
Data Structures
and Algorithms（10）

Instructor: Ming Zhang
Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao

Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook)

https://courses.edx.org/courses/PekingX/04830050x/2T2014/

Ming Zhang "Data Structures and Algorithms"

2

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Chapter 10 Search

• 10.1 Search in a linear list

• 10.2 Search in a set

• 10.3 Search in a hash table

• Summary

10.1 search of linear list

3

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Basis Concepts

• Search

• The efficiency of search is very important

• Especially for big data

• Need special storage processing for data

10.1 search of linear list

The process of finding a record with

its key value equal to a given value in

a set of records, or the records whose

keys meet some specific criteria.

4

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Methods of Improving Search Efficiency

10.1 search of linear list

• Sorting

• Indexing

• Hashing

• When hashing is not suitable for

disk-oriented applications, we can

use B trees.

 Take much time

 preprocessing（finished before search

）

 Make the most of auxiliary index

information

 Sacrifice space

 To improve search efficiency

 Organize the data into a table

 Get the position of records in the table

according to the key values

 disadvantages：
Unsuitable for range searches

Generally, duplicate keys are not

allowed

5

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

• Comparison of keys: main operation of search

• Average Search Length

• Average number of comparisons during search

• The time metric for evaluating search algorithms

Average Search Length (ASL)

10.1 search of linear list

1

n

i i

i

ASL PC




 P
i

is

probability of

searching the

i-th element

 C
i
is the number of

comparisons needed to find

the i-th element

6

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Other Metrics for Evaluating Search Algorithms

• Considerations when evaluating

search algorithms

• The storage needed

• Implementation difficulties

• ...

10.1 search of linear list

7

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Thinking

• Assume that a linear list is (a, b, c),

and the probabilities of searching

a, b, c are 0.4, 0.1, 0.5 respectively

• What is the ASL of sequential search

algorithms? (which means how many

times of comparisons of key values

are needed to find the specific

element on the average)

10.1 search of linear list

8

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Chapter 10. Search

• 10.1 Search in a linear list

• 10.2 Search in a set

• 10.3 Search in a hash table

• Summary

10.1 Search in a Linear List

9

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Search in a Linear List

• 10.1.1 Sequential search

• 10.1.2 Binary search

• 10.1.3 Blocking search

10.1 Search in a Linear List

10

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Sequential Search

• Compare the key values of records

in a linear list with the given value

one by one

– If the key value of a record is equal to

the given value, the search hits;

– Otherwise the search misses (cannot

find the given value in the end)

• Storage: sequential or linked

• Sorting requirements: none

10.1 Search in a Linear List

11

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Sequential Search with Sentinel
// Return position of the element if hit; otherwise return 0

template <class Type>

class Item {

private:

Type key; // key field

// other fields

public:

Item(Type value):key(value) {}

Type getKey() {return key;} // get the key

void setKey(Type k){ key=k;} // set the key

};

vector<Item<Type>*> dataList;

template <class Type> int SeqSearch(vector<Item<Type>*>& dataList, int

length, Type k) {

int i=length;

dataList[0]->setKey (k); // set the 0
th

element as the element

to be searched, set the lookout

while(dataList[i]->getKey()!=k) i--;

return i; // return the position of the element

}

10.1 Search in a Linear List

12

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Performance Analysis of the

Sequential Search

10.1 Search in a Linear List

• Search hits: assume the probability of searching

any key value is uniform: P
i
= 1/n

• Search misses: assume that n+1 times of

comparisons are needed when the search misses

(with a sentinel)

2

11

)(
1

)(

1

1

0

1

0




















n
i

n

in
n

inP

n

i

n

i

n

i

i

13

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Average Search Length of

Sequential Search

10.1 Search in a Linear List

• Assume the probability of search hit is p, and the

probability of search miss is q=(1-p)

• (n+1)/2 < ASL < (n+1)

1
ASL (1)

2

1
(1)(1)

2

(1)(1 / 2)

n
p q n

n
p p n

n p


    


    

  

14

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Pros and Cons of Sequential Search

• Pros: insertion in Θ(1) time

• We can insert a new element into the tail of list

• Cons: search in Θ(n) time

• Too time-consuming

10.1 Search in a Linear List

15

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Binary Search

• Compare any element dataList[i].Key with the given

value K, there are three situations:

• (1) Key = K, succeed, return dataList[i]

• (2) Key > K, the element to find must be before dataList[i]

if exists

• (3) Key < K, the element to find must be after dataList[i] if

exists

• Reduce the range of latter search

10.1 Search in a Linear List

16

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Binary Search Algorithm

template <class Type> int BinSearch (vector<Item<Type>*>& dataList, int

length, Type k){

int low=1, high=length, mid;

while (low<=high) {

mid=(low+high)/2;

if (k<dataList[mid]->getKey())

high = mid-1; // drop the right half of the search range

else if (k>dataList[mid]->getKey())

low = mid+1; // drop the left half of the search range

else return mid; // return if succeeds

}

return 0; // if fails, return 0

}

10.1 Search in a Linear List

17

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Key value 18 low=1 high=9

10.1 Search in a Linear List

35

1 2 3 4 5 6 7 8 9

15 22 51 60 88 93

low
mid

high

1817

The first time: l=1, h=9, mid=5; array[5]=35>18

The second time: l=1, h=4, mid=2; array[2]=17<18

The third time: l=3, h=4, mid=3; array[3]=18＝18

18

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search目录页 Performance Analysis of the Binary
Search

• Maximum search length is

• Failed search length is

Or

• In the complexity analysis

– The logarithm base is 2

– When the log base changes, the order of

complexity will not change

 )1(log2 n

 )1(log2 n

 ）（ 1log 2 n

15 18

22

51

7

8

9

2

1

3

4

88

60

93

35

17

5

6

10.1 Search in a Linear List
Chapter 10

Search

19

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Performance Analysis of

the Binary Search

10.1 Search in a Linear List

• ASL of successful search is:

• Pros: the average and maximum search length is in the

same order, and the search is very fast

• Cons: need sorting, sequential storage, difficult to update

(insertion/deletion)

1 1ASL (2)

1

1
log (1) 1

2

log (1) 1
2

j
ii

n i

n
n

n

n

 



  

  

15 18

22

51

7

8

9

2

1

3
4

88

60

93

35

17

5

6

(n > 50)

20

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Ideas of the Blocking Search

• “Ordering between blocks”

– Assume that the linear list contains n data element,

split it into b blocks

– The maximum element in any block must be smaller

than the minimum element in the next block

– Keys of elements are not always ordered in one block

• Tradeoff between sequential and binary searches

– Not only fast

– But also enables flexible update

10.1 Search in a Linear List

21

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Blocking Search – Index Sequential Structure

10.1 Search in a Linear List

link:

Key:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

22 12 13 9 8 33 42 44 24 48 60 80 74 49 86 53

0 6 12

22 48 86

5 5 6

 Link: starting position of

a block

 Key: Maximum key value

in the block

 Count: #elements in

a block

count:

22

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Performance Analysis of

Blocking Search

•Blocking search is a two-level search

– First, find the block where the specific element

stays at, with ASL
b

– Second, find the specific element inside that block,

with ASL
w

ASL = ASL
b

+ ASL
w

 log
2

(b+1)-1 + (s+1)/2

 log
2
(1+n/s) + s/2

10.1 Search in a Linear List

23

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Performance Analysis of Blocking Search

10.1 Search in a Linear List

• If we use sequential search in both the index table

and the blocks

• When s = , we obtain the minimum ASL:

ASL = +1 ≈

1
ASL

2

b

b




1
ASL

2

s

w




2

1 1
ASL 1

2 2 2

1
2

b s b s

n s

s

  
   


 

n

n n

24

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Performance Analysis of

Blocking Search

• When n=10,000,

– Sequential search takes 5,000 comparisons

– Binary search takes 14 comparisons

– Block search takes 100 comparisons

10.1 Search in a Linear List

25

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Pros & Cons of Blocking Search

• Pros:

– Easy to insert and delete

– Few movement of records

• Cons:

– Space of a auxiliary array is needed

– The blocks need to be sorted at the

beginning

– When a large number of insertion/deletion

are done, or nodes are distributed unevenly,

the efficiency will decrease.

10.1 Search in a Linear List

26

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Thinking

• Try comparing the sequential search

witch binary search in terms of

advantages and disadvantages.

• What are the application scenes of

these search methods respectively?

10.1 Search in a Linear List

27

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Chapter 10 Search

• 10.1 Search in a linear list

• 10.2 Search in a set

• 10.3 Search in a hash table

• Summary

10.2 Search in a Set

28

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Set

10.2 Search in a Set

• Set: a collection of well defined and distinct

objects

• Search in a set: confirm whether a specific

element belongs to the set

29

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

10.2 Search in a Set

Names
Math

Symbols

Computer

symbols

Arithmetic

operations

union ∪ +, |, OR

intersection ∩ *, &, AND

complement – –

equality = ==

inequality ≠ !=

Logic

operations

subset  <=

superset  >=

proper

subset
 <

proper

superset
 >

element of ∈ IN, at

30

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Abstract Data Type of Sets

10.2 Search in a Set

template<size_t N> // N is the number of elements of the set

class mySet {

public:

mySet() ; // constructor

mySet(ulong X);

mySet<N>& set(); // set attributes of the set

mySet<N>& set(size_t P, bool X = true);

mySet<N>& reset(); // clear the set

mySet<N>& reset(size_t P); // delete the element p

bool at(size_t P) const; // belong operation

size_t count() const; // get the count of elements of the set

bool none() const; // check whether the set is empty

31

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Abstract Data Type of Sets

10.2 Search in a Set

bool operator==(const mySet<N>& R) const; // equal

bool operator!=(const mySet<N>& R) const; // not equal

bool operator<=(const mySet<N>& R) const; // be subset of

bool operator< (const mySet<N>& R) const; // be proper subset of

bool operator>=(const mySet<N>& R) const; // be superset of

bool operator>(const mySet<N>& R) const; // be proper superset of

friend mySet<N> operator&(const mySet<N>& L, const mySet<N>& R); // union

friend mySet<N> operator|(const mySet<N>& L, const mySet<N>& R); // intersection

friend mySet<N> operator-(const mySet<N>& L, const mySet<N>& R); // complement

friend mySet<N> operator^(const mySet<N>& L, const mySet<N>& R); // xor

};

32

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Search in a Set

10.2 Search in a Set

• Bitmap representation

• Suitable when the number of valid elements is close to all

the possible elements

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0

33

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Example: Find the Odd

Primes between 0 and 15

10.2 Search in a Set

Odd:

Prime：

Odd

prime：

1 1 1 1 1 1 1 10 0 0 0 0 0 0 0

1 1 1 1 110 0 00 0 0 0 0 0 0

0 1 1 1 0 1 1 00 0 0 0 0 0 0 0

1 3 5 7 9 11 13 150 2 4 6 8 10 12 14

3 5 7 11 1321 9 150 4 6 8 10 12 14

3 5 7 11 131 9 150 2 4 6 8 10 12 14

1 3 5 7 9 11 13 15

3 5 7 11 132

3 5 7 11 13

&

=

34

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Example: Represent a set by

an UnsignedIinteger

10.2 Search in a Set

• The complete set is a set with 40 elements

• The set {35, 9, 7, 5, 3, 1} can be represented

with 2 ulongs.

0000 0000 0000 0000 0000 0000 0000 1000

0000 0000 0000 0000 0000 0010 1010 1010

Since 40 < 64, the size of 2 ulongs, we pad 0's on the left

35

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

typedef unsigned long ulong;

enum {

// number of bits of a unsigned long

NB = 8 * sizeof (ulong),

// The subscript of the last element of the

array

LI = N == 0 ? 0 : (N - 1) / NB

};

// the array used for saving the bit vector

ulong A[LI + 1];

10.2 Search in a Set

36

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Set the Elements of the Set

template<size_t N>

mySet<N>& mySet<N>::set(size_t P, bool X) {

if (X) // If X is true，the corresponding value of

the bit vector should be set to 1

A[P / NB] |= (ulong)1 << (P % NB);

// a Union operation is operated for the element

that corresponds to p

else A[P / NB] &= ~((ulong)1 << (P % NB));

//If X is false，the corresponding value of the bit

vector should be set to 0

return (*this);

}

10.2 Search in a Set

37

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Intersection Operations of a set“&”
template<size_t N>

mySet<N>& mySet<N>::operator&=(const mySet<N>& R)

{ // assignment of intersection

for (int i = LI; i >= 0; i--) // from low bits to high bits

A[i] &= R.A[i]; // intersect bit by bit in the unit

of ulongs

return (*this);

}

template<size_t N>

mySet<N> operator&(const mySet<N>& L, const mySet<N>& R)

{ //intersection

return (mySet<N>(L) &= R);

}

10.2 Search in a Set

38

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Thinking

10.2 Search in a Set

• What else can we use to implement a set?

• Survey various implementations of set in

the STL library.

39

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Chapter 10. Search

• 10.1 Search in a linear list

• 10.2 Search in a set

• 10.3 Search in a hash table

• Summary

10.3 Search in a Hash Table

40

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Search in a Hash Table
• 10.3.0 Basic problems in hash tables

• 10.3.1 Collision resolution

• 10.3.2 Open hashing

• 10.3.3 Closed hashing

• 10.3.4 Implementation of closed hashing

• 10.3.5 Efficiency analysis of hash

methods

10.3 Search in a Hash Table

41

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Basic problems in Hash Tables

• Search based on comparison of keys

• Sequential search: ==, !=

• Binary search, tree based: >, == , <

• Search is the operation interfaced with users

• When the problem size is large, the time efficiency of search

methods mentioned above may become intolerable for users

• In the best case

• Find the storage address of the record according to the key

• No need to compare the key with candidate records one by

one.

10.3 Search in a Hash Table

42

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Think of Hash from Direct

Access
• For example, we can get the element in an array

with a specific subscript

• Inspired by this, computer scientists invented

hash method.

• A certain function relation h()

• Keys of nodes k are used as independent

variables

• Function value h(K) is used as the storage

address of the node

• Search uses this function to calculate the storage

address

• Generally, a hash table is stored in a one-

dimensional array

• The hash address is the array index

10.3 Search in a Hash Table

43

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Example 1

Example 10.1: you already know the set of the key of

a linear list: S = {and, array, begin, do, else, end, for,

go, if, repeat, then, until, while, with}

We can let the hash table be: char HT2[26][8];

The value of hash function H(key), is the sequence

number of the first letter of key in the alphabet

{a, b, c, ..., z}, which means H(key) = key[0] – ‘a’

10.3 Search in a Hash Table

44

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Example 1 (continued)

10.3 Search in a Hash Table

45

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Example 2

// the value of hash function is the average of the sequence numbers of

the first and the last letters of key in the alphabet. Which means:

int H3(char key[])

{

int i = 0;

while ((i<8) && (key[i]!=‘\0’)) i++;

return((key[0] + key(i-1) – 2*’a’) /2)

}

10.3 Search in a Hash Table

46

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Example 2 (continued)

10.3 Search in a Hash Table

47

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Several Important Concepts

• The load factor α = N/M

• M is the size of the hash table

• N is the number of the elements in the table

• Collision

• Some hash function return the same value

for 2 or more distinct keys

• In practical application, there are hardly any

hash functions without collision

• Synonym

• The two keys that collides with each other

10.3 Search in a Hash Table

48

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Hash Function

• Hash function: the function mapping

keys to storage addresses, generally

denoted by h

• Address ＝ Hash (key)

• Principles to select hash functions

• Be easy to compute

• The range of the function must be inside

the range of the hash table

• Try to map two distinct keys to different

addresses as good as possible.

