Reliable Broadcast

Seif Haridi

haridi@kth.se
Designing Algorithms
Combining Abstractions

- **Fail-stop** \((\text{synchronous})\)
 - Crash-stop process model
 - Perfect links + Perfect failure detector (P)

- **Fail-silent** \((\text{asynchronous})\)
 - Crash-stop process model
 - Perfect links

- **Fail-noisy** \((\text{partially synchronous})\)
 - Crash-stop process model
 - Perfect links + Eventually Perfect failure detector (◊P)

- **Fail-recovery**
 - Crash-recovery process model
 - Stubborn links + ...
Fail-stop model

- **Fail-stop**
 - Crash-stop process model
 - Perfect links + Perfect failure detector (P)

- **Synchronous model**
 - Local algorithms can track the set of correct processes
 - Without violating liveness properties: use
 - Techniques based request/reply
 - Waiting for acknowledgment for all correct processes
Fail-silent model

- Fail-silent
 - Crash-stop process model
 - Perfect links
- Asynchronous model

- No access to failure detectors
- Assumes a majority of processes are always correct
- Often use a majority quorum techniques (next unit)
- Local algorithm cannot wait for more than \(\lceil n/2 \rceil + 1 \) otherwise it might get stuck
Fail-noisy model

- Fail-noisy
 - Crash-stop process model
 - Perfect links
 - Eventually Perfect failure detector ($◊P$)
- Partially synchronous model

- To guarantee safety properties any algorithm has to assume the failure detector inaccurate
- Eventual accuracy is only used to guarantee liveness
Fail-recovery model

- Fail-recovery
 - Crash-recovery process model
 - Stubborn links or a persistent links (logs)

- Relies often on a persistent memory to store and retrieve critical information
- After recovery a process may contact other process to retrieve up to date state information

- Some algorithms relax the reliability conditions on channels allowing message loss/duplication/reordering
Quorums in crash-stop process model
Quorums

- For N crash-stop process abstractions
- Quorum is any set of majority of processes
- A set with at least \(\lceil N/2 \rceil + 1 \) processes

- The algorithms will rely on a majority of processes will not fail
 - \(f < N/2 \) (\(f \) is the max number of faulty processes)
 - \(f \) is the resilience of the algorithm
Quorums crash-stop/recovery model
$f < N/2$

- Two quorums always intersect in at least ONE process
Quorums crash-stop/recovery model
$f < \frac{N}{2}$

- There is at least ONE quorum with only correct processes

![Diagram with quorums, faulty and correct processes]

S. Haridi, KTHx ID2203.1x
Quorums crash-stop/recovery model

\(f < N/2 \)

- There is at least ONE correct process in each quorum

- Faulty
- Correct
Quorums

- Quorums used in Fail-Silent and Fail-Noisy algorithms
- A process never waits for messages from more than ⌊N/2⌋ + 1 (different) processes

faulty
correct

quorums
Broadcast Abstractions
Broadcast Services

- Send a message to a group of processes

```
broadcast(m)
```

```
deliver(p_1,m)
```
Unreliable Broadcast

p_1 broadcasts m.

p_2 delivers m to p_1.

p_3 delivers m to p_1.

p_4 delivers m to p_1.

A crash event occurs at p_1.
Reliable Broadcast Abstractions

- **Best-effort broadcast**
 - Guarantees reliability only if sender is correct
- **Reliable broadcast**
 - Guarantees reliability independent of whether sender is correct
- **Uniform reliable broadcast**
 - Also considers behavior of failed nodes
- **FIFO reliable broadcast**
 - Reliable broadcast with FIFO delivery order
- **Causal reliable broadcast**
 - Reliable broadcast with causal delivery order
Reliable Broadcast Abstractions

- **Probabilistic reliable broadcast**
 - Guarantees reliability *with high probability*
 - Scales to large number of nodes

- **Total order (atomic) reliable broadcast**
 - Guarantees reliability *and* same order of delivery
Specification of Broadcast Abstractions
Best-effort broadcast (beb)

- **Instance beb**
- **Events**
 - Request: \(\langle\text{beb Broadcast} \mid m\rangle\)
 - Indication: \(\langle\text{beb Deliver} \mid \text{src}, m\rangle\)
- **Properties: BEB1, BEB2, BEB3**
Best-effort broadcast (beb)

- **Intuitively:** everything perfect unless sender crash

- **Properties**
 - **BEB1. Best-effort-Validity:** If p_i and p_j are correct, then any broadcast by p_i is eventually delivered by p_j
 - **BEB2. No duplication:** No message delivered more than once
 - **BEB3. No creation:** No message delivered unless broadcast
BEB Example

- Is this allowed? No
BEB Example (2)

- Is this allowed? Yes

p_1 broadcast(m) \times

p_2 deliver(p_1,m) \times

p_3 \times

p_4 deliver(p_1,m)
Reliable Broadcast

- BEB gives no guarantees if sender crashes
 - Strengthen to give guarantees if sender crashes

- Reliable Broadcast Intuition
 - Same as BEB, plus
 - If sender crashes: ensure all or none of the correct nodes get msg
Reliable Broadcast (rb)

- **Instance rb**
- **Events**
 - Request: \(\langle \text{rb Broadcast} \mid m \rangle \)
 - Indication: \(\langle \text{rb Deliver} \mid \text{src}, m \rangle \)
- **Properties: RB1, RB2, RB3, RB4**
Reliable Broadcast Properties

• Properties
 • RB1 = BEB1. Validity
 • RB2 = BEB2. No duplication
 • RB3 = BEB3. No creation

• RB4. Agreement.
 • If a correct process delivers m, then every correct process delivers m
Refining correctness

• Can weaken RB1 without any effect

<table>
<thead>
<tr>
<th>Old Validity</th>
<th>←equivalent with→</th>
<th>New Validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB1 = BEB1 Validity</td>
<td>If (p_i) and (p_j) are correct, then any broadcast by (p_i) is eventually delivered by (p_j)</td>
<td>RB1 Validity.</td>
</tr>
<tr>
<td>RB2 = BEB2. No duplication</td>
<td></td>
<td>RB2 = BEB2. No duplication</td>
</tr>
<tr>
<td>RB3 = BEB3. No creation</td>
<td></td>
<td>RB3 = BEB3. No creation</td>
</tr>
<tr>
<td>RB4. Agreement.</td>
<td>If a correct node delivers (m), then every correct node delivers (m)</td>
<td>RB4. Agreement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If a correct node delivers (m), then every correct process delivers (m)</td>
</tr>
</tbody>
</table>
RB Example

- Is this allowed? Yes

$p_1 \xrightarrow{\text{broadcast}(m)} p_2$

p_2

p_3

p_4
RB Example

- Is this allowed? Yes

\[p_1 \xrightarrow{\text{broadcast}(m)} p_2 \]

\[p_3 \]

\[p_4 \xrightarrow{\text{deliver}(p_1, m)} \]
RB Example

- Is this allowed? No

\[p_1 \xrightarrow{\text{broadcast}(m)} p_2 \]
\[p_1 \xrightarrow{\text{broadcast}(m)} p_3 \]
\[p_1 \xrightarrow{\text{broadcast}(m)} p_4 \]
\[p_1 \xrightarrow{\text{deliver}(p_1,m)} p_4 \]
RB Example

- Is this allowed? Yes

\[p_1 \xrightarrow{\text{broadcast}(m)} \bullet \xrightarrow{\text{deliver}(p_1,m)} \]

\[p_2 \xrightarrow{\text{deliver}(p_1,m)} \]

\[p_3 \]

\[p_4 \xrightarrow{\text{deliver}(p_1,m)} \]
Uniform Reliable Broadcast

- Assume sender broadcasts message
 - Sender fails
 - No correct process delivers message
 - Some failed processes deliver message

- Assume the broadcast enforces
 - Printing a message on paper
 - Withdrawing money from account

- Uniform reliable broadcast intuition
 - If a failed node delivers, everyone must deliver...

