36)
where
1
L= §mj32 — (az® + bz +¢) (37)

The linear terms in y and y vanish by using integration
by parts and the Euler equation for z.;. The terms left
are:

t 1
Slea+y] = / {L (zer, Ter) + 3 (72ay2 + my2)} dr
0

t t/q
:/ L(zcl,j:cl)dr—i-/ (my2—ay2) dr
0 0o \2
tr
=S4 —|—/ <2my2 _ ayQ) dr (38)
0

The propagator is then

K (z,t;2',0)
~ exp (“;l) /00 Dy(r)exp {; /Ot (;mgf - ay2> dT}
— exp (“Zl) Ala,t) (39)

where A(a,t) is an unknown function of time ¢ and the
coefficient a of 22 in the potential.

Now we apply the formalism for the free-particle propa-
gator. The classical action can be found easily by solving
the Euler-Lagrange equation:

1
L= -mi? — -~ = mi = const — @, = const (40)

2 0%
The classical path is a straight line passing through two
end points (2’,0) and (x, t)
/

Tr—x . r—x
T — Tl = ;

zo (1) =2’ +

t tq 1 )2
Ser :/ L (&¢)dr :/ —mi?dr = fmi(glj z)
0 0 2 2 t
(41)

K (z,t;2',0) = A(t) exp lm(z};aﬂ] (42)



To find A(t), we use the limit (10) of the propagator and
the gaussian representation of the delta function

§(z—a') = li LI (@2’ (43)
S s (WAZ) P A2
So A(t) must be
m 71/2
AW = [5r5] (44)

The propagator for free particle is:

= TheXp [im(x — x/)j (45)

Ko (2,t;2/,0) = |
o(z,t:2,0) = |57 2t

For the harmonic oscillator problem, the potential is

1
V= imwzxz (46)
and the motion equation is
Ze + W2xcl =0

{2

The boundary conditions are

Acos (wr) + Bsin (w7)

—wAsin (wr) 4+ wB cos (wT) (47)

zq (0) =2 A=2
{ J;cll t)== - { Acos(wt) + Bsin(wt) ==z

{A:x (48)
— _ z—a’ cos(wt)
B = sin(wt)

The classical action can be found by integration by parts

as
t
1 1
S :/ <m9’:2l — Zmw? z, )dT
0o \2 2

t

7m:tclxcl

2
mw

[ExQ + x’z) coswt — 23095’} (49)

2sin wt

The propagator for the harmonic oscillator is:

K, (z,t;2',0) = exp (Zf;l) A (w,t)

_ mw 9 /2 _ ,
_A(w’t)eXp{2hsinwt Km +x )cos wt 21’%}}

(50)
where A (w,t) is determined by

A@mﬂ——KTQyuymp{;[j(;my2af>d7}

(51)

We can find A (w,t) by Fourier series as in Feynman’s
classics [3]. The exact formula is

mw }1/2 (52)

At = [
(%) 2mih sin wt
and the full propagator for harmonic oscillator is

1/2
K, (x,t;2',0) = [ e ]

{ imw
exp .

2mih sin wt

[(x2 + x’2) coswt — 2£C:L‘/:| } (53)

2k sin wt

If we take the limit of K, (z,t;2’,0) when w approaches
0o, we must have the free particle propagator

lim K, (z,t;2,0)
w—r0o0

= ol oo {ag [ +57) -2}

= Ko (z,t;2',0) (54)

IV. DERIVATION OF THE QUANTIZED
ENERGIES AND THE WAVEFUNCTIONS OF
THE HARMONIC OSCILLATOR

From Eq. (11) we know that the propagator can be
expanded in terms of the eigenvalues and eigenstates of
the harmonic oscillator

K, (z,t;2',0) Zexp(

Setting x = 2’ = 0 in Eq. (53), we have

) (@) pulz) (55)

1
mw 2
Ko 01:0.0) = (oir)

~Yew (ﬁEt) n (O (50)

Because the harmonic potential is symmetric, the wave
functions are odd and even alternatively and the odd
wave functions at the origin are zero (|poaq (0)]* = 0). So
if we expand this propagator in Taylor series of e =™, we
only get the even eigenvalues. Rewriting the closed form
of K, (0,t;0,0) and expanding in Taylor series of e~®!
by using

1 -3 e 252 349/2 5p13/2  35,17/2
('_x> I S TR T




We can see clearly that the exponentials correspond only
to the even quantum numbers if the energy is written as:

1
E, = (n + ) hw
2
From the rhs of Eq. (57) we can know the values of

squared modulus of the even wavefunctions at the origin
in this series:

> ln ()P Ert/™ = g (0) Pe 0t/

+ ‘@2 (0)|2e—iE2t/ﬁ + |<)04 (0)‘26—7:E4t/h T

(58)

(59)

We can also derive the eigenstates by setting x = 2’ in
Eq. (53), we have

K, (z,t;x,0)

mw 3 mw 9 9
N (2m’ﬁ sinwt ) P { hsin wt (#%coswt —27) }
=D lon () Pemin/ (60)

We see in this case that all the wavefunctions contribute
to the series in the rhs.

Rewrite the lhs in function of e~**, we have

mw 3 imwz?
Ihs = (7) ——— (coswt —1
® omihisinwt ) 7 {hsinwt (cosw )}
mw 3 mwz? <€iwt +emiwt _ 2)
= - - exp |— - -
7TFL (ezwt _ e—zwt) ﬁ (ezwt _ e—lwt)
(61)
Using this Taylor series:
(1) e (=)
——z exp | — 55—
X el X
= /% — 2(ae?)®? + ... (62)

We can derive the eigenvalues and eigenstates of the
harmonic oscillator:

1
2 7771(&'12 : w
(mw) 2 |:6 z 672(%)t/ﬁ

wh
2w eim{mz e A
h
= [0 (@) Pe oM 4 [y ()P 4L (63)

For example, we can have the explicit formulae for the
first two levels:

hw MW\ 3 mws?
o= ilpo (@) = (5) e
3hw 9 mw\ 3 2mwe? _ mws?
By = 2. — (7) —EEE (64
L= e @) = () (64

So the propagator is a kind of generating function for
both the eigenvalues and the eigenstates.

V. AN EXAMPLE OF THE APPLICATION OF
PATH INTEGRAL IN STATISTICAL
MECHANICS

In statistical mechanics, we need to calculate the partition
function defined as
7 = Z e BEn
n

where 8 = 1/kT, T is the temperature, k is Boltzmann
constant, F,, is the eigenvalue of the nth eigenstate of the
Hamiltonian. We can rewrite it as

2= {pu] | u) = T

(65)

(66)

where we have used the eigenstates of Hamiltonian as the
basis. We know that the trace is invariant under unitary
transformation and we can use the position basis instead:

Z = / (x| e~ | ) dz (67)
By putting ¢t = —i7T and = 2’ in Eq. (8)
) 1.
K (x,—it;2,0) = (x| exp (—hHT> |) (68)
or 7 = [h to express Eq. (67) in terms of the propagator

Z = /OO K (z,t = —ifh; x,0) dx (69)

From the propagator for the harmonic oscillator in Eq.
(53) we can calculate the explicit formula for Z by the
path integral method:

Z :/ K (x,—ifh;x,0) dx

B mw H
~ \ 27hsinhwpBh

o —mw 9
/_OO exp{M(costhh -1z } dx
1 1

~ [2(coshwph —1)72 2 sinh 25"

(70)

We can compare this result with the one calculated di-
rectly by using Eq. (65) and the energies of the quantum
harmonic oscillator E,, = (n + %) fiw

e—ﬁhw/Z 1

1 — e FAhw B QSinh“’Tﬁh

%)
7 — Z e—ﬁhw(n+l/2) —

n=0

(71)

So we can calculate the partition function directly from
the propagator even if we don’t know the exact energies
of the system.
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Ideal Fermi Gas
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In dealing with many-particle system, specifically when we are studying physical properties of metals
where electrons play an important role, we will consider a simple model, in which all particle
interactions are neglected. Despite the simplicity and a little ”abuse” assumption of non-interacting
system, however, the power of Ideal Fermi gas is to give us the first look into some general properties
of metals, and also explain many experimental results that cannot be understood by using classical
models. In this paper, after a short introduction to quantum gases which contains the general
description of identical particles and second quantization formalism, we will investigate the Ideal
Fermi Gas: the Fermi function, density of states, and related useful tools when dealing with non-
interacting system. Finally, we will study about specific applications of the method by calculating
the heat capacity and Pauli magnetic susceptibility of the electron gas in metals.

I. INTRODUCTION

In dealing with the system of many-particles, physicists
have come up with a lot of ways to describe the physical
properties of the system, especially its dynamics quanti-
ties. One of the most successful theories is the statistical
formulation of mechanics, based on statistical methods,
probability theory and the microscopic physical laws and
telling us a lot of information about the thermodynamic
behaviour of large systems. For example, from classi-
cal statistical mechanics, we can derive the Maxwell-
Boltzmann distribution function:

E\ /2 1 \%2 .
2(W) (kET> THT )

which represents the distribution for the energy. The
Maxwell-Boltzmann distribution gives us a very useful
and accurate tool to calculate thermodynamics quanti-
ties at normal temperature and low density system, such
as calculating the internal energy for ideal gas, or derive
the equation of states pV = vRT. However, in the op-
posite conditions- low temperature and/or high enough
densities, the quantum effects take place and lead us to
a totally different picture, as we will see later with the
model of ideal Fermi gas. Before we start, let us first con-
sider the range of validity of classical gas: The partition
function of a classical ideal gas is:

Z{V Vv 2mmkpgT 3/2
Z—m’&—g—v<mz) ®

f(E) =

h
vV kaT
an approximation of the length scale in ideal gas by using

the de Broglie wavelength: \p = %. For classical ideal

with the length scale A\p = . We can also derive

gas, the internal energy (which is also the total kinetics
energy of all particles) is:

2
3
U= <p> = —kpT = PRMS = \/ 3mkgT

2m 2

h h
= A R ~ (3)

PrRMS  /3mkgT

It is reasonable that classical description of the system
will fail if Ap is much smaller than the typical spacing
between particles. This means the validity of classical
mechanics requires:

V\? T B2
_ s 4
/\T<<(N> =57 > (4)

with n is the number density of the particles. When
this condition is violated, we have to replace the classi-
cal model by the one where quantum rules play the main
roles.

Next, we will focus on the ideal quantum gases. Unlike
the classical cases where each particles of our system has
a specific trajectory that we can follow using Hamilto-
nian equation of motions; in subatomic world, the distin-
guishability no longer make sense, meaning interchange
two arbitrary particles in our system will leave all of the
physical descriptions invariant. If we have a wavefunc-
tion that describe N-particles state of the system, it is
requires:

W= (. aj .z ) (5)

Swapping the two particles twice gives back the original
states. This implies:

As we see, there are two choices for the sign of the wave-
function. Each one is corresponding to a specific type of
particles:

e Bosons:
— Particles which have the symmetric wavefunc-
tion: (... xi. ..oz )=+ zjx )

— Bosons have integer spin (proved in quantum
field theory, verified by experiments).

— Corresponding statistics: Bose-Einstein dis-

tribution

e Fermions:



Ideal Fermi Gas

— Particles which have the antisymmet-
ric wavefunction:  Y(...x;...x;...) =

— Fermions have half-integer spin (proved in
quantum field theory, verified by experi-
ments).

— Corresponding statistics: Fermi-Dirac distri-

bution

These special symmetric properties of identical par-
ticles will lead us on our way to build a general form
of wavefunction for the N-particle system, and finally
the symmetry will be packed into the commutation re-
lations of creation and annihilation operators in second-
quantization formalism. From here to the rest of the pa-
per, we will study a special case of quantum gas, which is
ideal Fermi gas - a system of identical fermions where the
interactions between those particles would be neglected.

II. THE FORMALISM OF SECOND
QUANTIZATION

In quantum world, it is common to work with the system
of identical particles; ones that have the same physical
properties and are indistinguishable. To begin with, let
us consider the one-particle Schrédinger equation, which
is assumed to be solved:

HD ) = ex|A) (7)

where ) is a complete set of quantum numbers, and the
(1) superscript denotes the Hamiltonian for the ith par-
ticle. The principle of indistinguishability will then
force the N-particle wavefunction to have the symmetry
properties: Every interchange of two particles would left
the wavefunction invariant up to a change in sign. These
symmetrised N-particle wavefunction can be taken as:

.7A<N>>

(#1)597(P) 77 (‘)\(1)> “

Z NI, ()

A = A0 2@,

)
(8)

with ny is the number of particles in state |\), P denotes
the permutation of N-tensor product state, and sgn(P)
is the sign of the permutation. From spin-statistics
theorem, it is proved that:

Bosons — interger spin — symmetric states
Fermions — half-integer spin — antisymmetric states

which has the form of wavefunction in (8) with ”+” and
7 sign respectively. We define the vacuum state |0)
which contains no particles, and a set of creation and

annihilation as follow:
ay|0) =0
X} =, [0)
Nis Aj) = al al 10),

and we postulate the commutation relations between a
and af as:

] _ _ [t _
{axwaxjh =0y, [an,an], = [GMGLL =0 (9)

where the plus sign is used for bosons, and the minus sign
is for fermions. It is easy to see that all of the definitions
and commutation relations of field operators a and a' are
similar to the harmonic oscillation case. It has similar
interpretation: each excitation of energy will ”create”
one more particle at specific state, and we can reverse
the process by using annihilation operator.

We define the number operator, which counts the number
of particles in specific state A:

T T
)\(N)> . aAaA aAl .. .Cl)\N ‘0>

VIl

. )\(N)> (10)

nx |A) = na ‘)\(1)

N
= Yow
i=1

We want to find the representation of the N-particles
system in second quantization, which usually consist of
one-particle part and two-particle part:

2 S 13 )
Fy =Y F +§ZF2 ” (11)
i=1 i,j

First consider one-particle operator Fl, which is diago-
nal in the basis {|A)}, and by spectral theorem can be
decomposed as: F; = 3", fu|A) (\]. The matrix element
of I} in second quantization basis is:

N
(NIFA) = (ZfA> (N[A) = (ZfﬂsM) (V] A)
= (N[ ) (12)
A

= fany =
f,\ai\a A- By transforming to general basis, we obtain the

Hence, in second quantization formalism: F

matrix representation of Fi:

Py =Y (al\) fraLas (\B)

Aaf

= (al F1|8)alag (13)
afB

Examples: The total spin operator In Schrédinger pic-
h
ture, the total spin operator is given by: S = 50’

In second quantization representation:

S=>" Saat),bra (14)

pYe7e%
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where a, o’ =7,/ are the spin quantum number. Espe-
cially: S, = 1Y, ((sz)m,a;aam,) = S (ag —iiny)-

In a similar manner, we consider the 2-particles oper-
ator Fy, which can be decomposed in its eigenbasis as:
Fy =37 (AL N[ o [A) |X). We can think of the 2-
particles operator as a combination of tensor products
of two 1-particle operator, each can transform indepen-
dently under the change of basis. This claim leads us to
write down the second quantization representation of Fy:

Fy = favnany (15)

We continue to transform to a more general basis, in
which F5 takes the form:

L\ KV
F = Z (FQ) BaLaLaua,,7
afuv «

where (F) ﬁ = (| (8 By |} Iv) (16)

III. IDEAL FERMI GAS & RELATED
CONCEPTS

A. Density of states

Consider the fermions are contained in a box of the
edge lengths L,, Ly, L.. Applying the boundary condi-
tion leads to the discretization of the wave vector k:

(27m)°
kr,y,z = L. L. L nz7y7z’ nm,y,z € Z
xyliz
(2m)®  _ (2m)?
= Ak = Ak, Ak, Ak, = - (17)
v L L,L. V

In the thermodynamic limit: V — oo, N — oo,n =
V/N — const, the wave vectors are quasi-densely, which
let us to replace the sum by an integral:

Z-~-—>(2S+1)ﬁ/d3k~-~ (18)

A

where the sum is defined over all eigenstates; since our
Hamiltonian is spin-independent, we have to take into ac-
count the (2S + 1) spin-degenerate states with the same
energy eigenvalue k but different m.

The density of states is defined as the number of states
divided by the range of energy. More rigorously:

25 +1

Ak
E<er<E+dE

D(E)dE = a3k (19)

with e is the one-particle energy.
. . 27,2
case, g has the isotropic form: g = L5 = k= ,/ 2’;32]3.

In non-interacting

2m

Together with the grid volume Deltak, we can rewrite
D(E) in the following form:

vV od .
@r)° dE | @

EkSE

V. d 4n (2mE 3/2
(2r)3dE 3 \ K2

P (25+1)-" (2m>3/2

D(E) = (25 +1)

=(25+1) =7VE (20)

4r2 \ K2

We can further find a relation between coefficient 7 and
the number of fermions N: at 0K, all the fermions states
lies inside the Fermi sphere:

Er 2 32
dETf:§TEF

N:dE[O D(E)f(E) = i
3N

Sr= (21)
253/

B. Fermi function

The Fermi function provides the probability of occu-
pancy of energy levels by Fermions - particles with half-
integer spin particles, which obey the Pauli exclusion
principle. The Fermi function is given by:

1 1
_ - 22
1= =1 (22)

From the density of states which tells us about the den-
sity of the available energy states, and the Fermi function
which gives the probability of occupation of fermions, the
density of the states which are occupied at the tempera-
ture T is simply D(E)f(E).

Let us consider the two limiting cases:

e Classical limit: ¢ > kgT = f(e —pu) > 1: The
fermions occupy the states with energy much higher
than the sum of Fermi energy and the thermal ki-
netic energy. The Fermi function will tend to the
Maxwell-Boltzmann distribution function:

f(e) ocem e (23)

e Degenerate Fermi gas: ¢ < kpT = B(e — p) < 1L
f(e) xOu(T) —e = O(EF —¢) (24)
where Ef is the Fermi energy, defined as the limi-

tation: Fp = %imo #(T) In this degenerate case, the
—

derivative of Fermi function is:

= B/ 2—>_75 (25)

cosh (g(e — ,u))

, —Befle—nm)
f(e) = (ePle—m+1)2
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FIG. 1: The Fermi function and its derivative

At T = 0K, f’(e) is in the form of delta function
—d0(e — Ep). At finite temperature, the Fermi func-
tion is ”smeared out” as in the Figure 1.

This is the case of our interest where there are many
quantum behavior results that we cannot use the
classical model to explain. At the end of this sec-
tion, we will have some illustrations for the Fermi
gas physical properties.

C. Sommerfeld expansion

Our task in this part is to find an approximation for
the integral of the form:

—+oo
11)= [ daeg(e)fe) (26)
—o0
which arises many times in dealing with Fermi gas. There
are a few conditions applied to the function g(E) in this
approximation:

lim g(E)=0
E——o0
In e RT: lim 4B — (27)

E—oco

g(E) is regular within the Fermi layer.

- 9(B) = %

f dxg(zx) 0%

o0
As we shall see, the first two conditions ensure the van-
ishes of the function p(E)f(E), and the last one is a
necessary condition for g(F) to be expanded in Taylor
series around E = u. Applying integration by part, and
noting that f(F) disappears at upper bound, and p(E)
vanishes at lower bound, we have:

Define: p(E) =

1 -- [ " amp(e) 21D (28)

— 00

By inserting the Taylor expansion of p(F) around u, also
note that since the derivative of Fermi function is an even
function with respect to £ — pu, only the even powers in
Taylor series would contribute to I(T). After a short
calculation, we derive:

1 dQ"_lg(E)
(29)
with:
Iy(T, / dE / dzg(z
)
oo o eB(E—p)
Loy (T', 1) = /_Oo dE(E - p) (P E—1) 1 1)2
An, o0 y2n+1
= 75(2n+1) (/0 dyey 1 (31)

=2(1 — 21723~ (9p)I¢(2n)  (32)

In the above formula, ((z) is the Riemann’s zeta
function.The detailed calculation will be derived in Ap-
pendix. Substitute (30) and (32) into (29), we obtain the
Sommerfeld expansion:

1t = [ amg(e)

— 00

+2Z

-2 gty | S0

(33)

d2"1g(E)}

In the first-order approximation:

M w2
1o~ [ aBg(E) + LT (30

—0o0

IV. APPLICATIONS: HEAT CAPACITY &
SPIN-PARAMAGNETISM

A. Electron gas heat capacity

We will now concentrate on the heat properties of a
system of electrons in metal, which are considered as an
ideal Fermi gas. In classical formalism, each electron
has 3 degrees of freedom, and each degrees of freedom
contain an amount of thermal energy kgT'. Suppose that
our system has N electron, the internal energy due to
the thermal motion of electrons, and the heat capacity
followed is:

3

U(T) = gNkBT = Cy(T) = 5Nk (35)
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From experimental results, we know that this result will
hold at a high temperature. For a low temperature, it is
observed that:

Cy(T)xT and lim Cy(T)=0  (36)

T—0
Using the ideal Fermi gas model, we can give a quite good
approximation for Cy (T') at low temperature, where the
quantum mechanics plays the main role. The internal en-

ergy of the electron gas is: U(T) = [*_dEED(E)f(E)
where:
vE, E>
IXE)—{T =0 (37)
0, o.w

It is clear that D(E) satisfies the 3 conditions for using
Sommerfeld expansion:

lim D(E)=0
E——o0
lim 28 — fim 7EY2" = 0,vn > 1/2 (38)

E—oo E—o0
D(E) is smooth over the real domain

Hence we can apply first-order Sommerfeld expansion
(34) to obtain an approximate for internal energy:
2

oy~ | dED(E)E+%(k:BT)2 (ED(E))_,

"
= / dETE®/? +
0

7rg(krBT)2 <m2\1/ﬁ + T\/ﬁ)

21 _ 5 ?
= S 4 T (kpT) 2 (39)

The chemical potential is actually time-dependent; to
find that relation, we apply the Sommerfeld expansion
to the number of particles:

N = / dED(E

= 3Tu3/2 (k;BT) —1/2

e o L™ (kT
Er 8 m
3/2 2 2
1% ™ k‘BT
1~ (2 145 (fBs
- <EF) +8<#>
E
= u(T) = r

kT
14+ — (==
+8(u)

Since we are considering degenerate case: kT < Ep <

oo

kBT < 1, the chemical potential can be approximate as:
kgT
T~ FEp|l—— | —=—
ry = e |17 (BT
kpT
s> u(M"=~FEp|1—— | —=— 40
ey = e 122 (ST) ] o

f(E)~ / ' dED(E)+%2(kBT)2D’(u)

Substitute the expression (40) into (39) and applying the
approximation of the form (1+z") ~ 1 + nz, we obtain:

52 ?
14 27 (kBT
12 Er

Finally, taking the derivative of U(T) with respect to T
to obtain the heat capacity for system of N-electrons gas:

2 52
= gTEF/

(41)

U(T) ~ U(0) , where: U(0)

oU(T)  5m° kg \>
o7 = 6 U0 <Ei> T  (42)

which agrees with our claim above: The heat capacity
of electron gas is linearly dependent on the temperature,
and tends to 0 when the temperature tends to 0K.

Cy(T) =

B. Spin-Paramagnetism

Magnetic susceptibility is a dimensionless proportion-
ality constant that indicates the degree of magnetization
of a material in response to an applied magnetic field.
This quantity is defined as:

oM

i (43)

X =
In most cases, this formula holds except in ferromagnetic
crystals, the relationship between the magnetization M
and the magnetic field strength H is not linear. Our task
now is to compute the susceptibility of the electron gas
with the simple Ideal Fermi Gas model.

The term paramagnetism refers to the magnetic state
of an atom with one or more unpaired electrons inter-
act with a magnetic field due to the electrons’ magnetic
dipole moments contributed by the electron spin. The in-
teraction between N unpaired electrons with a constant
magnetic field By = Bye, will contribute to the non-
interacting Hamiltonian an amount of:

N
i HUB i
p By = 25D Z S (44)

i=1

\
1>

In second quantization, we can write §H with the help
of (14). The total Hamiltonian is:
H(Fermi) —

Z(ek + zauBBo)aTkaaka (45)
k,a

where z, is the eigenvalues of o, operator: o, |a) =
e |0), Where @ = (1, 1) © 2o = (+1,-1).

Our task now is to calculate the susceptibility of the

electron gas:
1 /Om oM
(), Gr), @
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When the magnetic field is switched off, there are as
many electrons with spin up as electrons with spin down
due to statistically distribution, which implies: Dy =
D, = 1D(E). When the field is switched on:

€k — €k + zatBBo (47)
1 1
D.(E) = §D(E) — §D(E — ZaptpBo) (48)

The electrons tend to fill the lower energy states first,
which means they will choose to have spin point into
opposite direction of the magnetic field. The spin-
dependent electron numbers is:

o0

| aED(E - zopnBos(E)

za kB Bo

v, - !
2

! / dyD () f(y + 215 Bo)

2
1
2

Q

/: " ayD(y) [f@) " ZaMBBogJyC] (49)

Hence, the magnetization of electron gas is:

2 o0
HUB KB of
M =—(N; — Ny+)~ ——=B, dyD(y)—=—
2 -~ =42 [ ay)

2 oo
- _“7330 {f(y)D(y)So +/0 dyD’(y)f(y)}

5By [ ' )s) (50)

And the Pauli susceptibility:

o) = (mogp ) =" [T w61

Now we can apply the Sommerfeld expansion:

w(T) = 558 [ / "ayDiy) + 2<kBT)2D”<u>]

2 2
HosT T _
_ OVB |:\/,E_24(kBT)2M 3/2:|
()
12\ Ep

3N popy

T2V Ep
The susceptibility of the conduction electron does depend
on the temperature, but at second order. An estimation
for metal electrons at room temperature (7, =~ 300K) is
given below to illustrate how very weakly-dependence of

Xp*

(52)

Ep 10eV 72 (kgT\> s
=T (ZBL) <556 x 10
{kBTT ~ 0.026eV 12 ( Er > xS

(53)
which is much smaller than 1 as expected. Thus, the

temperature-independent susceptibility is a very good
approximation in many cases.
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Instanton and Tunneling

Zu Yao Teoh
(Dated: June 19, 2019)

This paper explores tunneling phenomena using the instanton method, a method that has proved
to be useful in quantum field theories. We examine the method using the standard example of
tunneling through the bump of a double-well potential V' (z) ~ (2% —a?)?, calculating the transmission
amplitude, showing that the result agrees with that given by WKB.

I. INTRODUCTION

Tunneling is a hallmark of quantum theory. Many
phenomena that could not be well-explained classically
are elucidated with the advent of the tunneling concept.
Even biological processes involve tunneling. For instance,
smell receptors operate via quantum tunneling (cf. [1]).

Figure 1: When you are captivated by the smell of your
favorite milk tea, tunneling is taking place in your smell
receptor.

Tunneling is often introduced in a first course in quan-
tum mechanics, beginning with the tunneling across a
square barrier to the semiclassical WKB approximations
for slowly varying potentials. The time-independent
Schrédinger equation for a particle with mass m in a
potential V(x) is given by

Hij(z) = By(z), (1)

which in one-dimension, the Hamiltonian His given by
H = %aa—; + V(z). This equation is an eigenvalue
problem. We want to solve for a complex function ¢ (x)
and an energy E. The Hamiltonian is Hermitian, so
the energy will always turn out real. In regions where
E —V(x) > 0, the particle is said to be in a classically
allowed region, whereas the region is said to be classically
forbidden if it is a region where E — V(z) < 0. In a
classically forbidden region, i (z) assumes a decaying
exponential e=#® with 8 > 0 a real number. The fact that
¥ (z) is nonvanishing in the classically forbidden region
means that the particle has a nonvanishing probability to
be in that region, a region where classical particles can
never be found. More interestingly, ¥ (z) is nonvanishing
across the barrier (the classically forbidden region). Thus,
a quantum particle can find itself across a barrier from

its place of origin—this is tunneling. A WKB computation
has the transmission coefficient or tunneling probability
coming out with an exponential suppression

T ~ exp <—2/ k(x") dx’) , (2)

where r(z) = ++/2m(V(z) — E) and the interval (a, b) is
the classically forbidden region.

In this paper, I seek to achieve two goals. Firstly, the
method to be illustrated is a fruitful method in quantum
field theory and this exposition offers a first glimpse into
the method. Secondly, due to the nonintuitive (nonclas-
sical) manner of tunneling, we seek to take a step back,
adopt a different point of view of quantum mechanics
that incorporates classical mechanics, and deduce tun-
neling. This different formulation is nothing more than
Feynman’s path integral approach to quantum mechanics.

Let me summarize the goal of this exposition explicitly.
GoaL: To expound on an alternative method-the in-
stanton method—to analyze tunneling and to obtain the
tunneling probability and show that it is in agreement
with that predicted by WKB.

II. PATH INTEGRAL, IMAGINARY TIME &
EUCLIDEAN FORMALISM

Classical mechanics centers around Newton’s Laws of
Motion. The Principle of Least Action states that a
particle of mass m under the influence of a potential V()
traverses a path z(t) in such a way that the path integral

S = S() = /tQ(T—V) dt 3)

t1

is a minimum (a saddle point to be exact) among all
possible paths. The function L =T — V is known as the
Lagrangian of the system and the integral S is known as
the action of the system. Newton’s equations of motion
F = md can then be derived from a necessary condition
for S to be an extremum, a well known condition from
the calculus of variations collectively known as Fuler-
Lagrange’s equations:

d (0L oL



The age-old mantra summarizes the principle most aptly:
a classical particle moves in such a way as to minimize
the action.

Classically, a particle moves from a point x; in space to
another point x5 in such a way that S attains a minimum.
Quantum mechanically, one postulates that the particle
has continuumly many equal chances to traverse from
to xo. Feynman’s path integral approach then states that
the probability amplitude for a particle known to be at
x1 at time ¢; to be found at x4 at time to is given by

i(ta—ty)

(z9;ta]e Hip1ity) :N/e%sw Dz,  (5)
N

where |z1;t1) and |zo;t2) are position eigenstates (with
time labels), N is an appropriate normalization constant,
I" is the class of paths connecting x; to x2, and Dz is a
measure the integral is performed with respect to. The
amplitude Eq. 5 is often referred to as the propagator
and we denote it by U(xo, to; x1,t1).

Although Eq. 5 is an integral over I', the amplitude is
often said to be obtained by “summing” over all paths
x(t) € T. The summing or integral is a sophisticated mat-
ter, but in general the path integral Eq. 5 is dominated
by the classical trajectories x.(t) so that the amplitude
can be approximated as

U(l'Qth;xl;tl) %NZQ%S@CL). (6)

Tl

A heuristic reason as to why classical trajectories domi-
nate has to do with destructive interference of the phase
contributions e#5®) for 2(t) € T' as a whole. Only paths
in small neighborhoods of classical trajectories . (t) con-
tribute constructively. Chapter 8 of [2] gives an example:
for a free particle of mass 1 g to travel 1 cm away from its
point of origin in 1 second, the deviation of the action in
a quadratic trajectory & = t? from the classical trajectory
x = t is roughly 1.6 x 10264, whereas for an electron
whose mass is roughly 10727g, the deviation is /6. What
this means is that a deviation of 2 = ¢? from the classi-
cal trajectory x = t is enormous for a classical particle
and, therefore, the alternate trajectory contributes almost
nothing to the path integral. On the other hand, electrons
indeed behave quantum mechanically. The same chapter
and Chapter 21 of the text offer a detailed discussion; a
proof that the path integral formulation is equivalent to
the Schrodinger formulation of quantum mechanics can
also be found in that same chapter.

Now, if the classical trajectory is of importance in
the path integral approach, how then do we understand
tunneling from classical mechanics? Tunneling occurs
through a classically forbidden region, so there is no clas-
sical trajectory to dominate the integral. This is when
we need to step into imaginary time 7: ¢ — —i7. This
process is formally known as Wick rotation. Wick rotat-
ing the propagator with the old Lagrangian L =T — V
and action S(z(t)) will present us with a new Lagrangian
L called the Fuclidean Lagrangian, one whose potential

term Vg(x) is the old potential V(x) standing upside
down —V(x), as we will see.

To begin the analysis, the relation t = —i7 yields dt =
—i d7. The Lagrangian L consists of the kinetic energy T'
that is a function of velocity, whereas the potential V(z)
is a function of position . Thus, upon Wick rotation,
the kinetic energy becomes

1 de\? 1 dr dr\?
T_2m(dt> —Qm(dadt) 0
1 dz\?

while V(2) remains unchanged, and writing Vg(x) =
—V(z), the Lagrangians L and Lg can now be seen to
be related by

L=T-V=-Tg—-V=—Tg —Vg) (9)
=—Lg. (10)
As for the quantity %S , Wick rotation yields

iS Z./T2 Lg (—idr) 1/T2L d (11)
=98 =% —Lp (—idr)=—+ T.
[ nt, °F
All the Wick rotations culminate in the propagator in
imaginary-time form:

U(xa,T2;21,71) :/ e~ 75 (T) Dy (12)
e

where the class of paths to be integrated over is now
replaced by a new class © corresponding to the Euclidean
Lagrangian. The oscillatory nature of Eq. 5 has also
now been replaced by a decaying exponential. Since the
propagator gives the amplitude for a particle starting at
21 in the system at time 77 to end up at zo at time 75, the
decaying exponential of the imaginary time propagator
suggests that we are now staring at tunneling phenomenon.
Our next task is to elaborate on this surmise with the
double-well as an example. The following observation
adds insight:

In terms of energy representation, the propagator as-
sumes the form

U(zg;71) = (w2]n) Y _exp (€H> (nlz1)  (13)

~ Yo (-55) twtntalar). - )

where we drop references to time and replace 7 — 71 by
T. Here, H is the original time-independent Hamiltonian
and the E,, € R are its eigenvalues, both of which remain
unchanged by Wick rotation. This expansion allows us
to see that the dominant term in the sum is the one
contributed by the ground state F,, = Ejy, from which Fj
can be computed as

T—o0

—han(mg;x1)>

- (15)

This is a method used in quantum chromodynamics
(QCD) to calculate hadron masses (Section 2.1.2, [3]).
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Figure 2: Example of a double-well potential. The wells
sit at x = 41 in this example V(z) = (22 — 1)2.

Figure 3: The double-well of Fig. 2 inverted. Now a
double-hill with a valley in between.

III. DOUBLE-WELL POTENTIAL AND
INSTANTON

A double-well potential is one which is given by

V(z) = A%(z% — a?)2. (16)
The potential has two wells whose bottoms touches the
r-axis at +a and a hump between them centered at the
origin. We explicitly declare that A > 0.

Classically, if the system has energy below the top A%a*
of the hump, a particle that is confined in the left well
will remain in the same well and there is no classical
trajectory across the barrier in the region where V(z) is
greater than the total energy. However, the Euclidean
Lagrangian now has V(z) standing upside down.

Since classical trajectories play a significant role in
approximating the propagator, let us now analyze the
classical trajectories pertaining to Lg. Our intuition tells
us that if we place the particle on the left of the hill with
a summit at x = —a, it will roll down indefinitely and
gain speed as it goes. Similar situation happens if we
place it to the right of x = a. If we place the particle
on either top and not give it any kinetic energy, it will
remain on top forever. If we place it € distance to the
right of x = —a or to the left of x = a, then it will roll
down the slope into the valley and roll up the other slope
within a finite amount of time 7', going going back and
forth between the two peaks, but as we take € to 0, we are
back in the former situation where we place the particle
at £ = +a and the time it takes to roll down and up now
becomes T — oo. Indeed, if we look at the conserved

quantity £ = T+ Vg of the system, the total energy, and
setting E = 0, we obtain $m(dz/dr)* = —Vg(z), keeping
in mind that now the time variable is the imaginary time
7. Solving for dx/dr, we have

dr 2V (x)
e + o (17)

which we separate variables and integrate to
\/7/%1("') T , ( )
dr 18

xcl(Tl) \/ T1

e (T) T
+/— = [ dr" (19)

242 »/:L’rl(‘l'l - a2 /7'1

ze1(T)

arctan(x/a)] -
Zer(T1

72((114)2 [ =7—7  (20)

and finally obtaining a classical trajectory

Ze(T) = £atanh (\/3&147’) ) (21)

one which we set to satisfy 2.;(0) = 0. Such a solution to
the Euclidean equation of motion is called an instanton.
As a matter of choice, we call the solution with the posi-
tive sign an instanton and the one with a minus sign an
anti-instanton, just to be more specific. This instanton
corresponds to the discussion above, where we place a
particle € distance away to the right of x = —a and taking
€ — 0, reaching the bottom of the valley z = 0 at (imag-
inary) time 7 = 0, and then rolling up the other hill to
x = a as T — 00. The characteristic of an instanton is one
where a transition from a position eigenstate such as | —a)
to |a) takes almost an instant (as can be seen from the
steep slope centered around the origin in Fig. 4) while it
stays in the position eigenstates most of the time. In fact,
in view of Eq. 15, these position eigenstates correspond
to the ground states of the system, albeit degenerate.

Figure 4: An instanton in the form of Eq. 21.

To recapitulate with rigor, from the very start, it was
easy to identify the solutions z(7) = —a and z4(7) =
a as solutions to the Euclidean equation of motion for
the double-well potential, but these constant solutions



cannot contribute to the computation of the propagator
U(za,;21) of Eq. 5 with 1 = —a and 22 = a. They
certainly contribute to the computation of the propagator
for 1 = 9 = —a or x1 = x2 = a, which they indeed give
a correct computation:

U(+a; +a) =~ exp (;SE(:EQ)> =exp(0)=1. (22)

The exponential has a vanishing argument because the
action vanishes if the path is a point, which is the case
here. Now, towards our goal, let us use the classical
trajectory given by the instanton, which we now denote
by xr, to show that it produces a transition amplitude
predicted by WKB. First, the action along the instanton
computes as

s [ () e [y
:m/j;\/m/;n(m)dx (24)
:/_(;\/Qm—V(x)dx, (25)

from which we have used Eq. 17 as we go from line 23
to the next. In case one wonders why we have kept the
subscript I in the (dummy) variable of integration in line
23, it is to emphasize that the integral is done over the
instanton. The limits of integration are also indications of
such an integral (the limits indicate a propagation from
—a to a as opposed to the other two classical trajectories,
where the particle remains put at either a or —a). We
can now quickly see that the propagator approximates to

1 a
U(a; —a) ~ exp <h/ V2mV () dx) (26)
and, correspondingly, its square
2 a
A exp (_h/ vV 2mV (x) dm) (27)

represents the transmission probability, which agrees per-
fectly with the WKB prediction Eq. 2! Note that the
energy involved is vanishing for this agreement to hold.
This is the reason why we did not immediately make a
calculation after Eq. 5 to demonstrate this agreement.
Had we attempted to do so, we would have ended up
trying to integrate /2m(V(z) + E), which would not
jibe with the WKB prediction unless £ = 0. In short,
the instanton solution, obtained from the consideration
of a vanishing E, yielded a tunneling phenomenon whose
tunneling or transmission probability agrees perfectly with
that given by WKB.

We need not stop at Eq. 25; we may go on to com-
pute the actual transmission probability in terms of the

parameters of the potential:

Sr = /a V2mA2 (22 — a2)? dx (28)

=2m ’ —A(z? — a?) do (29)
sy ”

The negative sign in the integrand in line 29 warrants
a quick mention. It is the result of taking a positive
square-root of 2mV (z), for x2 — a? dips below the -
axis in the region x € (—a,a). Thus, for a double-well
potential V(z) = A?(2? — a?)? with total energy E = 0,
tunneling takes place through the barrier in the (classically
forbidden) region (—a,a) with a transmission probability

8Aa3\/2m>

3h (31)

T =~ exp (

IV. DISCUSSION

We set out with a goal to derive the tunneling amplitude
using a different method rather than the usual WKB
approximation and to compare the two results. The
method is called the instanton method and we illustrated
it with the double-well cum double-hill potential, showing
that both methods agree in perfect unison. The machinery
behind the instanton method is Feynman’s famous path
integral and a formal analytic continuation from real time
t to imaginary time —ir.

We should really go beyond computing the transmission
amplitude and compute the splitting of the ground state of
the system as a result of the tunneling, or we should even
compute the exact transmission amplitude by performing
the path integral of Eq. 12. To accomplish these tasks, a
deeper analysis and discussion will have to be put in place,
one including the definition of the measure Dz appearing
in the path integrals Equations 5 and 12 for instance.
Due to the enormous amount of knowledge that would
involve, for now we will entrust the task to other texts
and let ourselves be content with getting acquainted with
the method of an instanton the way it is used to derive
the tunneling amplitude. A mastery of the basic idea
discussed here should prepare one well for those further
analyses and pave a way to the mastery of the subject.

We now want to justify our seemingly long-winding road
to the tunneling amplitude. Instanton has an important
place in QCD, for instance. As the whole exposition is
about, instanton is associated with tunneling phenomena,
which abound in quantum theory. Once the basics of the
instanton is understood in simpler particle mechanics, one
can concentrate on the additional complications brought
in by field theories. A good survey exposition on the
subject is [3]. To quote an excerpt of that paper verbatim,
“There are interesting relations and interactions between
instantons and their topological cousins, the non-abelian



monopoles and vortices. In several theories, probably in-
cluding QCD, instantons are responsible for spontaneous
chiral symmetry breaking. The role of instantons in deep
inelastic scattering and other hard QCD processes has
been examined, and also their impact on weak-interaction
processes at RHIC, LHC and beyond. In inflationary cos-
mology and elsewhere relatives of instantons (sometimes
called bounces) describe the ‘decay of the false vacuum’.”
Thus, the uses and importance of instantons are many
and unsurpassable. Instantons are not only instrumental
to the advance of quantum field theory, it has also played
a role in the advance of mathematical theories (cf. [4]).

We conclude with some references for further studies.
They are S. Coleman’s classical paper The Uses of In-
stantons [5], H. Forkel’s A Primer on Instantons in QCD
[3], which we have cited several times, and Instantons in
QCD by T. Schéfer and E.V. Shuryak [6]. The primary
reference for this paper is Principles of Quantum Mechan-

ics by R. Shankar [2], in which the introduction to path
integrals is given in Chapters 8 and 21, the latter which
also contains an introduction to instantons.
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Instantons in Quantum Mechanics

Omar Alsheikh
(Dated: June 19, 2019)

It is well known that in quantum mechanics, a particle can tunnel through a potential barrier
even if its energy is lower than that of the barrier. The standard route to calculating the tunneling
amplitude, and the most convenient, is the WKB procedure. However, there exists another means
of analyzing the problem through Feynman’s path integral formulation, where the classical action
of the system is employed. By finding the Fuclidean classical path followed by the particle and then
slightly perturbing it, we can reproduce the results known from standard quantum mechanics. We
reproduce the spectrum of the 1D harmonic oscillator using this method as a means of introducing
it, and then we calculate the tunneling amplitude between the two wells of a quartic potential,
where an interesting classical solution, the instanton, will show up. We finish with the consideration

of periodic potentials.

Note: Throughout the paper, we put h = 1.

analysis.

I. EUCLIDEAN FORMULATION

The Lagrangian functional L(z, ) of a classical point
particle of unit mass moving in one-dimension in a po-
tential V(x) is given by the simple formula

L(z, ) = %@2 V(). (1)
Traditionally, the transition to quantum mechanics in-
volves finding the Hamiltonian H(z,p) of the system,
promoting the position x and the canonical momentum p
to operators by imposing the canonical commutation re-
lation [x,p] = 4, and then solving the Schrédinger equa-
tion

.0
i V() = H[U(0), )

where |U(¢)) is an element of the Hilbert space and
essentially contains all the information about the sys-
tem. In particular, the inner product (z|¥(¢)) = ¥(z,1),
which is the familiar wavefunction in the position basis,
determines the probability amplitude of finding the
particle at the point x i.e. in the state |x) at time ¢.

However, Feynman showed us another way to do quan-
tum mechanics, known as the path integral formulation
[1]. Suppose the particle is sitting at the point z; at
initial time —t(/2, and we want to calculate the proba-
bility of finding the particle at the point = at time (/2.
The amplitude of such a process is equal to the quan-
tity (zle”H|x;). Classically, the particle will follow a
certain path which minimizes the action S given by!

§— /W2 dt L(z, 7). 3)

—to/2

L Strictly speaking, the action needs to be stationary. This in-
cludes a local maximum or a saddle point.

It can be retrieved anytime through dimensional

In quantum mechanics, all possible paths connecting the
two points contribute to the amplitude of this process
with the weight e**[*(®)] where S[x(t)] is the action cor-
responding to the path x(¢). This is contained in the
equation

(arle=ojay) = N D0 ()

where N is a normalization factor and [Dz] is the
measure corresponding to the integration over all func-
tions x(t) with boundary conditions x(—t¢/2) = x; and
J?(to/Q) =2Tf.

Next, we expand the left-hand side in terms of energy
eigenstates |n) such that H|n) = E,|n), Ey < Ey < ...

and using the completeness relation ) ;. [n)(n| = 1:

(ple™Molai) =) (agle™ 0 n) (n]a;)
n

=3Bty (e (),  (5)

n

where ¢, (z) = (z|n) is the energy eigenfunction. Now
we analytically continue the time by making the transi-
tion ¢ — —it. This substitution is often called the Wick
rotation, and we observe the following transformations:

1
L— —§a’:2 ~V(z)=—-Lg (6)
S—)i/dtLEEiSE %
e*iEntg N e*Ento (8)

e e 5E, (9)

and (4) becomes

ZeiE"toibn(l‘f)w;(xi) = N/[Dx] e~ Selr®] - (10)

n



This is the Euclidean variant of theory, hence the ‘E’
in the subscripts.? From now on, we will omit the
subscripts, having in mind that we are working with the
Euclidean version. Notice the decaying exponential on
the left-hand side; in the limit of large ¢y, the leading
term in the series becomes e F0t04q(z )¢ (x;). Thus
we see that the Wick rotation is not just a matter of
mathematical manipulation, as it enabled us to deter-
mine the ground state configuration, which is almost
always what we are looking for. We shall also see later
that it provides very useful means of describing some
phenomena in quantum mechanics.

