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“Bandits”



Implementing and extending bandit algorithms

Deployment using Microsoft Decision Service

Principle of “optimism in the face of uncertainty”

Formulating the concept of “regret” 

Understanding the “exploration” challenge in RL
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• A set of 𝑘 actions (“arms”) 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑘}

• Reward 𝑅𝑎 = