Week 4 – part 3: Analysis of a 2D neuron model

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Week 4 – Reducing detail:

Two-dimensional neuron models

Wulfram Gerstner

EPFL, Lausanne, Switzerland

4.1 From Hodgkin-Huxley to 2D

4.2 Phase Plane Analysis

- Role of nullcline

4.3 Analysis of a 2D Neuron Model

- MathDetour 3: Stability of fixed points

4.4 Type I and II Neuron Models

- where is the firing threshold?
- separation of time scales

4.5. Nonlinear Integrate-and-fire

- from two to one dimension

Week 4 – part 3: Analysis of a 2D neuron model

4.1 From Hodgkin-Huxley to 2D

\| 4.2 Phase Plane Analysis

- Role of nullcline

4.3 Analysis of a 2D Neuron Model

- MathDetour 3: Stability of fixed points

4.4 Type I and II Neuron Models

- where is the firing threshold?
- separation of time scales

4.5. Nonlinear Integrate-and-fire

- from two to one dimension

Neuronal Dynamics – 4.3. Analysis of a 2D neuron model

2-dimensional equation stimulus

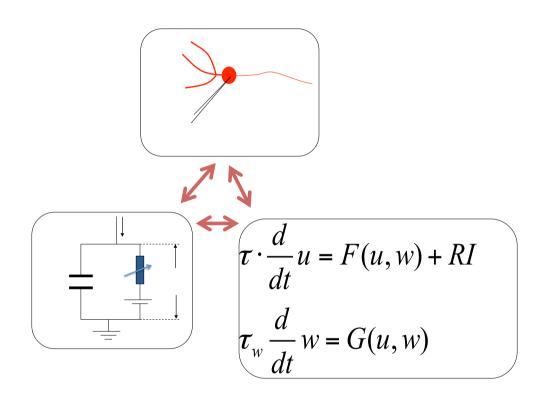
$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w)$$

Enables graphical analysis!

- Pulse input
- Constant input

Neuronal Dynamics – 4.3. 2D neuron model : Pulse input

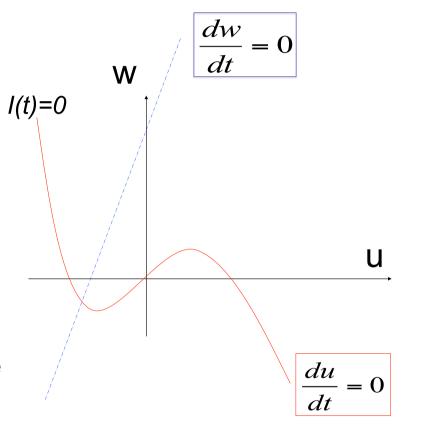


pulse input

Neuronal Dynamics – 4.3. FitzHugh-Nagumo Model : Pulse input

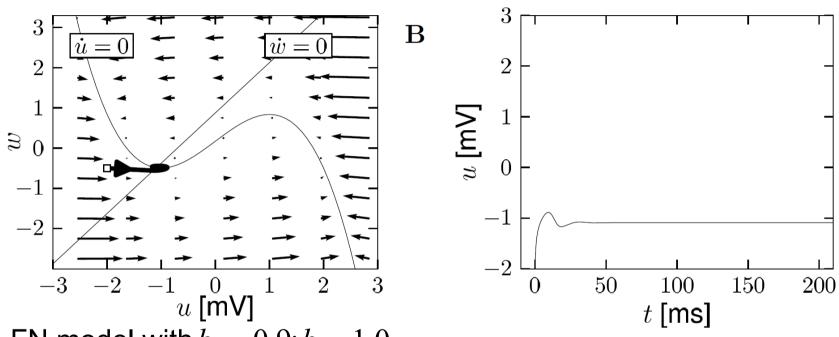
$$\tau \frac{du}{dt} = F(u, w) + RI(t) = u - \frac{1}{3}u^3 - w + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w) \qquad = b_0 + b_1 u - w$$



pulse input | Pulse input: jump of voltage

Neuronal Dynamics – 4.3. FitzHugh-Nagumo Model : Pulse input



FN model with $b_0 = 0.9; b_1 = 1.0$

Pulse input: jump of voltage/initial condition

Image: Neuronal Dynamics, Gerstner et al., Cambridge Univ. Press (2014

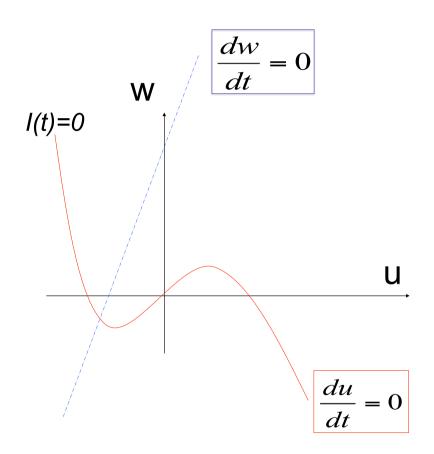
Neuronal Dynamics — 4.3. FitzHugh-Nagumo Model

Pulse input:

- jump of voltage
- 'new initial condition'
- spike generation for large input pulses

constant input:

- graphics?
- spikes?
- repetitive firing?