To evaluate the right-hand side, we have to make sense
of the measure [Dz]. Let Z(t) be some function that satis-
fies the boundary conditions. An arbitrary function x(t)
satisfying the same boundary conditions can be written
as

I(t) = .f(t) + Z Cnxn(t)v (11)

n

where the set x,,(t) is a complete set of orthonormal func-
tions that vanish at the boundaries:

/ P b (O (t) = o (12)

—to/2

Therefore we can define the measure to be

=11 \/% de (13)

In the semiclassical approximation,® paths that differ
only a little from the classical path contribute the most
to the path integral, and so, assuming the semiclassical
approximation works, we look at the variation of the ac-
tion ¢S around its minimum Sy = S[Z(t)], where Z(t) is
the classical path, or the ‘stationary point’ of the integral
S, and satisfies the classical equation of motion*

i =V'(z) (14)

with V/(z) = dV(x)/dz. The first variational derivative
of S is of course rendered zero by virtue of (14), so we
look at the second variational derivative (remember that
we are only interested in small deviations around the sta-

2 Using the label ‘Euclidean’ might seem unmotivated and out of
place. However, it makes perfect sense in relativistic theories,
which we will not discuss in this work.

3 Mathematicians call it the method of steepest descent.

4 Remember that V goes to —V in the Euclidean theory.

tionary point, so we ignore higher orders):

t0/2 1
55:/ dt (253;«2+ ~“V'(z )695)

—to/2
1 to/2 to/2 1
= —0x 0% —/ dt =0z 6%
2 —to/2 —to/2
t0/2 1
+/ dt V" (z) o2*
—to/2
t0/2 5 1 d2 1" 6
= dtdx=| ——+V 15
[, aiey| - g vi@le o)

where it is understood that the square bracket is an op-
erator that acts on dz. We obtained the second line
by integrating the first term in the first line by parts.
The boundary term vanishes for dz and its derivatives.
Now suppose we know the eigenfunctions and their cor-
responding eigenvalues of our differential operator:

d2
[— =T V”(:v)} Ty = Enly, (16)

then we can take this set as our complete set in the ex-

pansion (11) and (12),° and (15) becomes
t0/2
"=
0S = /t/zdthmxm[—dt2+V x}chxn
t0/2
= Z fsncmcn/ dt x,,xn
m,n 2 —to/2

1
= ; 55710721- (17)

Now we are all set to evaluate the path integral.
Putting S = Sp + 4.5,

/[DJ?] —S[z(t)] _ e—SO H/ an snci/Q

— =5 Hé_;l/Q
—1/2
V//( )>} .

So | de d22
aer (- 4 N

We see that the problem has reduced to evaluating the
determinant of the operator (16). Formula (10) become

D e Entog, (2 ) (w:)

= Ne~% [det <— 51—; + V”(:E))} 71/2.
(19)

5 This operator is similar to the Hamiltonian in Schrédinger me-
chanics i.e. it is Hermitian, and thus its eigenfunctions form a
complete set.



Before we continue, it is worth noting several points:

1. We have assumed there is only one stationary point.
If there is more than one, one has to sum the contri-
butions of all of them. This will become important
when we consider tunneling.

2. One might question the limits of the Gaussian in-
tegral in (18). After all, the set x, is supposed
to span all possible paths that satisfy the bound-
ary conditions, and if we allow ¢, to vary without
bounds, dx will vary arbitrarily as well i.e. the
‘smallness’ of §z should constrain the length of the
vector ¢,. While this is partially true, what we are
interested in is the integral itself, and the integral
receives the most contribution around the center of
the Gaussian (¢, = 0 in our case). Therefore, we
can extend the limits of the integral to infinity at
the cost of a minor numerical error.

3. In evaluating (18), we have assumed that the spec-
trum of the operator (16) is positive-definite. Oth-
erwise, the integral would diverge. A simple argu-
ment eliminates the possibility of negative eigenval-
ues: €, signifies the response of S as we perturb =
along the direction z,, in the function space. Since
S[Z] is a minimum of S, any perturbation will either
increase the value of S or keep it unchanged.® The
former corresponds to €, > 0 while the latter cor-
responds to &, = 0, which are called zero-frequency
modes. We shall see later that the problem of these
zero-frequency modes can be solved by integrating
over what is called a collective coordinate.

II. THE HARMONIC OSCILLATOR

Most of what follows starting from this section can be

found in [2—4).

We now study the case of a particle in a quadratic
potential V(x) = w?2?/2. Although this problem has
been studied extensively using more conventional meth-
ods, we reproduce some of the well-known results as they
will serve as an intermediate step when we analyze tun-
neling through a barrier in the next section. We have
V" = w? and the differential operator becomes

2

—p T w?. (20)

6 This argument obviously fails if Z was a maximum or a saddle
point of S. Fortunately, in the majority of the cases S will indeed
be minimized.

This operator is similar to the Hamiltonian of a particle
in a box of width a (and an energy shift w?):

1 d2 9 n?n? 9
H_ 5@—’—(&], ETLZW—FOJ, 7’7,217273,...
(21)
and we immediately read off the eigenvalues of (20):
2,2
gn:”t” 1o n=1,2,3,.... (22)
0

The next step is to fix N. We do that by rewriting the
infinite product in the determinant as

[e’e) ’fl27T2 —1/2
V(I )

n=1 0

) )
(23)

The first square bracket would be the determinant had
we started with V(z) = 0 and must give the result for
a (free) particle in a box of width ¢ty with E,, = p?/2
and p, is the momentum. By taking z; = zy = 0, Sy
vanishes, and in the limit of large ¢y, €, approaches a
continuum, and we can use the plane wave solutions as
our eigenstates.

~ n2r? —1/2 —p2te)2
N(H - ) = (0]e™P"*/2|0)

n=1 0
B /Oo Wt Ly
—co 2m \/27Tt0

Our choice of z; and zy is not random; it is the
only choice that gives finite Sy to avoid any poten-
tial problems associated with the vanishing of the
exponential term on the right-hand side of (19). The
integral is obtained by considering the representation
of the state |0) in the momentum space, which is eas-
ily found by taking the Fourier transform of (z|0) = é(x).

The final remaining step is to evaluate the second
square bracket in (23). The product can be readily eval-
uated, we quote the final result here:

i 242 1
H <1 + v 0) = w—tosinh (witp). (25)

n2m2

n=1

Piecing everything together we arrive at the final result:

1 —1/2
~Hnto h (wt
Ze |1hn (0)? = 277750 (wto sinh (w 0))

= /¥ (2sinh (wto))1/2
™
W _wto/2 L out

=4/ —e W/ 14 —em W ),
s 2

(26)



reproducing the spectrum of the harmonic oscillator.
Namely, Ey = w/2 with [¢(0)]* = Jw/7, Ey = 5w/2
with [¢2(0)]* = 1y/w/m, etc. Notlce that only terms
with even n appear in the series, since 1, (0) = 0 for odd
n. The results are exact, and this is due to the fact that
all higher-order variational derivatives of S vanish for a
quadratic potential, making (15) exact.

III. TUNNELING IN A QUARTIC POTENTIAL

Suppose we now place our particle in a double-well

potential V(x) = A(x? — n?)2. This potential has two
minima at x = =+n, with a frequency of oscillation
w? = 8An? which may be found by looking at the

quadratic term in the expansion of V(z) around = = 4.
The height of the barrier separating the two wells is
V(0) = w*/64X. In the limit A\ — 0, the barrier is of
infinite height and the ground state of the system is
doubly degenerate; the particle oscillates near z = —n
or x = 7. However, if A is set to a small, albeit non-zero,
value, the degeneracy is broken. If the particle was
initially at —n, it can tunnel through the barrier and
there is a non-zero probability that we find it at n at
a later time. The true ground state is an even combi-
nation between the previously degenerate states, and
an odd combination has a slightly higher energy. The
difference between the two energy levels goes like e~1/*
i.e. it vanishes faster than any (positive) power of A, and
thus perturbation theory cannot be used in this problem.

In this section we will show how tunneling can be un-
derstood in the context of the Euclidean theory and we
will reproduce the results of the WKB scheme.

A. The Instanton Solution

Like before, we look for stationary points of the clas-
sical action with the inverted potential. Two trivial so-
lutions are Z(t) = —n and Z(t) = 7, corresponding to
the particle sitting at the top of either humps, and the
analysis is identical to what we did in the preceding sec-
tion. There exists, however, another family of topologi-
cally nontrivial solutions with finite action that connect
the points —» and 7.” Such solutions correspond to the
particle sliding from one hump to the other. In the limit
of large tg, the total energy E = z2/2 — V() is zero (for
the particle to take infinite time to slide from one hump
to the other, it must start with ~ 0 kinetic energy). This
equation can be readily integrated to find Z(¢):

N (27)

7 They are topological in the sense that one cannot continuously
deform a function in one topological class to another class while
keeping the action finite.

(28)

where t. is an integration constant and indicates the cen-
ter of the solution.® The particle starts at —n and slides
to n. This solution is called the ‘instanton’.’ By sub-
stituting ¢ with —¢ (corresponding to the positive root
n (27)), we get the ‘anti-instanton’ solution where the
particle starts at 17 and ends up at —7. The action of the
instanton (and anti-instanton) is

SO_/ dt 32 /da: (f):%, (29)

and so we have evaluated the exponential term in (19).
We stop to make a couple of comments:

1. The exponential e~ is similar to the tunneling
amplitude we get from the WKB method. This
is in fact no coincidence, and holds generally for
similar problems [5].

2. The action does not depend on t., and this is ex-
pected from the time translation symmetry of the
original Lagrangian, that is the time origin can be
chosen to be any value. This suggests that we
have to take into account the contribution an in-
finite number of instantons (and anti-instantons),
and this will be the subject of the following sec-
tions.

B. Zero-Frequency Mode

Our next task is to calculate the determinant. There is
more than one approach to this problem. A particularly
interesting and relatively quick one is developed by
Coleman in his lectures [3]. However, many key points
can be easily missed if the reader is not careful enough,
so we resort to a more direct, yet more laborious,
approach [2].

8 We emphasize the dependence of Z on t. as it will be relevant
soon.

9 The term ‘instanton’ was coined by ’t Hooft. The reason is that
instantons are very similar in structure to solitons, particle-like
solutions of field theories, and thus the -on. They are also func-
tions of time, hence the instant-. Another name used in the
literature, invented by Polyakov, is ‘pseudoparticle’, since they
are particle-like solutions in imaginary time.



We calculate the contribution of one instanton (t. = 0
for simplicity). We have V' (z) = 12A2z? — 4 n?. Substi-
tuting with the explicit form of Z(¢) from (28) in (16) we
get

3 t 1
— #8202 (2 tanh? % — 2) T,

3 t
=~ + w? (1 —5 sech? u;)xn =enZn. (30)

This equation is satisfied by the associated Legendre
polynomials [6]. In the limit of large ¢, it admits (in the
context of quantum mechanics) discrete bound states as
well as a continuum of scattering states. First we will
consider the discrete levels, which are given by

2
n=0,1 (31)

ie. go = 0 and &1 = 3w?/4. We now encounter a
zero-frequency mode, and the integral over ¢y will make
the functional integral (18) diverge. Fortunately, there
is a pleasant trick to remedy this problem and will be
the subject of this section.

The normalized eigenfunction for €y = 0 is

t
zo(t) = —y/ %‘" sech? % (32)

and it represents the direction in the function space along
which S remains unchanged. One immediately suspects
that this direction is related to the indifference of the
system to the choice of t.. To show this we consider a
perturbation on Sy by varying ¢, (which is zero since Sy
does not depend on t.):

_ [T . dz _ [T % d 10
550—/Oodt2xdtc 5tc—/oodt2z<— dt)dtc.

: : (33)
In the function space this variation takes the form

(550 = / dt Q.f 0t = / dt Zi‘COJ.Zo. (34)

Comparing both forms we conclude that xy is propor-
tional to Z. We can fix the proportionality constant by
normalizing xq:

1

dt2=1=A2/ 32 = A2y = A= ———,
[ o e

— 00 —00

or

#(t). (35)

10 Recall that = Z(t —t.), so we can exchange the derivative with
respect to t. with a time derivative at the cost of a minus sign.

It is easy to check that (32) and (35) are indeed equiv-
alent. Furthermore, the equivalence of the expressions
(33) and (34) suggests that we can replace the integra-
tion over ¢y with an integration over ¢.. In the litera-
ture, t. is called a collective coordinate. To find how the
two variables are related, consider how an infinitesimal
change dcg affects z:

dz = ZTo dCO.
Next, consider how changing t. changes Z:

dz
dt.

From these two relations we arrive at

dCO =V S() dtc (36)

which not only solves the problem of the divergent inte-
gral, but also takes into account the contribution of in-
stantons with different centers, which was what we com-
mented on at the end of the previous section.’* This
result is actually quite general; for systems with multiple
zero-frequency modes, we obtain a factor of v/Sy for each
mode. We will perform the integral in due time.

dz = dt. = —zdt, =

So o dtc.

C. Positive-Frequency Modes

When it comes to evaluating the rest of the determi-
nant, it is often convenient to use the determinant of the
harmonic oscillator as such:

d2 o —-1/2
oo (= 2+ v70a)]
B SO d2 ) —-1/2
1/%{det<dt2+w>} X
det’'(—d?/dt? + V" (z))
w2 det(—d?/dt? 4+ w?)

—1/2
} wdte,  (37)

where det’ is the determinant without 9. The contribu-
tion of e is known, and we calculate the contribution of
the continuum. The solutions to (30) have the asymp-
totic form

zy(t) ~ et as t — oo
zy(t) ~ Pttty as t — —o0, (38)

where p is related to the continuous eigenvalue € by p =
V2 — w? and the phase ¢*» has the form

in, _ 1+ ip/w 1+ 2ip/w
1—ip/wl—2ip/w’

(39)

11| The integral is still naively divergent, since t. extends from

—t0/2 to to/2, which extends to infinity. What we really did is
contextualize this divergence into a sensible limit (tg — oo) that
we can deal with later.



A general solution z,(t) is a linear combination of x;} (t)
and z, (t) = x;7(—t). By using the boundary condi-
tions xp,(£to/2) = 0, it is possible to evaluate the second
bracket of (37):

det’(—d?/dt? + V" (7)) 1

1
=—€=— 40
w2 det(—d?/dt? + w?)  9Yw? T (40)

and we obtain the nice formula'?

(nle™ ™| =)y = (—nle” ")y

d2 —1/2
= Ne=5° {det ( w " V”(:Z))]

— (\/Ee—Wto/Q) <‘ / % e_S‘J)wdtc,
m ™

(41)

where we have kept only the leading term in the harmonic
oscillator expansion (26). The 1 in the subscript indicates
that this is the contribution of one instanton (or anti-
instanton).