10.3 Search in a Hash Table

49

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Various Factors Needed to be Consider

• Lengths of keys

• Size of hash tables

• Distribution of keys

• Frequency rate of searching for records

• …

10.3 Search in a Hash Table

50

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Commonly-Used Hash Functions

• 1. Division method

• 2. Multiplication method

• 3. Middle square method

• 4. Digit analysis method

• 5. Radix conversion method

• 6. Folding method

• 7. ELF hash function

10.3 Search in a Hash Table

51

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

1. Division method

• Division method: divide M by key x, and take the

remainder as the hash address, the hash function

is:

h(x) ＝ x mod M

• Usually choose a prime as M

• The value of function relies on all the bits of

independent variable x, not only right-most k bits.

• Increase the probability of evenly distribution

• For example, 4093

10.3 Search in a Hash Table

52

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Why isn’t M an even integer?

• If set M as an even integer?

• If x is an even integer, h(x) is even too.

• If x is an odd integer, h(x) is odd too;

• Disadvantages: unevenly distribution

• If even integers occur more often than odd

integers, the function values would not be

evenly distributed

• Vice versa

10.3 Search in a Hash Table

53

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

M shouldn’t be a Power of

Integers

• If set M as a power of 2

• Then, h(x)＝x mod 2
k

is merely right-most k bits of x

(represented in binary form)

• If set M to a power of 10

• Then, h(x)＝x mod 10
k

is merely right-most k bits of x

(represented in decimal)

• Disadvantages: hashed values don’t rely on the total

bits of x

10.3 Search in a Hash Table

0110010111000011010

x mod 28 choose right-most 8 bits

54

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Problems of Division Method

• The potential disadvantages of division

method

• Map contiguous keys to contiguous values

• Although ensure no collision between

contiguous keys

• Also means they must occupy contiguous

cells

• May decrease the performance of hash table

10.3 Search in a Hash Table

55

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

2. Multiplication method

• Firstly multiply key by a constant A (0 < A < 1),

extract the fraction part

• Then multiply it by an integer n, then round it

down, and take it as the hash address

• The hash function is:

• hash (key) =  n * (A * key % 1) 

• “A * key % 1” denotes extracting the fraction

part of A * key

• A * key % 1 = A * key -  A * key 

10.3 Search in a Hash Table

56

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Example

• let key = 123456, n = 10000 and let A =

= 0.6180339，

• Therefore,

hash(123456) =

= 10000*(0.6180339*123456 % 1) =

= 10000 * (76300.0041151… % 1) =

= 10000 * 0.0041151… = 41

10.3 Search in a Hash Table

(5 1) / 2

57

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Consideration about the Parameter

Chosen in Multiplication Method

• If the size of the address space is p-digit

then choose n = 2
p

• The hash address is exactly the left-most p bits of

the computed value

• A * key % 1 = A * key -  A * key 

• Advantages: not related to choose of n

• Knuth thinks: A can be any value, it’s related

to the features of data waited to be sort.

Usually golden section is the best

10.3 Search in a Hash Table

58

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

3. Middle Square Method
• Can use middle square method this moment:

firstly amplify the distinction by squaring keys,

then choose several bits or their combination

as hash addresses.

• For example

• A group of binary key: (00000100，00000110，
000001010，000001001，000000111)

• Result of squaring: (00010000，00100100，
01100010，01010001，00110001)

• If the size of the table is 4-digit binary number, we

can choose the middle 4 bits as hash addresses:

(0100, 1001, 1000, 0100, 1100)

10.3 Search in a Hash Table

59

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

4. Digit Analysis Method

• If there are n numbers, each with d digits and

each digit can be one of r different symbols

• The occurring probabilities of these r symbols

may are different

– Distribution on some digits may be the

same for the probabilities of all the symbols

– Uneven on some digits, only some symbols

occur frequently.

• Based on the size of the hash table, pick

evenly distributed digits to form a hash

address

10.3 Search in a Hash Table

60

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Digit Analysis Method (2/4)

• The evenness of distribution of each digit 
k

• denotes the occurring number of ith symbols

• n/r denotes expected value of all the symbols

occurring on n digits evenly

• The smaller 
k

get, the more even the

distribution of symbols on this digit is

10.3 Search in a Hash Table





r

i

k

ik rn
1

2)/(αλ

k

iα

61

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Digit Analysis Method (3/4)

• If the range of hash table address is 3 digits, then pick the ④
⑤ ⑥ digits of each key to form the hash address of the record

• We can add ①，②，③ digits to ⑤ digit, get rid of the carry

digit, to become a 1-digit number. Then combine it with ④，
⑥ digits, to form a hash address. Some other methods also

work

10.3 Search in a Hash Table

9 9 2 1 4 8 ①digit,  1 = 57.60
9 9 1 2 6 9 ②digit,  2 = 57.60
9 9 0 5 2 7 ③digit,  3 = 17.60
9 9 1 6 3 0 ④digit,  4 = 5.60
9 9 1 8 0 5 ⑤digit,  5 = 5.60
9 9 1 5 5 8 ⑥digit,  6 = 5.60
9 9 2 0 4 7
9 9 0 0 0 1
① ② ③ ④ ⑤ ⑥

62

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Digit Analysis Method (4/4)

• Digit analysis method is only applied to

the situation that you know the

distribution of digits on each key

previously

• It totally relies on the set of keys

• If the set of keys changes, we need to

choose again

10.3 Search in a Hash Table

63

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

5. Radix Conversion Method

• Regard keys as numbers using another radix.

• Then convert it to the number using the original radix

• Pick some digits of it as a hash address

• Usually choose a bigger radix as converted radix, and

ensure that they are inter-prime.

