

"Bandits"

ADITH SWAMINATHAN

Researcher, MSR AI

Contents

1 Overview

Understanding the "exploration" challenge in RL

2 Bandits Framework

Formulating the concept of "regret"

3 "Explore-exploit" Algorithms

Principle of "optimism in the face of uncertainty"

4 Bridge to RL: "Contextual Bandits"

Deployment using Microsoft Decision Service

5 Exercises

Implementing and extending bandit algorithms

To solve reinforcement learning,

We must overcome 4 fundamental challenges:

- Representation -
- Generalization
- Temporal Credit Assignment
- **Exploration**

"final state"

White wins [jijbent.nl]

Representation

"The key to artificial intelligence has always been the representation" – Jeff Hawkins

Generalization

The ability to behave well in hitherto unseen states.

Temporal Credit Assignment

Which of the actions was salient for the eventual observed outcome?

Exploration

Is there an action we have not yet tried that could lead to an overall better outcome?

This module: "Bandits" – study exploration in isolation

Contents

1 Overview

Understanding the "exploration" challenge in RL

2 Bandits Framework

Formulating the concept of "regret"

3 "Explore-exploit" Algorithms

Principle of "optimism in the face of uncertainty"

4 Bridge to RL: "Contextual Bandits"

Deployment using Microsoft Decision Service

5 Exercises

Implementing and extending bandit algorithms

The Multi-Armed Bandit Framework

Notation

- A set of k actions ("arms") $A = \{a_1, a_2, ..., a_k\}$
- Reward $R_a = \Pr(r|a)$ is unknown
- At each step t = 1, 2, ..., T:
- 1. Choose $a_t \in A$
- 2. Receive $r_t \sim \Pr(r|a_t)$
- Can you build an agent to maximize $\sum_t r_t$?

Motivating Applications

Evaluating user-facing systems

[widerfunnel.com]

A/B/n controlled testing

- Many candidate variations to try
- Quickly find best candidate
- Option 1: A/B/n test (Randomized Controlled Trial)
- Option 2: Bandit algorithm
 <u>http://aka.ms/mwt/</u>

Motivating Applications

Demo: Drug Discovery

[istockphoto.com]

http://iosband.github.io/2015/ 07/28/Beat-the-bandit.html

- A: Set of experimental drugs
- *Reward* = {0: die, 1:live}
- T patients
- Save as many as you can!
- Could we have saved more?
- Can we write an <u>optimal</u> algorithm?

Warm-up: The Naïve Algorithm

A/B/n Testing

- Assign $\frac{T}{k}$ patients to each action
- Implement: e.g. round-robin through available actions

Exercise 0: Implement the round-robin algorithm

Can we do better to maximize $\sum_t r_t$?

Sequential Decision w/ Incomplete Info

Exploration-Exploitation Dilemma

- **Exploration:** Gather information
- **Exploitation:** Optimal decision using current information

Fundamental trade-off between exploration and exploitation!

Algorithm 1: The Greedy Algorithm

Consider algorithms that estimate $\hat{r}_a \approx \mathbb{E}[r|a]$

$$n_a = \sum_{\{t:a_t=a\}} 1$$
; $\hat{r}_a = \sum_{\{t:a_t=a\}} r_t / n_a$

• Pick the action with the highest estimate

$$a_t = \operatorname*{argmax}_{a \in A} \hat{r}_a$$

Problem: Greedy can lock-on to sub-optimal action forever

Algorithm 1.5: Greedy Variants

Consider algorithms that estimate $\hat{r}_a \approx \mathbb{E}[r|a]$

- Optimistic-Greedy: Initialize \hat{r}_a to a large initial value, R
- > Then play Greedy algorithm

- ϵ -Greedy:
- > With probability ϵ , pick a uniformly random action
- > With probability 1ϵ , play Greedy algorithm

<u>Question:</u> How should we set R or ϵ ? <u>Exercise 1:</u> Empirically try different ways to set hyper-parameters

Further Reading

• Chapter 2; Reinforcement Learning: An Introduction, Sutton and Barto

http://ufal.mff.cuni.cz/~straka/courses/npfl114/2016/sutton-bookdraft2016sep.pdf

- Preliminary book, <u>http://slivkins.com/work/MAB-book.pdf</u>
- Platform: <u>http://aka.ms/mwt/</u>
- Demo: <u>http://iosband.github.io/2015/07/28/Beat-the-bandit.html</u>

Contents

1 Overview

Understanding the "exploration" challenge in RL

2 Bandits Framework

Formulating the concept of "regret"

3 "Explore-exploit" Algorithms

Principle of "optimism in the face of uncertainty"

4 Bridge to RL: "Contextual Bandits"

Deployment using Microsoft Decision Service

5 Exercises

Implementing and extending bandit algorithms

Thought experiment to quantify "price of information"

- Suppose we know all reward distributions Pr(r|a)
- Optimal policy is to always play $a^* = \max_{a \in A} E[r|a]$

Regret:
$$L_T = T\boldsymbol{E}[r|a^*] - \sum_t \boldsymbol{E}[r|a_t]$$

Maximize $\sum_t r_t \equiv \text{Minimize regret } L_T$

No-Regret Strategies

Exercise: Prove that Greedy variants have linear regret

- Greedy and ϵ -Greedy have linear regret $L_T \geq Const \cdot T$
- No matter the algorithm, lower bound on regret is [Lai and Robbins]

 $\lim_{T \to \infty} L_T \ge Const' \cdot \log T$

Can we write an algorithm with $L_T \leq Const'' \cdot \log T$?