At least correct nodes, we cannot revive the dead...
Uniform broadcast (urb)

- **Events**
 - Request: 〈urb Broadcast | m〉
 - Indication: 〈urb Deliver | src, m〉

- **Properties:**
 - *URB1*
 - *URB2*
 - *URB3*
 - *URB4*
Uniform Broadcast Properties

- Properties
 - $\text{URB1} = \text{RB1}$.
 - $\text{URB2} = \text{RB2}$.
 - $\text{URB3} = \text{RB3}$.
 - $\text{URB4. Uniform Agreement:}$ For any message m, if a process delivers m, then every correct process delivers m.
Broadcast Abstractions
Implementation of Broadcast Abstractions
Implementing BEB

- Use Perfect channel abstraction
 - Upon \(\langle \text{beb Broadcast} \mid m \rangle \) send message \(m \) to all processes (for-loop)

- Correctness
 - If sender doesn’t crash, every other correct process receives message by perfect channels (Validity)
 - No creation & No duplication already guaranteed by perfect channels
Fail-Stop
Lazy Reliable Broadcast
Fail-Stop: Lazy Reliable Broadcast

- Requires perfect failure detector (P)

- To broadcast m:
 - best-effort broadcast m
 - When get beb Deliver
 - Save message, and
 - rb Deliver message

- If sender s crash, detect & relay msgs from s to all
 - case 1: get m from s, detect crash s, redistribute m
 - case 2: detect crash s, get m from s, redistribute m

- Filter duplicate messages before delivery
Fail-Stop: Lazy Reliable Broadcast

- If sender s crash, detect & relay msgs from s to all
 - case 1: get m from s, detect crash s, redistribute m
 - case 2: detect crash s, get m from s, redistribute m
 - Why case 2? [d]
Lazy Reliable Broadcast

Case 2

\(p_1 \) broadcast\((m) \)

\(p_2 \)

\(p_1 \) crash\((p_1) \) deliver\((p_1,m) \)

\(p_2 \) broadcast\([p_1,m] \)

\(p_3 \) deliver\([p_2, [p_1,m]] \)
Fail-stop Lazy Reliable Broadcast

broadcast(m) \rightarrow \text{rb} \rightarrow \text{beb} \rightarrow \text{P} \rightarrow \text{deliver(pi,m)}

broadcast(m) \rightarrow \text{rb} \rightarrow \text{beb} \rightarrow \text{P} \rightarrow \text{crash(pj)}

\text{deliver(pi,m)} \rightarrow \text{rb} \rightarrow \text{beb} \rightarrow \text{P} \rightarrow \text{crash(pj)}
Lazy Reliable Broadcast

- **Implements:** ReliableBroadcast (rb)
- **Uses:**
 - BestEffortBroadcast (beb)
 - PerfectFailureDetector (P)
- **upon event** \langle \text{Init} \rangle \textbf{do}
 - \text{delivered} := \emptyset
 - \text{correct} := \Pi
 - \textbf{forall} \ p_i \in \Pi \textbf{ do from}[p_i] := \emptyset

- **upon event** \langle \text{rb Broadcast | m} \rangle \textbf{ do}
 - \textbf{trigger} \langle \text{beb Broadcast | (DATA, self, m)} \rangle

for filtering duplicates
storage for saved messages
Lazy Reliable Broadcast (2)

- **upon event** \(<\text{crash} \mid p_i>\) **do**
 - correct := correct \(\setminus\{p_i\}\)
 - **forall** \((s_m, m) \in \text{from}[p_i]\) **do**
 - trigger \(<\text{beb Broadcast} \mid (\text{DATA}, s_m, m)>\)

- **upon event** \(<\text{beb Deliver} \mid p_i, (\text{DATA}, s_m, m)>\) **do**
 - if \(m \notin \text{delivered}\) **then**
 - delivered := delivered \(\cup\) \{m\}
 - from[p_i] := from[p_i] \(\cup\) \{(s_m, m)\}
 - trigger \(<\text{rb Deliver} \mid s_m, m>\)
 - if \(p_i \notin \text{correct}\) **then**
 - trigger \(<\text{beb Broadcast} \mid (\text{DATA}, s_m, m)>\)

Case 1: redistribute anything we have from failed node

Avoid duplicates

Store for future

Case 2: redistribute

S. Haridi, KTHx ID2203.1x
RB Example

- Which case? Case 1

\[
\begin{align*}
p_1 & \xrightarrow{\text{broadcast}(m)} \times \\
p_2 & \xrightarrow{\text{deliver}(p_1,m)} \xrightarrow{\text{crash}(p_1)} \xrightarrow{\text{broadcast}([p_1,m])} \\
p_3 & \xrightarrow{\text{deliver}(p_2,[p_1,m])}
\end{align*}
\]
Correctness of Lazy RB