10.3 Search in a Hash Table

64

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Example: Radix Conversion Method

• For instance, give you a key (210485)
10

in

base-10 system, treat it as a number in base-

13 system, then convert it back into base-10

system

• (210485)
13

= 2×13
5

+ 1×13
4

+ 4×13
2

+ 8×13 + 5

= (771932)
10

• If the length of hash table is 10000, we can

pick the lowest 4 digits 1932 as a hash address

10.3 Search in a Hash Table

65

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

6. Folding Method

• The computation becomes slow if we use the middle square method

on a long number

• Folding method

• Divide the key into several parts with same length (except the last

part)

• Then sum up these parts (drop the carries) to get the hash address

• Two method of folding:

• Shift folding — add up the last digit of all the parts with alignment

• Boundary folding — each part doesn’t break off, fold to and fro

along the boundary of parts, then add up these with alignment,

the result is a hash address

10.3 Search in a Hash Table

66

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Example: Folding Method

10.3 Search in a Hash Table

• [example 10.6] If the number of a book is 04-42-20586-4

5 8 6 4

4 2 2 0

+ 0 4

[1] 0 0 8 8

h(key)=0088

• (a) shift holding

0 2 2 4

5 8 6 4

6 0 9 2

4 2 2 00 4

h(key)=6092

(b) Boundary holding

+

4 0

0 4

67

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

7. ELF hash function

• Used in the UNIX System V4.0 “Executable and Linking

Format(ELF for short)

• int ELFhash(char* key) {

unsigned long h = 0;

while(*key) {

h = (h << 4) + *key++;

unsigned long g = h & 0xF0000000L;

if (g) h ^= g >> 24;

h &= ~g;

}

return h % M;

}

10.3 Search in a Hash Table

68

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Features of ELF hash function

• Work well for both long strings and short strings

• Chars of a string have the same effect

• The distribution of positions in the hash table is

even.

10.3 Search in a Hash Table

69

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Application of Hash Functions

10.3 Search in a Hash Table

• Choose appropriate hash functions

according to features of keys in practical

applications

• Someone have used statistical analysis

method of “roulette” to analyze them by

simulation, and it turns out that the

middle square is closest to “random”

• If the key is not a integer but a string,

we can convert it to a integer, then

apply the middle square method

http://baike.baidu.com/pic/26/12005680715828355.jpg
http://baike.baidu.com/pic/26/12005680715828355.jpg

70

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Thinking

• Consider when using hash methods:

(1) how to construct (choose) hash functions to

make nodes distributed evenly

(2) Once collision occurs, how to solve it?

• The organization methods of the hash

table itself

10.3 search of hash table

71

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Chapter 10. Search

• 10.1 Search in a linear list

• 10.2 Search in a set

• 10.3 Search in a hash table

• Summary

10.3 Search in a Hash Table

72

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Search in a Hash Table

• 10.3.0 Basic problems in hash tables

• 10.3.1 Collisions resolution

• 10.3.2 Open hashing

• 10.3.3 Closed hashing

• 10.3.4 Implementation of closed hashing

• 10.3.5 Efficiency analysis of hash methods

10.3 Search in a Hash Table

73

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Open Hashing

10.3 Search in a Hash Table

• The empty cells in the table

should be marked by special

values

• like -1 or INFINITY

• Or make the contents of hash

table to be pointers, and the

contents of empty cells are null

pointers

0

1

2

3

4

5

6

7

8

9

10

77

14

7

75

110

9562

{77、14、75、 7、110、62 、95 }

h(Key) = Key % 11

74

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Performance Analysis of Chaining Method

• Give you a table of size M which

contains n records. The hash

function (in the best case) put

records evenly into the M positions

of the table which makes each chain

contains n/M records on the average

• When M>n, the average cost of hash

method is Θ(1)

10.3 Search in a Hash Table

75

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

10.3.3 Closed Hashing

• d
0
=h(K) is called the base address of K.

• When a collision occurs, use some method to generate a

sequence of hash addresses for key K

d
1
, d

2
, ... d

i
, ..., d

m-1

• All the d
i
(0<i<m) are the successive hash addresses

• With different way of probing, we get different ways to resolve

collisions.

• Insertion and search function both assume that the probing

sequence for each key has at least one empty cell

• Otherwise it may get into a endless loop

• We can also limit the length of probing sequence

10.3 Search in a Hash Table

76

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Problem may Arise - Clustering

• Clustering

• Nodes with different hash addresses

compete for the same successive hash

address

• Small clustering may merge into large

clustering

• Which leads to a very long probing

sequence

10.3 Search in a Hash Table

77

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Several General Closed Hashing Methods

• 1. Linear probing

• 2. Quadratic probing

• 3. Pseudo-random probing

• 4. Double hashing

10.3 Search in a Hash Table

78

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

1. Linear probing

• Basic idea:

• If the base address of a record is occupied, check

the next address until an empty cell is found

• Probe the following cells in turn: d+1, d+2,, M-1,

0, 1,, d-1

• A simple function used for the linear probing:

p(K,i) = I

• Advantages:

• All the cell of the table can be candidate cells for

the new record inserted

10.3 Search in a Hash Table

79

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Instance of Hash Table

10.3 Search in a Hash Table

• M = 15, h(key) = key%13

• In the ideal case, all the empty cells in the table should

have a chance to accept the record to be inserted

• The probability of the next record to be inserted at the 11th cell

is 2/15

• The probability to be inserted at the 7th cell is 11/15

0 1 2 3 4 5 6 7 8 9 10 22212 11 12 13 14

26 25 41 15 68 44 6 36 38 12 51

80

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Enhanced Linear Probing

• Every time skip constant c cells rather than 1

• The ith cell of probing sequence is

(h(K) + ic) mod M

• Records with adjacent base address would not get the

same probing sequence

• Probing function is p(K,i) = i*c

• Constant c and M must be co-prime

10.3 Search in a Hash Table

81

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Example: Enhance Linear Probing

• For instance, c = 2, The keys to be

inserted, k
1
and k

2
. h(k

1
) = 3, h(k

2
) = 5

• Probing sequences

• The probing sequence of k
1
: 3, 5, 7, 9, ...