D. Dilute Instanton Gas

The last element of the solution is noticing that the
one-instanton solution is not the only classical path. A
string of widely separated instantons and anti-instantons,
corresponding to the particle going back and forth be-
tween the humps, constitutes a possible (approximate)
classical path with finite Sy as well. Exactly how widely
seperated they have to be can be deduced from looking
at the asymptotic (large t) behavior of the instanton. We
know that at large ¢, T approaches 7. Therefore, we can
expand (28) about Z = n:

T~ —w(T—n)
or
T—n~e (42)

Thus, instantons are well-localized in time, with a size of
order 1/w. This means that for successive instantons and
anti-instanons to be sufficiently separated, their centers
have to be seperated by an amount much larger than 1/w.

We construct the solution by attaching n instantons
and anti-instantons with centers ¢; such that —ty/2 <
t) <tg < -+ <tp <tg/2. This setup is called the dilute
instanton gas; it is dilute in the sense that the instantons
do not interact with each other.!®> We note that if it were

12 The analysis for the anti-instanton is identical, since V" (Z(t)) is
an even function in ¢.

13 It is called this way because it is similar to the dilute gas ap-
proximation in statistical mechanics.

not for the transitions near the centers, V" would be w?
for all ¢, leaving us with the harmonic oscillator solution.
Therefore, this n-particle setup will modify the harmonic
oscillator solution. We read off the correction factor from

(41):
(\/E _ ) det p"ﬁwdti, (43)

where p is the instanton density. Now we finally evaluate
the integral over the centers:

W to/2 t3 t2
A= e‘“to/zp"w" / dt,, - - / dtq / dt;
u —t0/2 —t0/2 —t0/2
— Y mwto/2 (pwio)"
T n!

(44)

The limits of the integrals mean that each center can be
anywhere from —to/2 up to the consecutive center. The
last remaining step is to sum over n. If the particle starts
at +7 and ends up at F7, then only odd n contribute.
Likewise, if it starts and finishes at the same point, only
even n contribute.

[ w t
<:|:’I7|67Ht0|:|:7]>: w 7wt0/2 Z PUJO

evenn

=4/ @ gmwto/2 gogh (pwtp)
7T

1 Jw
_ = % —w(l/2—p)tg —w(1/24p)to
= e +e )
2 \/ T ( ’

(45)

_Ht B L (pwto)”
(Enle™ " Fn) =/ e > T

oddn

=4/ Y e=wto/2 ginh (pwto)

i
1 jw (e (1/2p)to _ =1/24p)t0)
2V 7w

(46)
Both expressions lead to two closely-spaced energy levels

w w w3 3
E. ==+ -2 4 o —w? /12X 4
S T e P (47)
which are, of course, identical to the result obtained from
the WKB method. Furthermore, if we look at the coeffi-
cients of the exponentials in (45) and (46) we find that

[ ()* = |9 (—

P (MYL(=n) = Y (=n)i(n) =



from which we deduce

Y+ (n) = F+(—n) (48)

i.e. the true ground state ¢ _ is indeed the spatially even
combination, and the first excited state ¢ is the odd
combination, with the particle having equal probability
to be at n or —n.

It is important to note that nowhere have we explicitly
taken any measures to ensure that the instantons are suf-
ficiently separated. However, this is already taken care of
by the summations in (45) and (46). The series > 2™ /n!
is dominated by the terms with n ~ x. In our case, we
have n ~ pwty or n/ty ~ pw i.e. the number of instan-
tons in a time interval is of order p. Therefore, by taking
p to be small (by taking A small), we are ensured that
the gas is dilute enough.

IV. PERIODIC POTENTIALS

Suppose now that our potential has an infinite number
of wells with minima at x = 0,+1, £2, etc. The analysis
is the same as before up to the point where we sum over
n. When we had only two humps, the particle was only
allowed to swing back and forth which restricted us to
a string of alternating instantons and anti-instantons.
On the other hand, for a periodic potential with infinite
humps, we lose this restriction; the particle can go back
and forth, but it can also go forward skipping 20 humps
then roll back 2 humps, then roll forward again ad
nfinitum.

Mathematically speaking, this is implemented by sum-
ming (44) over instantons and anti-instantons indepen-
dently while constraining the difference between their
numbers to be equal to the net change in the position

of the particle. We have the equation

<m\eth0\m’> _ /gefwto/QX
7T

00 ’
(pwto)" "
Z W 6(n7n’)(mfm’)a (49)

n,n’=0

where n and n’ are the numbers of instantons and anti-
instantons, respectively, and m and m’ are the final and
initial positions of the particle, respectively. By using the
identity for d,,, as a contour integral

- 2mi

27
/ dg e'(m=m9 " (50)
0
|z|=1

(49) becomes two independent exponential series:

2
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2. (pwtoe?)™ (pwige
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2m
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\V 27 Jo
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W 1 2 L,
_ e wto /2 7/ de el(m —m)962pw (:03(91&07
0

T 2T
(51)

from which we deduce the energy levels (as a function of

the continuous angle 0)

E0) = Yo il cosf e’ /122 (52)
2 27\ ’

and (invoking the completeness statement fo% de16)(0| =

1)

(0]m) = (‘;)1/4jﬂeim@. (53)

These are, naturally, the results we obtain from Bloch’s
theorem, which is the traditional treatment for periodic
potentials.
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The integer quantum Hall effect

Le Huu Thong
(Dated: June 19, 2019)

The quantum Hall effect is one of the most important discoveries since the late 20th century.
This paper provides explanation for the precise plateaux of resistivity observed in quantum Hal
experiment, requiring just basic quantum mechanics of most undegraduates. After reviewing the
classical Hall effect, we get on the quantum regime by considering Landau quantization of electron
states in a magnetic field. The precisely quantized resistivity is then derived for an idealized sample.

Finally, an account for impurities in real sample will explain fully the Hall experiment.

I. INTRODUCTION

In 1980, von Klitzing discovered the integer quantum
Hall effect, which brought him a Nobel proze in 1985 [4].
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Figure 1: Hall resistance R, and longitudinal resistance R,
in integer quantum Hall effect.

The integer quantum Hall effect is observed in two-
dimensional electron gas, under low temperature and
strong magnetic length. When the magnatic field is varied,
the Hall resistivity exhibits quantized value

Poy = ——>5,VEZL

with abrupt transition between plateaux. Also, the
plateaux p;, is accompanied with zero values of longi-
tudinal resistivity pg,. And when p,, jumps between
plateaux, p,, peaks up together. More interestingly, the
values of v are measured with extrodinary precision —
1079, This is an exemplar for a stable quantum regime,
despite the inescapable impurities in experiment samples.

Classical Hall effect

To appreciate the striking quantum behavior, let us
review the classical approximation. The Drude model

[

Xy, /

/

/
/
/
/
/
o ’ y ﬁ%"xx
/

longitudinal Hall = B S
resistance  resistance B

Figure 2: Left: the Hall experiment set-up: R., = VE/IZ
(longitudinal) and R,, = V,,/I, (Hall); Right: resistivities in
classical Hall effect.

equation of motion, which incorporates scattering effect
in the parameter T (relaxation time)

d
md—::—eE—eva—g. (1)

In equilibrium, we expect ‘fi—‘t’ = 0, and then arrive at

viTvxB=-"E (2)
m m
Since J = —nev, the above expression show linear depen-
dence of J on E
1 wpT), ne’r _eB

Identifying the above with Ohm’s law J = oE gives

_m 1 WRBT
P = nerr <—UJBT 1 ) (4)
o= ne?r 1 —wpT (5)
- m(l+wyr?) \wBT 1 ’

Thus in the classical approximation

B
d pgy=—. 6
ne2r A Py =0 (6)

Pzx =

We see that there is linear dependence of the Hall re-
sistance on magnetic strength but not the plateaux as
in the quantum case. And the vanishing of longitudinal
resistance, as in the quantum case, may be attributed
to infinite scattering time, or rather, zero dissipation on
electron motion.



II. LANDAU QUANTIZATION

For the triangular geometry of the experiment, as de-
scribed in figure 2, the Landau gauge is particularly useful
since it preserves the translational symmetry in the x di-
rection

A = —yBx. (7)
Translational invariance in x direction gives us

Uiz, y) = €™ fiy), (8)

that is to say, our basic set of functions can be chosen
to be z-momentum eigenfunctions, similar to 1D free

particles.

Without electric field
H—1(+A)2—12+1(+B)2 (9)
0= 5, (P eA)’ = op, + 5 (p; +eBy

1 9 h
=— 1
Qmpy+ QmWB(y+le) , g ] (10)

Due to the resemblance to the second harmonic oscillator,
we can easily obtain the Landau spectrum in magnetic
field

En:th(nJr%), WBE% (11)
Une(@,y) = e* 0, (y + ki) (12)

where ¢, are the well-known SHO solutions.

For simplicity, we ignore the spins of electrons in
this whole treatment. Although the Zeeman splitting

gusB
this does not happen in real materials. On the one hand,
the mass determining wp is the effective mass of the
B

. On the other hand, the

Meff

effective g factor may depends on the band structure as
well. As an example, Landau level is 70 times bigger
than Zeeman splitting in GaAs.

h
= g;— is equal to Landau level at first glance,
m

electron in solid wg =

Since the spectrum does not depend on the = degrees
of freedom, there is degenacy in each Landau levels n in
(11). Considering a finite sample with size L, L,. Since
the wave functions (19) are localized about y = —ki%
while 0 <y < L,, we expect

2mm

—L,/1% <k <0 k==

,m € 7, (13)
where the quantized values of k are due to periodic bound-
ary condition along the = axis. Therefore the degeneracy
is calculated to be

eBL,L, ) 2mh

2r N
=L,/ =N=—"—"2"Y_— _ p,="— (14
L., v/l onh 3, 7 e (14)

Having derived the Landau quantization, we now turn on
an electric field in the y direction E = Ey to have the
new Hamiltonian

1 1
H= Q—p?/ + imuﬁg(y + ki%)* + eBy (15)
1 1 ek
Qmpy—k QmwB(y+le+ %) (16)
E
+eE(kFB 62>+ (e )2 (17)
mwyp 2 mwyp
It is then easy to obtain the new Landau levels.
1 9 el m E?
, el
wn,k(xa y) = 6““9071, (y + le + ) (19)
mw,

where the first term represents oscillation energy,
second term the electric potential energy and last term

kinetic energy. The potential term is there because the
el
wg’

wavefunctions are now localized at y = ki% +

But what is moving to give out that kinetic term? Well,
since E,; depends on k, all the electrons, in all Landau
levels, exhibit drift along the x axis with the same group
velocity

1 0FE,k eEl% E
== =— =——. 20
TR ok h B (20
That is, we have proved a drift current along the x axis,
which is in the direction of E x B and perpendicular to
the electric field. The Hall resistivity is going to arrive!

When v Landau levels are filled

We are now able to explain the nicely quantized values

12xh

——5 advertised in the Introduction. Intuitively, we may
Ve

see a connection between the quantized Landau levels

and quantized Hall resistivities.

From the degeneracy (14) of each Landau levels, we see
that the stronger the B field, the more electrons each level
can accommodate. It is worthwhile attempting to answer
what will happen if B reaches values that make exactly v
Landau levels filled? In that case, the 2D electron density

N eB 2whn

L.L, "2 ve 1)

n=v

With the drift velocity just derived, we can calculate the
transverse current, and then the expected Hall resistivity
for these particular values of B.

E
J. nevs = nep (22)
E B 2rnh
oy = = = 23
= Pry J. ne  ve? (23)



Bravo! We have in part explained the quantized values
observed in figure 1. In the next section, we will see that
it is the macrosopic disorders in the sample that causes
the quantized resistivities to exist within a wide range of
B.

III. THE ROLE OF DISORDERS

Having explained the quantized values of resistivity, we
still need to account for the plateaux of these values over
a wide range of B. And also, how do the levels come out
exact despite the inescapable impurities in real samples.

We will model both the electric field and inpurities
by adding a potential V' to the Hamiltonian (15), and
impose contraints on it to give out the quantum Hall
effect. The first one is that impurities is small compared
to Landau levels splitting V <« fwpg. The second is that
V' does not change appreciably on the magnetic length
hwp

g~

First, we will prove that electrons will drift along equipo-
tentials of V. We remember that classically, a free electron
under a magnetic field will move in circles with cyclotron
frequency.

scale |AV| <

m% =—evxB (24)
{x(t) =X — Rsin(wpt + ¢)

z(t) = X + Rcos(wpt + ¢) (25)

where X and Y are center of the orbit.
Motivated by the above classical analog, we introduce the
center-of-orbit quantum operator

X:x—&—v—y
$B . 26
o, B (26)
wB

We can straightforwardly prove the following result, which
have been done this already in Problem 5.3: General As-
pects of Quantum Motion in a Magnetic Field - MIT8.06x

(X,Y] =il3 (27)
ihX = [X,H] = [X,H +V]=[X,V] (28)
ihY = [Y,H|=[Y,H+V]=[Y,V]
: oV oV

ihX = [X,Y] 20 = il} =

=1 A (29)
th:[Y,X]a—X:lea—X

It is seen from the above that the center-of-orbit of
electrons will drift along the equipotentials of V. And
hwp
lp

to care much about the cyclotron orbits of the electrons.

due to the assumption that |AV| <« , we don’t have

Although the impurities have broken translational
symmetry, we can still develop our theory from derivation
of Landau levels from section II.

Since the impurities is not too large V < hwp, it is
intuitively clear that the density of states are now
broaden around the old values hwg(n + 1/2).

lensity of states

HIOR
N\\= @
Ry Ri | Ry
h/e2n
he?n h/e(n+1) ;ﬁ
ven B B ] B

Figure 3: The quantum Hall resistivity corresponding to filling
of Landau levels. First row: Density of state - Landau levels are
broaden by impurities. Second rows: Potential V' represented
as landscape filled with electrons. Third rows: Corresponding
measured resistivities

We have already considered the first column in figure 3,
where exactly v Landau levels are filled.

Now let us have a look at the shape of V' in a particular
sample in figure 3, which contains various peaks and
troughs. In the second column, when B is decreased a
little, each Landau levels can accomodate fewer electrons,
so that a few electrons fill gradually fill up the next
higher level. But these electrons now get unfortune by
being trapped in the valleys of the potential landscape
in the bulk of the sample and cannot contribute to the
current across it. Therefore, the Hall resistivities remain
on the plateau.

If the magnetic field B is lowered further, causing the
next Landau levels be about half-filled, we see a transition
of Hall resistivities between plateaux. That is because
the valleys occupied by the electrons are now opened
and linked together, letting the electrons to transit from
localised states into extended states, thus contributing to
the Hall resistivities again. As more electrons are involved,
the resistance decreases and then reach the lower Hall
plateau.

IV. DISCUSSION

We have seen that the precise quantized values of Hall
resistivity has its origin from Landau level of electron



under magnetic field

_27h

Pxy = (30)

ve?’
But for these values to be observed in experiments, in
macroscopic sample, the diorders, while being random,
have an important role. The main reason is that impu-
rities create trap for the electrons inside the bulk of the
material. And the trapped electrons cannot contribute
to the current. Hence, when the magnetic field is varied

orh
™™ in (23), the Hall

resistivities happily stay on the plateau.

It is worth noting the significance of the Hall phenomenon.
Usually, quantized values can be detected in microscopic
level, such as the hydrogen spectral lines. But now we
know that we ca bring the wonderful properties of the

around the proper values B =

quantum world to macroscopic devices, open up a new
horizon for awesome technology. In fact, in metrology,
the integer quantum Hall effect is applied to give stan-
dard for resistance calibration, and the determination of
fine-structure constant[4].
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In 1879 Edwin Hall observed that a magnetic field B transverse to a plate, together with a current
with density J flowing in one direction above the plate, induce an electric field E in a perpendicular
J

direction in the plate. Classically, the resulting Hall conductance 4 can be seen using the Lorentz

Force Law to be a linear function of %. However in 1980 von Klitzing, Dorda, and Pepper discovered
that in some settings the Hall conductance is exactly quantized in integer multiples of % A year
later, Robert Laughlin gave an elegant explanation of this by considering the effect of threading a
quantum of flux through a ring. After setting up the needed background, we describe Laughlin’s
argument, showing how the adiabatic theorem implies that, as the flux is increased, one electron is
transferred from the bottom of the ring to the top for each filled Landau level, and how this leads to
the quantization of the conductance. We also describe a more topological argument due to Avron,

Seiler, and Yaffe that adapts Laughlin’s reasoning to a more general setting.

I. INTRODUCTION

An 1879 paper of Edwin Hall [2] reports on experiments
in which a strip of gold leaf carrying a current was placed

in a magnetic field passing perpendicular to the strip.

This resulted in a potential difference between the two
sides of the strip, perpendicular both to the current and
to the electric field, and proportional to JB where J
is the current density and B is the magnitude of the
magnetic field. The fact that a magnetic field induces
a potential difference perpendicular to the current in a
two-dimensional conductor is now accordingly called the
Hall effect.

Hall explained that his experiments were motivated by
his (in retrospect well-founded) skepticism of an assertion
by Maxwell that a current in a conductor subjected to
a magnetic field will, in the steady state, “be found to
be the same as if no magnetic force were in action.” The
Lorentz Force Law was not yet known in 1879, but once
it was discovered it provided a simple explanation for the
Hall effect: since X3 X X3 = —Xg a charge —e with velocity
vX4 subjected to a magnetic field BX3 experiences a force
ech %o; thus a current density J = J&X; (with J > 0)
passing along a long thin strip will lead to a buildup
of negative charge on the bottom (negative-z5) edge of
the strip and hence an electric field F in the negative
xo direction that is proportional to JB. In particular
the Hall conductance, namely the ratio o152 = |%|, is
proportional to %.1

About a century later, it was discovered [4] that, under
certain conditions involving strong magnetic fields at low
temperatures, the Hall conductance o, takes only values

of the form %l/ where v is an integer. When plotted as a

function of the %, the conductance exhibits an increasing

I The reader will likely have noticed that this discussion is rather
over-simplified: for instance we are neglecting the fact that the
deflection given by the Lorentz force law means that the current
is in fact not purely in the x direction. See [8, Section 1.2] for a
more careful treatment.

Figure 1. The Hall effect: a current flowing in the x; direction,
in the presence of a magnetic field in the z3 direction, leads
to a potential difference in the x2 direction.

sequence of plateaus on each of which it remains constant
to extremely high precision. Indeed this phenomenon
is so robust that for some time it was used to obtain
high-precision measurements of fundamental constants of
nature; in 2018 the kilogram was redefined so as to make

the quantum of Hall conductance % take an exact value

[3].

In this paper we explain two arguments that provide
explanations for the quantization of the Hall conductance,
at least in a modified setting where the strip is replaced
by a ring or a torus (i.e., periodic boundary conditions
are imposed in the direction in which the current is flow-
ing, or in both directions). The first argument, due to
Laughlin [5], involves a thought experiment in which an
additional magnetic flux is passed through the center of
a ring. Laughlin’s argument begins by considering a rela-
tively simple special case that can be solved exactly, and
extracts features from this special case—specifically, the
statement that adiabatically increasing the flux from 0
to the special value &y = % results in the transfer of
an integer number of electrons from one edge of the ring
to the other—that have good reason to persist in more
realistic settings. The other argument that we discuss,
based on [1], is somewhat more abstract in the sense that
it does not involve describing explicit states or tracking
the behavior of individual electrons, but rather explains
the quantization of the Hall conductance in terms of Berry
curvature. Correspondingly this argument is quite robust;
in particular, unlike Laughlin’s argument, it does not rely



Figure 2. The setup of Laughlin’s thought experiment for the
Hall effect. The circumference of the ring is parametrized by
x1, and the height by x2. The magnetic field producing the
Hall effect is in black; Laughlin’s hypothetical magnetic flux is
represented by the green arrow. Note that the magnetic field
producing this flux is not present at points on the ring, but
does affect the vector potential there.

on disregarding interactions between electrons.

We now describe the organization of the paper. After
setting up some notation and pointing out some very
general features of the problem in Section II, in Section
IIT we set up the problem and work out the energy levels
for a single electron on a cylindrical ring in the presence
of constant magnetic and electric fields and a flux passing
through the center of the ring. In Section IV, following
[5], we consider the effect of adiabatically varying the flux
from 0 to the special value @y = % (which returns the
system to a gauge-equivalent version of itself). By relating
the current J, and the Hall electric field E to the effects
of such a (hypothetical) variation, we manage to relate
J, and E to each other, and this relation demonstrates
that the conductance o4, is indeed quantized in units

of % The problem solved in Sections III and IV is
idealized; Section V gives a brief explanation of how
Laughlin’s reasoning persists in more realistic settings
involving impure materials. Finally, Section VI explains
the argument from [1] (which has antecedents in work
such as [7]), which is based on properties of the Berry
connection associated to varying two independent fluxes
that thread through the respective circles given by two
periodic coordinates.

II. GENERAL SETUP

Throughout the paper we will regard the system as con-
sisting of a large number N of electrons having effective
mass m* and charge —e, on a two-dimensional surface
parametrized by coordinates x1,z with 0 < z; < Lj.
There will be a (constant-in-time) magnetic field or-
thogonal to the surface, given by a vector potential
(A1(x1,22), Aa(21,22)) (so the magnetic field itself is
Op, Ay — 02, A).

We will always assume periodic boundary conditions
for x1, and in the last section will also assume them for
x9. Equivalently we are regarding 7 (and possibly x5)
as varying over a circle rather than a line segment, and
this will in fact be important for our arguments. While
this might seem inconsistent with the setup of Figure 1,
it should be noted that the current in the x; direction
might be measured by a device that is attached to both
the left and right ends of the rectangle, and if this device
is regarded as part of the system then the geometry is
cylindrical rather than rectangular. A similar remark
applies to the measurement of the voltage (or electric
field) in the x5 direction.

The cylindrical geometry in which x; varies over the
circle allows the possibility of passing a magnetic flux
®, along the axis of the cylinder, as in Figure 2. While
this contributes nothing to the magnetic field along the
cylinder itself, it does make a contribution Ag to the
vector potential there: by Stokes’ theorem, in order to
produce flux ®; through a disk with boundary C; run-
ning along the cylinder, we should have | o, Ap - dr = 0.

This (together with the fact that V x Ag, = 0 along
the ring) a uniquely specifies Ag, modulo addition of the
gradient of a periodic-in-x function; the simplest choice
is to take Ag, =
dr = (dx1,0).) Similarly if we are regarding x5 as varying
over a circle we can thread a flux ®5 through that circle,

(%, 0). (Note that in our coordinates

contributing an additional (0, %) to the vector poten-

tial. We will regard the fluxes ®; and ®, as parameters
throughout the discussion; our arguments will consider
the effect of varying these parameters adiabatically.
Write x(") = (xgr),mg)) for the position of the rth
electron. The operators 17]@ describing the jth component

(for j = 1,2) of the velocity of the rth electron will be

() 1 (R 0 ed;
RS (Z oz L o

€ T T
+ 70Aj(x§ ),xé ))
and the Hamiltonian will be

N *
A(®1,@2) = Y - (00,07 + (03,))+V (XT3
o)

for some potential energy function V. (The interpretation

of 13](2] as a velocity operator is justified by Ehrenfest’s

r=1



theorem and the fact that [ﬁg”,ﬁ(@l, Dy)] = zhﬁ](:%])
The Hall effect relates the current density J; in the x;
direction and an electric field in the xo direction. The
electric field will be incorporated into the Hamiltonian,
either through the choice of the potential function V
(in Sections IIT and IV) or by taking the flux ®5 to be
time-dependent (in Section VI). The x; component of
the current density, meanwhile, is given as a quantum

operator by

N
; 1 5(7)
Jp = L, Z —e) g, - (3)

r=1

It will be quite useful to relate this to the dependence of
H on the flux parameter ®1, via the observation (cf. [5,
Equation (1)])

OH (D, D) - al 50 517%%1 )
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e N
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and thus
a2 C 8ﬁ(@1,¢2)

Ji= L, 0%, ©)

III. LANDAU LEVELS IN THE PRESENCE OF
AN ELECTRIC FIELD AND A THREADED FLUX

Our first step will be to analyze the case in which
the potential V' is given entirely by a constant electric
field in the x5 direction, contributing a term eExl"” for
each electron. (Note that we do not impose periodic
boundary conditions in the xo variable in this section,
and correspondingly the flux @, will always be zero.) We
moreover take the magnetic field to be a constant B, and
use Landau gauge (41, As) = (—By,0) for the vector
potential. Thus the Hamiltonian decomposes as

N
H(®1,0)=Y AY (7)

r=1

where each H’gl)

1 B ®\?
((m -2tz e) +ﬁ§> teEzs. (8)

is given by the identical formula

A —
@ 2m* c cly

(We suppress superscript (r)’s from the notation to reduce
clutter.)

The energy states of ﬁg) exhibit a largely familiar
pattern with Landau levels that we will now derive; the
main difference from cases considered in class is that,
when E # 0, the states within the same Landau level

now have different energies, with the first component of
the momentum contributing a linear term to the energy.
Because H, g) commutes with p, we can restrict attention
to states that are eigenstates of p; with eigenvalue hk;
such a state can be written as ¢(z1,29) = e*1¢(a).
Note that the fact that the variable x; is periodic with
period L; means that the only allowed values of k are
those with the property that e**1 =1, j.e. k = 2ml/L;
for some £ € Z.

A state ¥(xq,15) = e*®1¢(x5) is an eigenstate of the
Hamiltonian H; if and only if ¢ is an eigenstate of the
one-dimensional Hamiltonian

- 1 eBry  e® )\’ 9
= — — H E
H. Py ((hkz +cL1> +p5 | +eExa  (9)
B B U N (R T R
T 2m 2 \m*c > ¢B BL, >
(10)
Writing
eB hk P elF
e = ; k) = ; 11
Ye = e y(k) m*w. BLp m*w? (11)
we find
A2 *, 2
- 35 mrws [ o hk ) el
= —2 —
e ome T2 (x2 (m"‘wC + BL; m*w? 2
hk o \?
—_— 12
+(m*wc+BL1> > (12)
A2 *, 2 2
45 mwi [ o el
= —2
B ( s+ () + ) )
(13)

ﬁ% m*w2

=5t c <(:E2 —y(k))* + <y(k’) + 7,55)2)2

- y(k)2> (14)

~2 *, 2
I35 m*w; 9 el
2m* + 2 (w2 —y(k))" + e (y( )+ 2m*w2)

(15)

Thus we recognize in H;, the Hamiltonian for a one-
dimensional harmonic oscillator with frequency w., but
with its equilibrium position shifted to zo = y(k) and its
spectrum shifted uniformly upward by the constant (de-

pending on k) eE (y(k) + 3£

02
2m*w?

>. The eigenvalues of the

Hamiltonian ?:lk (and hence, as k varies, the one-electron

Hamiltonian flg) for any r and ®) are consequently, for
any nonnegative integer n,

1 el
En = (n + 2) hw. +eE (y(k) + 2m*w2> . (16)

C



We regard the nth Landau level as consisting of states
with the same value of n; since y(k) depends on k we see
that if £ # 0 the Landau levels are not degenerate (so
this is arguably an abuse of terminology). Given that y(k)
(which is a linear function of k with slope mfwc = f—g)
is confined to an interval of length L, and that k is an

integer multiple of %’I, one finds that there are only (up

to integer rounding) % allowed values of k. Thus
each Landau level consists of % different states.
While the Landau levels are non-degenerate, we will
assume throughout what follows that our parameters
are chosen so that the variation of energy within a single
Landau level is much smaller than the energy gap between
successive Landau levels; since y(k) varies through an
interval of length L, this amounts to the statement that

heB

m*c’

eELy < hw. = (17)
In particular we are assuming that the magnetic field is
large in comparison to the electric field.

IV. LAUGHLIN’S ADIABATIC FLUX
THREADING ARGUMENT

We regard the magnetic flux ® as an adiabatic parame-

ter in our Hamiltonian H(®,0) = Y, ]:Ig). Note that the
parameter y(k) in (11) depends on ®, and hence so do the
energies &, i in (16). The adiabatic theorem implies that,
as the flux ® is varied slowly, if an electron is initially in
a state with energy &, ; it will (barring energy crossings,
which we assume our parameters to forbid) continue to be
in such a state throughout the variation. As this happens,
its energy changes, at a rate

0n i Ay(k) eF

Introducing the flux ® amounts to adding the constant
(®/L4,0) to the vector potential. If our conductor were a
rectangle rather than a ring, this would be a symmetry
of the whole system, corresponding to multiplication of

the wave function by the phase e%ml. But since x7 is
periodic with period Lq this phase is ill-defined unless %
is an integer multiple of 27, i.e. unless ® is a multiple of
%‘ The quantum of flux is defined to be

_he

¢ = (19)

e
As we adiabatically vary ® from 0 to ®p, the system
passes through a family of inequivalent systems but finally
returns to one equivalent to the original one; however the
above discussion shows that the state of the system will
have changed, with the expectation value y(k) of the xo
coordinate of each electron increasing by

q)o he

= = . 2
BL1 6BL1 ( 0)

oy

Recall that the momentum parameter k is quantized
in integer multiples of %—7; We find from (11) that

27 2rh/ Ly he
E+ 22 ) —y(k) = = =dy. (21
4 ( L1> y(k) m* —ni’?c eBLy y- (21

Writing k¢ = QL—M, this shows that adiabatically increasing
® from 0 to Py has the effect of moving an electron from a
state in Landau level n and k = k; to a state with Landau
level n and k = ky41.

The discussion up to this point has focused on a sin-
gle electron. Considering the electrons collectively, the
exclusion principle dictates that each of them will reside
in a different state. We assume that the system is in its
ground state (as will be true with extremely high proba-
bility at low temperature, which is the context in which
the quantum Hall effect is usually observed), in which
case then N electrons will occupy the N lowest energies
Sn)k.g We also make the crucial assumption that each
Landau level is either completely filled by electrons or
is empty, i.e. that the Fermi energy lies between two
successive Landau levels.

Under these assumptions, the foregoing analysis implies
that as ® increases from 0 to @y, within each of the filled
Landau levels the electron that is initially in the state with
(x2) = y(ke) moves to the state with (z9) = y(key1) =
y(k¢) + dy. Having each of the electrons within a Landau
level move up by one step is equivalent to having a single
electron move from the lowest value of x5 (namely 0,
to very good approximation) to the highest value of x4
(namely Ly). So if v € Z is the number of filled Landau
levels, the overall effect of increasing ® from 0 to P is to
move v electrons a distance Ly. This increases the energy
of the system by

AE =veELs. (22)
But the increase in the energy can be related to the

current via (6). Using the Feynman-Hellmann theorem,
we have (in the ground state)

(J1) = —— 5= (H(2,0)). (23)

Now %(HSI;O)) is the sum over the filled states of the

derivatives of the &, ;, with respect to ®, and these deriva-
tives are independent of ®. Hence integrating (23) from
® =0 to & = ; and using (22) yields

(J1)®) = ——AE = —ecvE. (24)

2 We are ignoring spin, on the basis that the magnetic field would
induce a Zeeman splitting between the spin-up and spin-down
versions of the Landau levels, which would be enough for the
same analysis to go through in the presence of spin. See [8, p.
19] for more on this.