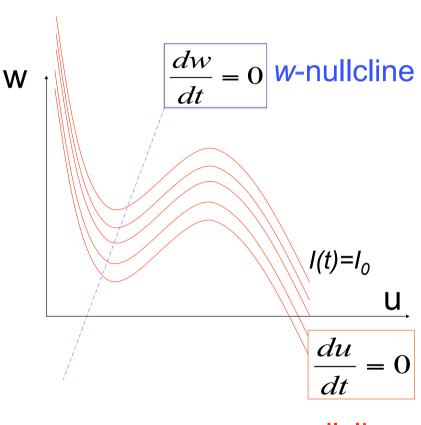
Neuronal Dynamics – 4.3. FitzHugh-Nagumo Model: Constant input

$$\tau \frac{du}{dt} = F(u, w) + RI_0$$
$$= u - \frac{1}{3}u^3 - w + RI_0$$

$$\tau_{w} \frac{dw}{dt} = G(u, w) = b_0 + b_1 u - w$$

Intersection point (fixed point)

- -moves
- -changes Stability



u-nullcline

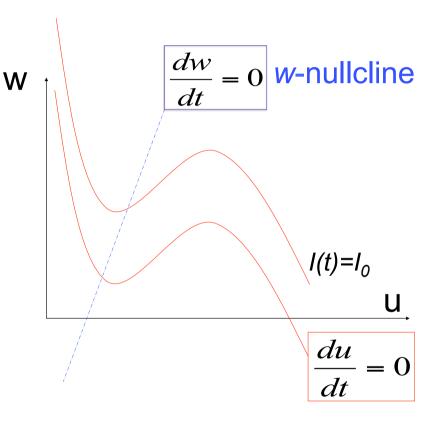
Neuronal Dynamics – 4.3. FitzHugh-Nagumo Model: Constant input

$$\tau \frac{du}{dt} = F(u, w) + RI_0$$
$$= u - \frac{1}{3}u^3 - w + RI_0$$

$$\tau_{w} \frac{dw}{dt} = G(u, w) = b_0 + b_1 u - w$$

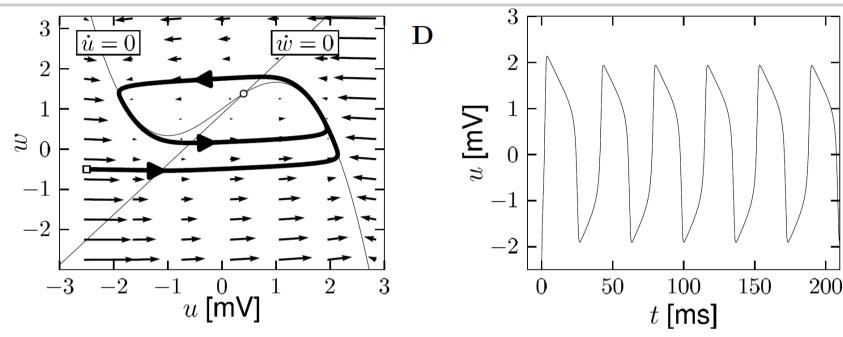
Intersection point (fixed point)

- -moves
- -changes Stability



u-nullcline

Neuronal Dynamics – 4.3. FitzHugh-Nagumo Model : Constant input

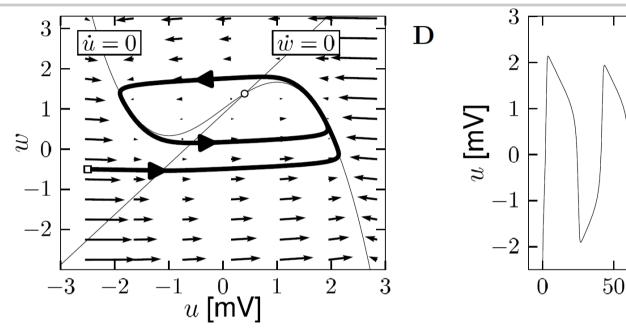


FN model with $b_0 = 0.9; b_1 = 1.0; RI_0 = 2$

constant input: u-nullcline moves limit cycle

Image: Neuronal Dynamics, Gerstner et al., Cambridge Univ. Press (2014)

Neuronal Dynamics – 4.3. Limit Cycle



- -unstable fixed point in 2D
- -bounding box with inward flow
 - → limit cycle (Poincare Bendixson)

Image: Neuronal Dynamics, Gerstner et al., Cambridge Univ. Press (2014)

200

100

t [ms]

150

Neuronal Dynamics – 4.3. Limit Cycle

In 2-dimensional equations, a limit cycle must exist, if we can find a surface

- -containing one unstable fixed point
- -bounding box with inward flow
 - → limit cycle (Poincare Bendixson)

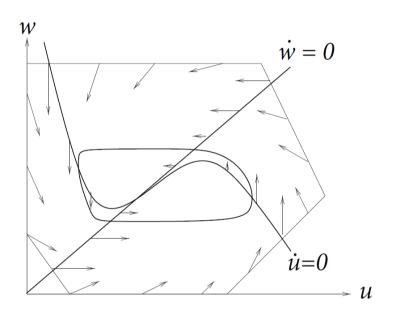


Image: Neuronal Dynamics, Gerstner et al., Cambridge Univ. Press (2014)

Neuronal Dynamics – 4.3. Analysis of a 2D neuron model

2-dimensional equation stimulus

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w)$$

Enables graphical analysis!

- -Pulse input
 - → AP firing (or not)
- Constant input
 - → repetitive firing (or not)

Neuronal Dynamics – Quiz 4.5.

_	
	A. Short current pulses. In a 2-dimensional neuron model, the effect of a delta
	current pulse can be analyzed
	[] By moving the u-nullcline vertically upward
	[] By moving the w-nullcline vertically upward
	[] As a potential change in the stability or number of the fixed point(s)
	[] As a new initial condition
	[] By following the flow of arrows in the appropriate phase plane diagram
	B. Constant current. In a 2-dimensional neuron model, the effect of a constant current can be analyzed
	[] By moving the u-nullcline vertically upward
	[] By moving the w-nullcline vertically upward
	[] As a potential change in the stability or number of the fixed point(s)
	[] As a new initial condition
	[] By following the flow of arrows in the appropriate phase plane diagram