• The probing sequence of k
2
: 5, 7, 9, ...

• The probing sequences of k
1

and k
2

are

still intertwine with each other, which

leads to clustering.

10.3 Search in a Hash Table

82

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

2. Quadratic probing

• Probing increment sequence: 1
2
, -1

2
, 2

2
,

-2
2
, ..., The address formula is

d
2i-1

= (d +i
2
) % M

d
2i

= (d – i
2
) % M

• A function for simple linear probing：
p(K, 2i-1) = i*i

p(K, 2i) = - i*i

10.3 Search in a Hash Table

83

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Example: Quadratic Probing

• Example: use a table of size M = 13

• Assume for k
1

and k
2
, h(k

1
)=3, h(k

2
)=2

• Probing sequences

• The probing sequence of k
1
: 3, 4, 2, 7, ...

• The probing sequence of k
2
: 2, 3, 1, 6, ...

• Although k
2

would take the base address of

k
1

as the second address to probe, but their

probing sequence will separate from each

other just after then

10.3 Search in a Hash Table

84

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

3. Pseudo-Random Probing

• Probing function p(K,i) = perm[i - 1]

• here perm is an array of length M – 1

• It contains a random permutation of numbers between 1 and M

// generate a pseudo-random permutation of n numbers

void permute(int *array, int n) {

for (int i = 1; i <= n; i ++)

swap(array[i-1], array[Random(i)]);

}

10.3 Search in a Hash Table

85

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Example: Pseudo-Random Probing

• Example: consider a table of size M = 13,

perm[0] = 2, perm[1] = 3, perm[2] = 7.

• Assume 2 keys k
1

and k
2
, h(k

1
)=4, h(k

2
)=2

• Probing sequences

• The probing sequence of k
1
: 4, 6, 7, 11, ...

• The probing sequence of k
2
: 2, 4, 5, 9, ...

• Although k
2

would take the base address

of k
1
as the second address to probe, but

their probing sequence will separate from

each other just after then

10.3 Search in a Hash Table

86

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Secondary Clustering

• Eliminate the primary clustering

• Probing sequences of keys with different base address

overlap

• Pseudo-random probing and quadratic probing can eliminate

it

• Secondary clustering

• The clustering is caused by two keys which are hashed to one

base address, and have the same probing sequence

• Because the probing sequence is merely a function that

depends on the base address but not the original key.

• Example: pseudo-random probing and quadratic probing

10.3 Search in a Hash Table

87

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

4. Double Probing

• Avoid secondary clustering

• The probing sequence is a function that depends

on the original key

• Not only depends on the base address

• Double probing

• Use the second hash function as a constant

• p(K, i) = i * h
2

(key)

• Probing sequence function

• d = h
1
(key)

• d
i
= (d + i h

2
(key)) % M

10.3 Search in a Hash Table

88

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Basic ideas of Double Probing

• The double probing uses two hash functions h
1

and h
2

• If collision occurs at address h
1
(key) = d, then compute

h
2
(key), the probing sequence we get is :

(d+h
2
(key)) % M，(d+2h

2
(key)) %M ，(d+3h

2
(key)) % M ，...

• It would be better if h
2

(key) and M are co-prime

• Makes synonyms that cause collision distributed evenly in the table

• Or it may cause circulation computation of addresses of synonyms

• Advantages: hard to produce “clustering”

• Disadvantages: more computation

10.3 Search in a Hash Table

89

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Method of choosing M and h2(k)

• Method1: choose a prime M, the return values of h
2

is in the

range of

1 ≤ h2(K) ≤ M – 1

• Method2: set M = 2
m

,let h
2

returns an odd number between 1

and 2
m

• Method3: If M is a prime, h
1
(K) = K mod M

• h
2

(K) = K mod(M-2) + 1

• or h
2
(K) = [K / M] mod (M-2) + 1

• Method4: If M is a arbitrary integer, h
1
(K) = K mod p (p is the

maximum prime smaller than M)

• h
2

(K) = K mod q + 1 (q is the maximum prime smaller than p)

10.3 Search in a Hash Table

90

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Thinking
• When inserting synonyms, how to

organize synonyms chain?

• What kind of relationship do the

function of double hashing h
2

(key) and

h
1

(key) have?