Recalling that &y = % we obtain the relation

() =-SvB, (25)

Thus the Hall conductivity in the ground state, o125 =

<‘]]E>, is an integer multiple of %, with the integer being

interpreted as the negative of the number of filled Landau
levels.

V. IMPURITIES AND EDGE STATES

The above calculations were based on our ability to

exactly analyze the specific Hamiltonian flg) from ().
However a real-world quantum Hall system should be
expected to involve a less symmetric Hamiltonian due to
impurities in the material and other features; the experi-
mental fact is that the quantization of the Hall conduc-
tance still holds with high precision in such a system. Let
us briefly describe, following [5],[6],[8, Section 2.2.2], how
Laughlin’s argument is robust to such issues.

We continue here to assume that the electrons are
non-interacting, so that it suffices to add an additional
potential term Vpert (1, 22) to the one-particle Hamilto-

nian ﬁg). We assume that this perturbation vanishes
near the edges of our ring (where x5 is close to either
0 or Lo). Since the eigenstates e?**1¢(z2) with energy
En, i that were found in the previous section have their xo
coordinates localized near the value y(k), in the case that
y(k) is close to 0 or Ly (i.e. for k near 0 or near the max-
imal allowed value ¢2£2) the eigenstate with energy Enk
will survive the addition of the new potential Vper¢. Thus
the “edge states” representing electrons near the edges of
the ring behave just as in the previous section, with the
adiabatic variation of the flux from 0 to ®( resulting in
an electron in the nth Landau level moving from a state
with k = k¢ to a state with k& = k4.

In the absence of additional information about the
potential term V¢ we cannot expect to make precise
statements about the electrons that are not near the edges
of the ring. Because Vpery depends on 7, not just on zs,
these electrons will almost certainly not have wavefunc-
tions of the form e?**1¢(x5) as in the previous section. In
many cases the wavefunctions will be localized in both the
x1 and x5 directions; other states will continue to be ex-
tended in the sense that they are nonzero at x; values that
go all the way around the ring. Localized and extended
states behave differently under the adiabatic variation
of ®: if a state ¥(x1,x2) is localized and thus vanishes
for x1 outside some interval of length less than L, then
there is no problem in applying the gauge transformation
P(x1, x2) = e%wld)(ml, x2) for any choice of the flux @,
not just those ® which are integer multiples of the quan-
tum of flux ®y. Consequently under adiabatic variation
of ® an electron in a localized state 1(z,y) has its wave
function simply multiplied by a phase, without changing
its energy. On the other hand electrons in extended states

can see their state change as a result of the change in ®
from 0 to ®g, as we have already seen.

Putting this together, at least if Vj¢r¢ is small enough so
that the previous Landau levels do not collide with each
other under the perturbation, we obtain the following
picture of what happens in each Landau level as a result
of Laughlin’s flux threading thought experiment. Some of
the states in the Landau level will likely be localized, and
as just discussed these will only be multiplied by a phase.
Others will be extended, including the edge states that
act just as in the previous section. Whatever happens to
the extended states in general, electrons in the edge states
must each move up one step, which just as in the previous
section forces the net effect of the adiabatic variation to
be to move an electron from the bottom of the strip to
the top.

Thus just as in the unperturbed case increasing ® from
0 to ®g will result in the transfer of v electrons upward
by a distance Lo, where v is the number of filled Landau
levels. Since Vpert is assumed to vanish near the edges of
the ring, so that the potential energy near the edges is
still eFxo, this again increases the energy of the system
by veELy. Since (6) again implies® that this change

in energy is also equal to —%<j1><1)0 = —%(jﬁ, the
relation (J;) = —V%E follows just as in the previous
section.

In fact, as noted in [6, p. 868], Laughlin’s flux threading
argument is more compelling in the presence of impurities
that cause Vjert to be nonzero than it is in the simpler case
described in the previous section. One of the assumptions
made therein was that the Fermi energy—in this context,
the Nth-lowest energy in the spectrum of the one-particle
Hamiltonian I:Ig)—lies between two Landau levels, so
that (at low temperature) all Landau levels are either
completely filled or empty. This amounts to assuming
that the number N of electrons is an integer multiple
of the (large) number % of states per Landau level,
and there is no particular reason for this to be true, even
approximately.

On the other hand in the perturbed case, where there
are both localized states and extended states, since the
localized states are unaffected by the variation in ® our
argument only depended on all of the extended states
in the first ¥ Landau levels being occupied. If the per-
turbation is moderately large, the extended states will
have energies relatively close to the original &, j, while
the energies of the localized states will typically spread
somewhat further, as indicated in Figure 3. This makes it
significantly more reasonable to suppose that the Fermi
energy is in the required location—the Fermi energy just

3 There is a slight additional assumption being made here, namely
that (J1) is independent of ® (in the unperturbed case this could
be seen by direct inspection of the exact solution). Without this
assumption, what the argument here shows is that the average

value of (.J1) over all possible fluxes is —V%E‘
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Figure 3. A possible density of states in the presence of a
perturbation Vjert, with extended states shown in orange and
localized states in blue. The flux-threading argument depends
on the Fermi energy Er lying between two successive orange
regions.

needs to be in the gap between the energy regions occu-
pied by extended states in successive Landau levels, but
it can be equal to the energy of a localized state.

VI. THE QUANTUM HALL EFFECT AND THE
BERRY PHASE

In this final section, which is based on [1], we give a
somewhat different explanation for the quantization of the
Hall conductance, exhibiting its connection to topology
via the adiabatic theorem and Berry curvature. Unlike
in the previous sections we will regard both coordinates
x1 and x9 as periodic (so that our Hall conductor is
topologically a torus). This allows for the possibility
of introducing two independent fluxes ®; and ®5, one
threaded through the x; circle and the other through
the xa circle. We consider rather general Hamiltonians
having the basic form H(®1,®2) as in (2); in particular
in contrast to the previous two sections the potential
energy V is permitted to have terms involving interactions
between the separate electrons. Because of the periodicity
of both 1 and x5, for both j = 1,2 multiplication by
2, 257 /L gives a gauge symmetry that identifies the
version of the system with ®; = 0 with the version of the
system with ®; = &g = %

Another contrast to the previous two sections is that
instead of incorporating the electric field EX5 into the
potential energy? we will incorporate it by making the
flux @5 time-dependent:

@2 = —ECLgt (26)

4 Note that the usual potential term eFxo lacks the required peri-
odicity, so could not be used in the present context.

so that the velocity operator in (1) is

o _ 1 (h O e CENGONE
) = (iaxg)JrcAg(zl ,xy ) —eEt] . (27)

Thus our Hamiltonian H(®y, ®) = H(®y, —FcLot) is
time-dependent. As before, E is assumed to be small
and thus the time-dependence of our Hamiltonian will be
small enough to justify appeal to the adiabatic theorem.

We will suppose there to be a non-degenerate normal-
ized ground state |0¢,s,), depending smoothly on ®;
and on ®; = —FEcLot, for each of the time-independent
Hamiltonians H(®1, ®3). According to the adiabatic the-
orem, we can (and do) choose the phases for these ground
states such that, to good approximation®, as the sec-
ond flux parameter ®, varies with ®; held fixed these
states satisfy the time-dependent Schrodinger equation
ih%‘0¢1,—EcL2t> = H(‘I)l, —ECLQt)|O¢.17_EcL2t>. Thus,
under this approximation which we henceforth assume to
be exact, we have by the chain rule

H(®y,8,)|00,0,) = —ihcLyE WNae, | (28)
0d,

The current density appearing in the quantum Hall
effect is the expectation value of J; in this ground state.
In view of (6) computing this current density is equivalent

to computing the expectation value of m. We
OH (1, ®y)
0P

0%,
find:
0<I>1<I>2>
0

<0<1>1<1>2
= <O<I>1<I>2 @ (ﬁ(¢1a q)2)|0@1¢2>) >
_ <0¢1¢2 M > (29)

0D,
- 0 [00g,q,
= 7ZhCL2E <<O<I>1<I>2 T% ( 8(1)2 > >

80@1@2 (904)1(1)2
+< 9D, | 0D, >> (30)

% >) . (31)

Here in (29) we have used the product rule (in the form
(0p, A)x = g, (Az) — Ay, x); in (30) we have twice used
(28); and in (31) we have again used the product rule as
well as equality of mixed partials.

So by (6) we obtain that the expectation value of the
x1-component of the current in the ground state is given

H(®y,P,)

. 0
= _ZhCLzET% (<0<I>1<I)2

5 We are sweeping quite a bit under the rug with this phrase; much
of the work done in [1] involves proving adiabatic-theorem-type
estimates with sufficient precision as to justify the steps which
appear below.



by

8(;‘1;?’2 >> . (32)

In principle <j1> depends on the fluxes ®; and ®o;
similarly to footnote 4 we will assume that it is (to good
approximation) independent thereof, in which case (.J;)
can be computed as the average, as ®1, P, both vary
between 0 and ¢y = %, of the right-hand side of (32):

<j1> = thE%{)Z (Z <0<1>1<1>2

(J1) =

he -2 ) hc/e  phecfe 9 '
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Thus the statement that the Hall conductance is an integer

multiple of % amounts to the statement that the above
double integral is an integer multiple of 27.

80<p1<1>2
0P,
(33)

(34)

To begin to understand why this is, we will first show
that the integral is the negative of the integral of the
Berry curvature associated with the family of ground
states |0g,3,). This curvature is i(géf - g%é;) where

009, ¢y >
90, /-

The integrand in (34) is thus '8“4;. But the integral of

i
od
the other term igéf that appears in the Berry curvature

vanishes due to our choice of phases for the |0,s,). In-
deed, if the energy of the ground state |0s,4,) i £o,3,,
then (28) yields

the Berry connection is given by A; = <0<I>1<1>2

Ay 1 O
0%,  heLoE 09,

5‘1>1,<1>2a (35)

and, for any choice of ®5, integrating this from ¢, = 0
to ®; = ®( yields a constant times £q, 0, — £o,4, Which
is zero because of the gauge symmetry associated with
increasing ®; by an amount ®.

(90q> ) 2 82
— 12 d | —F.
0P, >> d h

So  the integral in  (34) is
%o %o . <8A2 _ oA

0 0 0P, 0P,
mathematically sophisticated, explanation for why this
is 27 times an integer is that in view of the gauge
symmetry the phases over which the integral is taken
parametrize a torus with the ground states giving a
complex line bundle over the torus, and the integral
of the curvature of a connection on a complex line
bundle over a closed surface is 27 times the first Chern
number of the line bundle, which is always an integer.
However one does not need to be acquainted with the
language of the previous sentence to understand the
integrality in this case. Green’s theorem equates our
double integral with the line integral — §C A - dr of the

equal  to

>d2<1>. A concise, somewhat

d*® Berry connection over the perimeter C' of the square.

Now ef$cAdr hag the following geometric significance:
it is the phase that the state |0go) is multiplied by as
a result of being adiabatically transported around the
perimeter of the square [0, ®¢] x [0, Pp]. Since addition
of @ either to ®; or to P is a gauge symmetry of the
system, up to gauge transformations that we suppress
from the notation the adiabatic transport along each
of the four sides C4, Cy, C3, Cy of the square will return
|0g0) to a multiple of itself; let us write €? for the phase
by which |0gg) is multiplied upon adiabatic transport
along Cj, so €' o Adr — cimeiv2ginsciva Buyg again due
to the gauge symmetry, the adiabatic transports along
opposite edges of the square will be inverses to each
other (since opposite edges represent the same curve
but with opposite orientation). Thus e = ¢~ and
ez = ¢~ whence finally

eifo Adr — 1, (36)

Thus §C.A - dr is indeed an integer multiple of 27, as
therefore is the integral in (34). This confirms that the
Hall conductivity is an integer multiple of %

We have thus explained the quantization of the Hall
conductance—at least averaged over all possible fluxes—
on quite general grounds, relying on little more than
the assumption that the ground state is non-degenerate
for all choices of the fluxes. By contrast the fractional
quantum Hall effect, which lies beyond the scope of this
paper, arises in certain settings where the ground state is
degenerate, see [8, Section 3.2.4].
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Introduction to Density Matrix Formalism for Solving Spin-Spin Interactions in
Nuclear Magnetic Resonance
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In physics, the spin-spin relaxation is the mechanism by which the transverse component of the magnetization
vector exponentially decays towards its equilibrium value in nuclear magnetic resonance (NMR). In actual
NMR experiments, we have a test tube with 1020 spins at room temperature and we cannot measure their
individual spins. Instead, suppose that two nuclear spins get close to each other and interact briefly. This
produces a time-dependent perturbation in the Hamiltonian of NMR, which leads to decrease in amplitudes
of spin states. In this paper, we will first introduce the notation of density matrices and using them, we will
study how we can solve the spin-spin interactions to get time evolution of the spin states.

I. INTRODUCTION

Quantum mechanics is a fundamental theory in physics de-
scribing nature of atomic and subatomic particles. As we
apply various quantum mechanics theories, we see that they
turn out to be perfectly correct for isolated systems and non-
ensemble particles and spin states. For real-world implica-
tions, we have to apply different approximations.

Similarly, density matrix formalism is a practical tool used
to deal with ensembles or statistical mixtures. It is just an al-
ternate representation of of a quantum state, written with ket
of the state multiplied on right by the bra of the state. Note
that this is kind of similar to a projection operator. That’s
why density matrix is also known as density operator, but we
shall follow the widely accepted terminology of density ma-
trix, with variable p as its representation. We require this
formalism because in real-world example, isolated spins do
not exist and is in contact with its environment as well. This
affects the states of the spins and as we will learn soon, re-
duced density matrices help us in getting measurement statis-
tics of the system in interest without explicit calculations on
the environment system.

In this paper, we will study Nuclear Magnetic Resonance
and spin-spin interactions. But, even in a test tube, under
effect of a magnetic field, there are atleast 10?° spins inter-
acting with each other. The best method to deal with the
whole system is to consider affect on a single spin state due
to rest of the system taking them as an environment. For this,
we will use density matrix formalism and try to find how a
spin state in Nuclear Magnetic Resonance evolve in time due
to spin-spin interactions.

II. THE CONCEPT OF DENSITY MATRICES

Let us first see how we define density matrix/operator p for
a pure quantum state vector |1). The density matrix is given
by:

p=1¥) (Y. (1)

This is simply the projection operator on the state |¢). If
we have basis states [¢;), and we have:

9y =Y el @

Then, the corresponding density matrix can be written as:

p=D_cics i) (5] (3)
i,

The terms here with ¢ # j of the equation above are re-
ferred as interference terms and represent quantum coherence
between components of basis |psi;). These terms are what
bring “quantumness” in the system, and have no classical
explanation. These terms are interference between different
basis states |1;).