- **RB1-RB3** satisfied by BEB
- Need to prove **RB4**
 - If a **correct node delivers** \(m \), then every correct node delivers \(m \)
- Assume Correct \(p_k \) delivers message bcast by \(p_i \)
 - If \(p_i \) is correct, BEB ensures correct delivery
 - If \(p_i \) crashes,
 - \(p_k \) detects this (completeness)
 - \(p_k \) uses BEB to ensure (BEB1) every correct node gets it
Measuring Performance
Message Complexity

- The number of messages required to terminate an operation of an abstraction

- Lazy reliable broadcast
 - The number of messages initiated by broadcast(m)
 - Until a deliver(src, m) event is issued at each process

- Bit complexity
 - Number of bits sent, if messages can vary in size
Time Complexity

- **One time unit** in an Execution E is the **longest** message delay in E
- **Time Complexity is** Maximum time taken by any execution of the algorithm under the assumptions
 - A process can execute any finite number of actions (events) in **zero** time
 - The time between send(m)_{i,j} and deliver(m)_{i,j} is **at most one** time unit
- In most algorithms we study we assume all communication steps takes one time unit
Best effort broadcast

- Takes **one time unit** from broadcast\((m)_p\) to last deliver\((p,m)\)
- We also call it one **communication step**
Complexity of lazy reliable broadcast

- Assume N processes
- Message complexity
 - Best case: $O(N)$ messages
 - Worst case: $O(N^2)$ messages
- Time complexity
 - Best case: 1 time unit
 - Worst case: 2 time units
Fail-Silent
Eager Reliable Broadcast
Eager Reliable Broadcast

- What happens if we replace \(P \) with \(\diamond P \)? [d]
 - Only affects performance
 - Only affects correctness
 - No effect
 - Affects performance and correctness
Eager Reliable Broadcast

- Can we modify Lazy RB to not use P? [d]
 - Just assume all processes failed
 - BEB Broadcast as soon as you get a msg
Eager Reliable Broadcast

- **Uses:** BestEffortBroadcast (beb)

- **upon event** \(\langle\text{Init}\rangle\) do
 - delivered := \(\emptyset\)

- **upon event** \(\langle\text{rb Broadcast} \mid m\rangle\) do
 - delivered := delivered \(\cup\) \{m\}
 - trigger \(\langle\text{rb Deliver} \mid \text{self} , m\rangle\)
 - trigger \(\langle\text{beb Broadcast} \mid \langle\text{DATA, self, m}\rangle\rangle\)

- **upon event** \(\langle\text{beb Deliver} \mid p_i , \langle\text{DATA, s_m , m}\rangle\rangle\) do
 - if \(m \notin\) delivered then
 - delivered := delivered \(\cup\) \{m\}
 - trigger \(\langle\text{rb Deliver} \mid s_m , m\rangle\)
 - trigger \(\langle\text{beb Broadcast} \mid \langle\text{DATA, s_m , m}\rangle\rangle\)
Correctness of Eager RB

- **RB1-RB3** satisfied by BEB
- Need to prove **RB4**
 - If a correct process delivers \(m \), then every correct node delivers \(m \)

- Assume correct \(p_k \) delivers message bcast by \(p_i \)
 - \(p_k \) uses BEB to ensure (BEB1) every correct process gets it
Uniform Reliable Broadcast
Uniformity

- Is the proposed algorithm also uniform? [d]

- Uniformity necessitates
 - If a failed process delivers a message m then every correct node delivers m
Uniformity

- No.
 - Sender p immediately RB delivers and crashes
 - Only p delivered message
- upon event $\langle rb \text{ Broadcast } | m \rangle$ do
 - delivered := delivered $\cup \{m\}$
 - trigger $\langle rb \text{ Deliver } | self , m \rangle$
 - trigger $\langle beb \text{ Broadcast } | (DATA, self, m) \rangle$
Uniform Eager RB