10.3 Search in a Hash Table

91

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Chapter 10. Search

• 10.1 Search in a list

• 10.2 Search in a set

• 10.3 Search in a hash table

• Summary

10.3 Search in a Hash Table

92

目录页

Chapter 10

Search

Ming Zhang “Data Structures and Algorithms”

Search in a Hash Table

• 10.3.0 Basic problems in hash tables

• 10.3.1 Collision resolution

• 10.3.2 open hashing

• 10.3.3 closed hashing

• 10.3.4 Implementation of closed hashing

• 10.3.5 Efficiency analysis of hash methods

10.3 Search in a Hash Table

93

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Implementation of Closed Hashing

Dictionary

• A special set consisting of elements which are two-tuples (key,

value)

• The keys should be different from each other (in a

dictionary)

• Major operations are insertions and searches according to keys

• bool hashInsert(const Elem&);

// insert(key, value)

• bool hashSearch(const Key&，Elem&) const;

// lookup(key)

10.3 Search in a Hash Table

94

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

ADT of Hash Dictionaries (attributes)

template <class Key，class Elem，class KEComp，class

EEComp> class hashdict

{

private:

Elem* HT; // hash table

int M; // size of hash table

int currcnt; // current count of elements

Elem EMPTY; // empty cell

int h(int x) const ; // hash function

int h(char* x)const ; // hash function for strings

int p(Key K，int i) // probing function

10.3 Search in a Hash Table

95

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

ADT of Hash Dictionaries (methods)

public:

hashdict(int sz，Elem e) { // constructor

M=sz; EMPTY=e;

currcnt=0; HT=new Elem[sz];

for (int i=0; i<M; i++) HT[i]=EMPTY;

}

~hashdict() { delete [] HT; }

bool hashSearch(const Key&，Elem&) const;

bool hashInsert(const Elem&);

Elem hashDelete(const Key& K);

int size() { return currcnt; } // count of elements

};

10.3 Search in a Hash Table

96

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Insertion Algorithm

hash function h, assume k is the given value

• If this address hasn’t been occupied in the table, insert the

record waiting for insertion into this address

• If the value of this address is equal to K, report “hash table

already have this record”

• Otherwise, you can probe the next address of probing sequence

according to how to handle collision, and keep doing this.

• Until some cell is empty (can be inserted into)

• Or find the same key (no need of insertion)

10.3 Search in a Hash Table

97

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Code of Hash Table Insertion

// insert the element e into hash table HT

template <class Key, class Elem, class KEComp, class EEComp>

bool hashdict<Key, Elem, KEComp, EEComp>::hashInsert(const Elem& e) {

int home= h(getkey(e)); // home save the base address

int i=0;

int pos = home; // Start position of the probing sequence

while (!EEComp::eq(EMPTY, HT[pos])) {

if (EEComp::eq(e, HT[pos])) return false;

i++;

pos = (home+p(getkey(e), i)) % M; // probe

}

HT[pos] = e; // insert the element e

return true;

}

10.3 Search in a Hash Table

98

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Search Algorithm

• Similar to the process of insertion

• Use the same probing sequence

• Let the hash function be h, assume the given value is K

• If the space corresponding to this address is not occupied, then search

fails

• If not, compare the value of this address with K, if they are equal, then

search succeeds

• Otherwise, probe the next address of the probing sequence according to

how to handle collision, and keep doing this.

• Find the equal key, search succeeds

• Haven’t found when arrive at the end of probing sequence, then search

fails

10.3 Search in a Hash Table

99

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

template <class Key, class Elem, class KEComp, class EEComp>

bool hashdict<Key, Elem, KEComp, EEComp>::

hashSearch(const Key& K, Elem& e) const {

int i=0, pos= home= h(K); // initial position

while (!EEComp::eq(EMPTY, HT[pos])) {

if (KEComp::eq(K, HT[pos])) { // have found

e = HT[pos];

return true;

}

i++;

pos = (home + p(K, i)) % M;

} // while

return false;

}

10.3 Search in a Hash Table

100

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Deletion

• Something to consider when delete records:

• (1) The deletion of a record mustn’t affect the search later

• (2) The storage space released could be used for the future

insertion

• Only open hashing (separated synonyms lists) methods can

actually delete records

• Closed hashing methods can only make marks (tombstones), can’t

delete records actually

• The probing sequence would break off if records are deleted.

Search algorithm “until an empty cell is found (search fails)”

• Marking tombstones increases the average search length

10.3 Search in a Hash Table

101

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Problems Caused by Deletions

10.3 Search in a Hash Table

0 1 2 3 4 5 6 7 8 9 10 11 12

 K1 K2 K1 K2 K2 K2 K2

• For example, a hash table of length M = 13, let keys be k1 and k2,

h(k1) = 2，h(k2) = 6。

• Quadratic probing

• The quadratic probing sequence of k1: 2、3、1、6、11、11、6、5、12、...

• The quadratic probing sequence of k2: 6、7、5、10、2、2、10、9、3、...

• Delete the record at the position 6, put the element in the last

position 2 of k2 sequence instead, set position 2 to empty

• search k1, but fails (may be put at position 3 or 1 in fact)

102

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Tombstones

• Set a special mark bit to record the cell status

of the hash table

• Be occupied

• Empty

• Has been deleted

• The mark to record the status of has been

deleted is called tombstone

• Which means it was occupied by some record ever

• But it isn’t occupied now

10.3 Search in a Hash Table

103

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Deletion Algorithms with Tombstones

template <class Key, class Elem, class KEComp, class EEComp>Elem

hashdict<Key,Elem,KEComp,EEComp>::hashDelete(const Key& K)

{ int i=0, pos = home= h(K); // initial position

while (!EEComp::eq(EMPTY, HT[pos])) {

if (KEComp::eq(K, HT[pos])){

temp = HT[pos];

HT[pos] = TOMB; // set up tombstones

return temp; // return the target

}

i++;

pos = (home + p(K, i)) % M;

}

return EMPTY;

}

10.3 Search in a Hash Table

104

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Insertion Operation with Tombstones

• If a cell marked as a tombstone is met

at the time of insertion, can we insert

the new record into this cell?