We have successfully defined the new formalism for quan-
tum state vectors, but we also need to assert the action of
operators in this formalism as well, so that we can perform
measurement on the system. For this, we will consider a Her-
mitian operator O and claim that:

(0) = Tr(30). (4)

where Tr(A) represents the trace of matrix A.
Note that, expectation value is a number so it is equal to
its own trace. Hence, we can prove the claim as follows:

(0) = Tr((0))
= Tr((¥|O4))
Tr(|¢) (] 0). (5)
= (0) = Tr(pO). (6)

In eq. (5), we have used the cyclic property of trace to get
the result. . .
If we choose O = I, we get the expected result:

Tr(p) = 1. (7)
= Wl = 1. (8)

Mixed States

Now, let us consider the case of mixed-state density matri-
ces. A mixed quantum state is a statistical ensemble of pure
quantum state and presents insufficient information about
system’s state i.e. the system can be in any one of the
given pure states |1);), but the observer can only relate clas-
sical(statistical) probabilities p; to each of the states |1;).

An example of this situation, a preparation device can be
created which prepares either of 1) or |¢2). We perform a
process in which we measure spin of an arbitrary unknown
spin quantum state, using a Stern-Gerlach experiment, and if
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spin turns out to be up |¢1) is prepared and for down spin
|12) is prepared. If the observer inquires only about states
prepared by the device, she will therefore only know that ei-
ther of [11) or |¢2). She won’t know which state has been
prepared and since, she does not know the process of prepara-
tion of state and hence, cannot predict any of the state. But,
note that the origin of these states is purely classical and the
probabilities of obtaining each state is completely determinis-
tic (0.5 each). Hence, this set of pure states of |¢1) and [12)
represents a classical ensemble, named such to convey that
origin of probabilities is classical.

The example above is somewhat artificial, but this can be
easily resonated into real-world examples as well. Let us con-
sider our old pals Alice and Bob, each having a particle from
entangled pair of particles, given by:

=4 l+)p
= . 9)

Now, consider that Alice and Bob do not know each other
and have no way to contact each other, but if one of them
performs a measurement, he/she can inform the other using
a postal mail, but cannot inform him/her about their mea-
surement outcome. Bob is very patient and decides to wait
for a year before performing measurement on his state, but
Alice is so curious, that she measures her state immediately.
This process is known as partial measurement.

Bob receives mail from Alice informing him that she has
measured her state, but there is no information about her
measurement outcome. But, after this partial measurement
what state is left with Bob? Compare this with the previous
example. If Alice gets |+) as outcome, a hypothetical prepa-
ration device creates state |¢1) = |—) for Bob, otherwise it
creates state |¢2) = |+) for him. Both cases now have purely
deterministic probabilities creating a classical ensemble of |+)
and |—) each with probability of 0.5. Hence, a classical en-
semble has been created. This ensemble is known as mixed
state.

Note that in principle, it is possible to backtrack each step
of mixed state-preparation procedure and as clear in the last
example, we can determine which pure state in the ensemble
has been produced. Alice might send her measurement out-
come as well, and without any measurement, Bob will realize
what his pure measurement outcome is. The probabilities to
each pure state in a mixed state simply expresses our deci-
sion to not inquire about finer details of the state preparation
system or our inability to actually follow each step of state-
preparation, so ignoring the preparation step, we actually get
deterministic probabilities of each pure state and hence, we
have a mixed state.

So, now let us see how we define density matrices for the
cases of mixed states. We have to ensure that eq. (4) remains
satisfied for the notation for mixed states as well. This is so
as to ensure that measurement procedure in complete density
matrix formalism is consistent. We claim that for a mixed
state |1) with pure states [¢;) having probabilities of p;, the
density matrix is given by:

p=">_pilti) (Wil (10)

7

Putting this in eq. (4) we get:

Tr(p0) = TT(Zpi i) (¥i] O) (11)
= ZpiTr(\wi> (i 0). (12)
= Tr(p0) = ZPz‘(@lwn = (0)4)- (13)

Hence, the action of operator can be defined in same way
as that of pure state and we have successfully generalized the
definition of a density matrix given by eq. (10). For only one
pure state, with p; = 1, eq. (10) reverts to eq. (1).

With new definition for density matrix, in the example of
Alice and Bob, we can say that Bob has density matrix given
by:

p = L] ”

(Han+z(h)a-
()34 7)
e

where E is the identity matrix.

From now on, we will use E as the identity operator for the
whole paper.

Now, in the next section, we will study about reduced den-
sity matrices.

NI~ NI~ N~

III. REDUCED DENSITY MATRICES™

The motivation for the reduced density matrices arises from
description of a system A quantum-correlated/entangled with
another system B. The total combined system AB, in princi-
ple, might be completely known, but the observer can perform
measurements on system A only, but not on B. This occurs
when either the observer has access only to A or is interested
only in measurements of system A. So, for example when
considering interactions between many spin states, it is easier
to consider the effect on the system of single spin (i.e. system
A) due to other spins. We are interested in observing only
that spin state, and hence, reduced density matrices come
into play.

Note that since the observer has access to only system A,
then everything about state of composite system must be de-
rived only from measurements on A. The reduced density
matrix does this job by extracting all measurement statistics
of system A, and we claim that it can be defined as:

pa=Trsp. (16)

Here p is the density matrix of the composite system AB
and subscript “B” implies that the trace must be evaluated
with respect to the orthonormal basis of Hilbert Space B only.

“T'rg” is called partial trace over B, and is interpreted as
tracing out degrees of freedom of the unobserved system B.
Note that since system B cannot be observed, it becomes dif-
ficult to assign a quantum state where complete description
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of the composite system can be acknowledged. Because sys-
tem B is in an environment of the system in interest, tracing
over former’s degrees of freedom results in a complete and
exhaustive description of the system. Ignoring B, quantum
state of system A might not accurately define the behaviour
of system, and hence, by tracing over B, reduced density ma-
trices are all we have to describe measurement statistics of
the system.

Now, first let’s try to verify our claim (16) and check
whether this description does indeed help us comment about
observations in system A only. For this first consider an en-
tangled state in the composite system:

-1
V2
where |a;) and |b;) may not be orthogonal but are normal-

ized states of A and B, respectively. The density matrix for
this state can be written as:

%) (lax) [br) + [az) [b2)). (17)

2
. 1
p=3 D as) (as] @ [bs) (bl (18)
Q=1
Let |¢r) and |¢;) represent orthornormal bases of Hilbert
spaces of A and B respectively. Since, we need to take mea-
surements only in system A, we can define an operator O
as:

O0=04®FEp. (19)

where OA is an observable ir} space of A which gives us
the required measurement and E'g is the identity operator in
space of B.

What we need now is to evaluate the expectation value of
o} using eq. (4), hoping that we get a relation describing the
system measurements in such a way that observation is only
in space of A, we can get complete description of the whole
system. Hence, using the definition of trace, we can write:

(0) = Tr(pO)
= %;(@I(qﬁklﬁ(@fa@EB)Im) ¢ (20)
= ;(ml(zl: (@11 9160))04 |6x) (21)
= > (ol (TrBp)Oa |6) - (22)
= (0) = TkrA((TrBﬁ)OA). (23)

Now, notice in the eq. (23), the expectation value of O can
be completely described in the space of A and this equation
takes up the form of eq. (4) in terms of observable in Hilbert
Space of A, such that the term Trpp represents a density
matrix relating measurement statistic in whole system to
measurement in space of A. This was exactly what we
claimed in eq. (16) and hence, we have got a mathematical
description of reduced density matrix.

Partial Trace
In eq. (16) we defined Trpp as partial trace of density

matrix p over B. Let us now see how we can evaluate this for
a system in two Hilbert spaces of two-dimensions each. For

this, note that any density matrix in the four-dimensional
composite system of AB of can be written in following form:

p= cijuli) (s ® k) (Il 5 (24)
W5,k 1

where |4,7) , and |k, )5 represent basis vectors of A and
B, respectively.

Note that, in eq. (24), for partial trace with respect to
degree of freedoms of B, we can simply apply trace to the
part of the density matrix corresponding to space B. Hence,
we get:

Trep = Z cijri |1 (J] 4 @ Tr(|k) (I])B (25)

1,7,k,1
> e i) (Gla ® Tr((Il k)5 (26)
1,7,k,l
D canli) (il 4 X Sne- (27)
i,5,k,1
=Trep = Y cirnli) (G4 (28)
i,7,k,k

Thus, we can use eq. (28) to calculate partial trace. In
terms of elements of the density matrix we can write:

aii,il1 aii12 ai12,11 a12,12

ﬁ _ aii,21 A11,22 Q12,21 Q12,22 (29)
az1,11 Qa21,12 Q22,11 Q22,12
a21,21 a21,22 022,21 G2222.

Now, using eq. (28), we can write the partial trace as:

pa = Trpp

aii,11 +aii2e aiz;11 + aiz22

(30)

a21,11 + Q21,22 22,11 + A22,22

This is thus a reduced density matrix in two-dimensional
space of A.

IV. NUCLEAR MAGNETIC RESONANCE

Let us now introduce the theory of Nuclear Magnetic Reso-
nance. It is a phenomenon where spins are kept in a rotating
magnetic field.

Here, we have spins in a time-dependent magnetic field
given by:

B(t) = Boz + Bi(xcoswt — ysinwt), Bo >> Bi. (31)

This results in spin Hamiltonian given by:

Hs(t) = —y(BoS. + Bi(coswtS, — ysinwtS,)). (32)

Solving this Hamiltonian(see Appendix A), we get time
evolution of a state as follows:

W, 1) = e Foe A |0,0). (33)
w

with:  Br=Bix+ Bo(l - )z (34)
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Here, we will consider a special case where:

w = Q. (35)
= Br = Bix. (36)

In such case, in eq. (33), the rightmost exponential be-
comes responsible for spin precession about z-axis. This re-
sults in movement of spin towards y-axis with angular veloc-
ity w1 = yBj. The effect of other exponential is rotating spin
about z-axis with angular velocity w = 2 = vBy, and since,
By >> Bj, rotation about z-axis will be much faster than ro-
tation about z-axis. Hence, tip of the spin can be visualized
as performing spiral on surface of a sphere.

What we now do, is time the rotating frequency magnetic
to a time 7', so as to get:

w1 T = g (37)

After time T', we will switch off the rotating field and only
Boz will remain switched on. The result of eq. (37) is that
after time T, the state will point along y-axis (Initially, it
pointed towards z-axis). Now, if we switch off the rotating
field, only rotation about z-axis will occur, and the spin will
effectively continue to rotate in  — y plane only.

We will use this system of 7 pulse in NMR to describe
rest of our problem as in the next section, where we will also
consider perturbations due to spin-spin interactions.

V. SPIN-SPIN INTERACTIONS

In real-life examples or even in laboratory experiments, it
is impossible to isolate a single spin and put it in a magnetic
field. So, it becomes imperative that we also consider how
spin states will evolve in presence of other spins.

We will assume that spins interact only with external
magnetic field and each other and there are no collisions
with surroundings and no other interactions. First, we will
consider only two spins.

Consider the following situation:

Let the spins that are present be named I and S. Initially,
they are put in magnetic field aligned along z-axis i.e. BoZ
and are allowed to come to rest from t=—o0 to t=0. Hence,
at t=0, both the spins get aligned in z-direction. Then we will
apply a 5 pulse on the system, after which it will be turned
off and only Boz field will exist for last period. Hence, spins
will rotate about z-axis in z — y plane. Now the interaction
between the two spins is given by!?l:

OH = bhS. @ I.. (38)

In the eq. (38), b is very very small. In general, b <<
Br, hence during the period of the 7 pulse, this spin-spin
interaction can be ignored and can be considered its effect
after both spins reach = — y plane.

Let us now consider the period after rotating field is turned
off. Note that magnetic field along z-axis is still on. Hence,
we have the Hamiltonian as:

H=hQs5. @ E+E®QL +bS.21.), (39)

where : Q, =y, Bo;n=1,85.

Note that the Hamiltonian is time-independent, so taking
the initial density operator to be 5(0), we can write the time
evolution as:

pt) = e*i(ﬂzfz+ﬂs§z+b§zfz)tp(o)
ei(ﬂlfz+QS§z+sziz)t. (40)
To solve eq. (40), we will simply follow the following
steps[S]:
. N . ZQSt
PSS EE ( ﬂfzst) ® ((1) (1))
zQSt 0 0
0 0
= e—iﬂst 0 . (41)
0 o—ist
s . zQIt
GOl _ < ® ( _?Qlt)
e
'LQIt 0 0
0 e*mﬂ 0 0
AR P (12)
0 0 0 et

O))
IS3

®
~
Il
~ N
O =
| o
—_

N
®
N
O =
I

=
—

1 0 0 O
0 -1 0 0
“loo 10 (43)
00 01
= (5.1.,)>" = E. (44)
ibtS,

Now, expand the exponential e I and group together
odd and even powers and apply eq. (44), to get:

B 24 4,4
el = E(l——b +—b4f + )
P A

+ZSzIz(bt_?+7+ )

Ecos(bt) + iS. I, sin(bt). (45)

et 0 0 0

—1bt
T 0 e 0 0
e “lo 0o e™ o

0 0 0 e

(46)

Now, we will also need $(0) in eq. (40). Note that spin-spin
interactions are ignored for rotating field period. Hence, a 5
pulse will simply rotate spins from initially aligned towards
z-axis to aligned towards y-axis. This can also be obtained
by applying rotation operator on density operator of state
aligned along z axis for t = 7 (see detailed calculation in Ap-

pendix B) and hence, we get:

—ngy ® E — Q[E'fy
0 iQr Qs 0
—iQr 0 0 Qg
—iQds 0 0 i
0 —iQds —1Qr 0

p(0)

[
—~
'S
-3
~—
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For flexibility in calculations, let term corresponding to spin
state Sy be multiplied with a constant k. We can later put
k=1.

p0) = —kQsS, @ E— QEl,
0 i ikQs 0
o —1Q 0 0 1kQs
= | ik 0 o |- 48
0 —ikQs —iQ 0

Now, use eq.’s (41), (42), (46) and (48) can be used to solve
eq. (40), and we get final time evolved state as follows:

i (QpIz+Q2gS.+bS12)t _

QR+ +b)t

0 0 0
o Li(—Qp+Qg—b)t o 0
0 0 R —Qg—b)t 0
0 0 0 (= —Qg+b)t

(49)
= Ewaluating :
pt) =
o Qe 2T o o202 o
—qpe2i(Qr+o)t 0 0 kQge™ 2125 D)t
2 | —kage2i@s bt o 0 Qpe—2i(Rr—b)t
0 7kﬂs<521(957b)t 7ﬂ1621(917b)t o

i

(50)

Eq. (50) gives us four-dimensional density matrix for two
spin state system. But in real world situations, NMR spec-
troscopy has spins of order of 10%, resulting in density matrix
of 10*° dimensions. To apply observables on the whole sys-
tem and attempting to evaluate the whole system is not only
tedious and meaningless, but also it becomes very difficult to
track all spins together. But, if we take 2 = s and no-
tice that all the spins are identical and will behave more or
less similar manner, we realize that observation on single spin
can be more or less generalized to the whole system. That’s
where the reduced density matrices come into play. First, we
consider only interactions between 2 spins out which we are
attempting observation on single one. To get reduced density
matrix in the space of spin S, we will apply eq. (30) on the
density matrix of eq. (50). The reduced density matrix we
get is:

pt) =
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