- Necessary condition for uniform RB delivery
 - All correct processes will get the msg
 - How do we know the correct processes got msg? [d]

- Messages are pending until all correct processes get it
 - Collect acks from processes that got msg
 - Deliver once all correct processes acked
 - Use perfect FD
 - function canDeliver(m):
 - return correct ⊆ ack[m]
Uniform Eager RB implementation

- upon event \langle urb Broadcast \mid m \rangle do
 - pending := pending \cup \{(self, m)\}
 - trigger \langle beb Broadcast \mid (DATA, self, m) \rangle

- upon event \langle beb Deliver \mid pi, (DATA, s_m, m) \rangle do
 - ack[m] := ack[m] \cup \{pi\}
 - if \((s_m, m) \notin\) pending then
 - pending := pending \cup (s_m, m)
 - trigger \langle beb Broadcast \mid (DATA, s_m, m) \rangle

- Upon exists \((s_m, m)\epsilon pending\) s.t.
 - canDeliver(m) and \(m \notin\) delivered do
 - delivered := delivered \cup \{m\}
 - trigger \langle urb Deliver \mid s_m, m \rangle

\[\text{remember sent messages}\]
\[\text{p}_i \text{ obviously got } m\]
\[\text{avoid resending}\]
\[\text{deliver when all correct nodes have acked}\]
URB Eager Algorithm Example

Diagram:

- **Node p₁:**
 - `urb-cast(m)`
 - `beb-d(p₁,(p₁,m))`
 - `beb-d(p₂,(p₁,m))`
 - `beb-d(p₃,(p₁,m))`
 - `urb-d(p₁,m)`

- **Node p₂:**
 - `beb-d(p₁,(p₁,m))`
 - `beb-d(p₂,(p₁,m))`
 - `beb-d(p₃,(p₁,m))`
 - `urb-d(p₁,m)`

- **Node p₃:**
 - `beb-d(p₂,(p₁,m))`
 - `beb-d(p₃,(p₁,m))`
 - `beb-d(p₁,(p₁,m))`
 - `urb-d(p₁,m)`
Correctness of Uniform RB

- No creation from BEB
- No duplication by using *delivered* set

Lemma
- If a **correct** process p_i bebDelivers m, then p_i eventually urbDelivers m

Proof
- Correct process p_i bebBroadcasts m as soon as it gets m
 - By BEB1 every correct process gets m and bebBroadcasts m
 - p_i gets bebDeliver(m) from every correct process by BEB1
 - By completeness of P, it will not wait for dead nodes forever
 - *canDeliver*(m) becomes true and p_i delivers m
Correctness of Uniform RB

- **Validity**
 - If sender s is correct, it’ll by validity (BEB1) $bebDeliver \ m$
 - By the lemma, it will eventually $urbDeliver(m)$
Correctness of Uniform RB

• Uniform agreement
 • Assume some process (possibly failed) URB delivers m
 • Then canDeliver(m) was true,
 by accuracy of P every correct process has BEB delivered m
 • By lemma each of the nodes that BEB delivered m will URB deliver m
Uniform Broadcast
Fail-Silent
How useful is the uniform algorithm?

• Strong failure detectors necessary for URB?
 • No, we’ll provide RB for fail-silent model

• Assume a majority of correct nodes
 • Majority = ⌊n/2⌋+1, i.e. 6 of 11, 7 of 12…

• Every node eagerly BEB broadcast m
 • URB deliver m when received m from a majority
Majority-ACK Uniform RB

- Same algorithm as uniform eager RB
 - Replace one function
 - `function canDeliver(m)`
 - `return |ack[m]|>n/2`

- Agreement (main idea)
 - If a process URB delivers, it got ack from majority
 - In that majority, one node, p, must be correct
 - p will ensure all correct processes BEB deliver m
 - The correct processes (majority) will ack and URB deliver
Majority-ACK Uniform RB

• Validity
 • If correct sender sends m
 • All correct nodes BEB deliver m
 • All correct nodes BEB broadcast
 • Sender receives a majority of acks
 • Sender URB delivers m
Resilience

- The maximum number of faulty processes an algorithm can handle
- The Fail-Silence algorithm
 - Has resilience less than N/2
- The Fail-Stop algorithm
 - Has resilience = N – 1