• In order to avoid inserting two same keys

• The process of search should carry on along

the probing sequence, until find a real

empty cell

10.3 Search in a Hash Table

105

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

An Improved Version of Insertion

Operation with Tombstones

template <class Key, class Elem, class KEComp, class EEComp>

bool hashdict<Key, Elem, KEComp, EEComp>::hashInsert(const

Elem &e) {

int insplace, i = 0, pos = home = h(getkey(e));

bool tomb_pos = false;

while (!EEComp::eq(EMPTY, HT[pos])) {

if (EEComp::eq(e, HT[pos])) return false;

if (EEComp::eq(TOMB, HT[pos]) && !tomb_pos)

{insplace = pos; tomb_pos = true;} // The first

pos = (home + p(getkey(e), ++ i)) % M;

}

if (!tomb_pos) insplace=pos; // no tombstone

HT[insplace] = e; return true;

}

10.3 Search in a Hash Table

106

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Efficiency Analysis of Hash Methods

• Evaluation standard: the number of record visits needed for

insertion, deletion, search

• Insertion and deletion operation of hash tables are both based

on search

• Deletion: must find the record at first

• Insertion: must find until t the tail of the probing sequences,

which means need a failed search for the record

• For the situation without consideration about deletion, it

is the tail cell.

• For the situation with consideration about deletion, also

need to arrive at the tail to confirm whether there are

repetitive records

10.3 Search in a Hash Table

107

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Important Factors Affecting Performance of Search

• Expected cost of hash methods is related to the load

factor

• α= N/M

• When α is small, the hash table is pretty empty, it’s easy for

records to be inserted into empty base addresses.

• When α is big, inserting records may need collision resolution

strategies to find other appropriate cells

• With the increase of α, more and more records may be

put further away from their base addresses

10.3 Search in a Hash Table

108

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Analysis of Hash Table Algorithms

(1)
• The probability of base addresses being occupied is α

• The probability of the i-th collision occurring is

• If N and M are both very large, then it can be expressed

approximately as

(N/M)
i

• The expected value of the number of probing is 1, plus occurring

probability of each the i-th (i  1) collision, which is cost of inserting, :

10.3 Search in a Hash Table

(1) (1)

(1) (1)

N N N i

M M M i

   

   

1

1 (/) 1/(1)i

i

N M a




  

109

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Analysis of Hash Table Algorithms

(2)

10.3 Search in a Hash Table

• A cost of successful search (or deletion) is the same as

the cost of insertion

• With the increase of the number of records of hash

tables, α also get larger and larger

• We can get the average cost of insertion (the average of the

cost of all the insertion) by computing the integral from 0 to

current value of α

0

1 1 1 1
ln

1 1

a

dx
a x a a


 

110

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

No. Collision

resolution

strategy

Successful

search

（deletion）

Failed search

(insertion)

1 Open

hashing

2 Double

hashing

3 Linear

probing

Hash Table Algorithms Analysis (table)

10.3 Search in a Hash Table

1
2


 e  

1 1
ln

1 

1

1 

1 1
1

2 1 

 
 

 
2

1 1
1

2 (1)

 
 

 

111

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Hash Table Algorithms Analysis

(diagram)
• ASLs of using different way to resolve

collision in hash tables

10.3 Search in a Hash Table

No. Collision

resolution

strategy

Successful

search

（deletion）

Failed search

(insertion)

1 Open

hashing

2 Double

hashing

3 Linear

probing

1
2


 e  

1 1
ln

1 
1

1 
1 1

1
2 1 

 
 

 
2

1 1
1

2 (1)

 
 

 

1. Open hashing deletion

1’open hashing deletion

2. Double deletion

2’double insertion

3’linear deletion

3. Linear insertion

112

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Conclusion of Hash Table Algorithms Analysis

• Normally the cost of hash methods is close to the time of visiting

a record. It is very effective , greatly better than binary search

which need log n times of record visit

• Not depend on n, only depend on the load factor α=n/M

• With the increase of α, expected cost would increase too

• When α  0.5, The excepted cost of most operations is less

than 2 (someone say 1.5)

• The practical experience indicates that the critical value of the

load factor α is 0.5 (close to half full)

• When the load factor is bigger than this critical value, the

performance would degrade rapidly

10.3 Search in a Hash Table

113

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Conclusion of Hash Table Algorithms Analysis (2)

• If the insertion or deletion of hash tables is complicated, then

efficiency degrades

• A mass of insertion operation would make the load factor increases.

• Which also increase the length of synonyms linked chains, and also

increase ASL

• A mass of deletion would increase the number of tombstones.

• Which increase the average length from records to their base

addresses

• In the practical application, for hash tables with frequent insertion

or deletion, we can perform rehashing for hash tables regularly

• Insert all the records to another new table

• Clear tombstones

• Put the record visited most frequently on its base address

10.3 Search in a Hash Table

114

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Thinking

• Can we mark the status of empty cell

and having been deleted as a special

value, to distinguish them from

“occupied” status?

• Survey implementation of dictionary

other than hash tables.

10.3 Search in a Hash Table

Data Structures
and Algorithms

Thanks

the National Elaborate Course (Only available for IPs in China)
http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/

Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)

Ming Zhang “Data Structures and Algorithms”