Greedy variants have linear regret

Regret: $L_T = TE[r|a^*] - \sum_t E[r|a_t]$

Insight 1: Greedy exploits too much! $\Rightarrow \Pr(a_t \neq a^*) \ge c$

Insight 2: ϵ -Greedy explores too much! $\Pr(a_t \neq a^*) \ge c'$

Regret Minimization Principle

Optimism in the face of uncertainty

To achieve low regret, we only need to identify an optimal arm!

• Good algorithm should not play sub-optimal arms too often...

• So:

- > Use collected data to eliminate arms that "very likely" are sub-optimal
- > Choose the most optimistic remaining option

Upper Confidence Bound Algorithm

[Auer et al]

- 1. [Initialization] For each arm a, maintain n_a and \hat{r}_a
- 2. [Initialization] For first *k* rounds, play each arm once.

3. At round *t*, play
$$a_t = \underset{a \in A}{\operatorname{argmax}} \left\{ \hat{r}_a + \sqrt{\frac{2 \log t}{n_a}} \right\}$$

UCB1 achieves* logarithmic regret $L_T \leq Const'' \cdot logT$

Gentle proof sketch: <u>https://jeremykun.com/2013/10/28/optimism-in-the-face-of-uncertainty-the-ucb1-algorithm/</u>

Exercise 3: Implement the UCB1 algorithm

UCB Illustration

Regret Minimization Principle

Posterior Sampling

- Suppose we have prior on Pr(r|a)
- ➢ Bayesian MAB
- Idea: Choose arm a according to probability that a is optimal
- This probability can be hard to compute...
- > So: Sample!

Posterior Sampling Example

Beta-Bernoulli Example for Drug Discovery

- Drug discovery example
- > Rewards are $Bernoulli(p_a)$
- > Assume $p_a \sim Beta(1,1)$
- Posterior of Beta-Bernoulli is also Beta!
- For each arm *a*, maintain *#live_a*, *#die_a*
- At round t,
- $\succ \hat{p}_a \sim Beta(1 + \#live_a, 1 + \#die_a)$
- $\blacktriangleright \text{ Play } a_t = \underset{a \in A}{\operatorname{argmax}} \hat{p}_a$

Posterior sampling also achieves* logarithmic regret bound <u>Exercise 4:</u> Implement the Beta-Bernoulli Posterior Sampling algorithm

[Prior] [Conjugate families]

Posterior Sampling Illustration

Beta-Bernoulli Example for Drug Discovery

- Drug discovery example
- > Rewards are $Bernoulli(p_a)$
- > Assume $p_a \sim Beta(1,1)$
- > Suppose k = 3

https://dataorigami.net/blogs/napkinfolding/79031811-multi-armed-bandits

<u>Optional Exercise:</u> Implement the Posterior Sampling algorithm for a Gaussian prior

Further Reading

- UCB: <u>https://jeremykun.com/2013/10/28/optimism-in-the-face-of-uncertainty-the-ucb1-algorithm/</u>
- Thompson sampling: <u>https://dataorigami.net/blogs/napkin-folding/79031811-multi-armed-bandits</u>
- Finite-time Analysis of the Multi-armed Bandit Problem, Auer et al <u>http://dl.acm.org/citation.cfm?id=599677</u>
- An Empirical Evaluation of Thompson Sampling, Chapelle and Li <u>https://papers.nips.cc/paper/4321-</u> <u>an-empirical-evaluation-of-thompson-sampling</u>
- Tutorial, Dave Silver http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching-files/XX.pdf

Contents

1 Overview

Understanding the "exploration" challenge in RL

2 Bandits Framework

Formulating the concept of "regret"

3 "Explore-exploit" Algorithms

Principle of "optimism in the face of uncertainty"

4 Bridge to RL: "Contextual Bandits"

Deployment using Microsoft Decision Service

5 Exercises

Implementing and extending bandit algorithms

Challenges: Representation, Generalization, Exploration, Temporal Credit Assignment Agent plays white

- State s_t depends on previous actions
- Typically delayed reward

Recap: Multi-Armed Bandit

Challenges: Exploration

Algo

Exploration-exploitation dilemma

Now: Contextual Bandits

Challenges: Representation, Generalization, Exploration

- A set of k arms $A = \{a_1, \dots a_k\}$
- At each turn *t*:
- $\succ \text{ Receive context} \qquad s_t \sim \Pr(S)$
- > Play action
- ➢ Receive reward

 a_t $r_t \sim \Pr(r|s_t, a_t)$

Intelligent Recommenders

While shopping, Steve, Adam and Myra see personalized product recommendations based on their search query, purchases and other important markers.

[unknown distribution]

[unknown distribution]

A Contextual Bandit Algorithm

LinUCB [Li et al]

- Assume linear relation between rewards and arms
- Arms have an embedding $x_{t,a} = \phi(s_t, a)$
- $\succ \quad \text{Reward } \mathbb{E}[r_{t,a} \mid x_{t,a}] = \theta_a \cdot x_{t,a}$
- Idea: Use ridge regression for $\hat{\theta}_a$ using $(A: \sum x_{t,a} x_{t,a}^T, b: \sum r_{t,a} \cdot x_{t,a})$
- $\bullet \quad \hat{\theta}_a = A^{-1} \ b$
- Add exploration bonus

Case Studies

News Recommendation

- MSN piloted contextual bandits
- Update model every 5 mins
- ϵ -Greedy strategy for exploration ; no tuning
- > 25% increase in clicks over static baseline!

- Yahoo Front Page news recommendation
- \blacktriangleright LinUCB gave ~10% increase in clicks compared to baseline ϵ -Greedy

Further Reading

• Decision Service

http://ds.microsoft.com

- Tutorial: <u>http://hunch.net/~exploration_learning/</u>
- <u>http://www.stat.berkeley.edu/~bartlett/courses/2014fall-cs294stat260/readings.html</u>
- LinUCB: <u>https://arxiv.org/pdf/1003.0146.pdf</u>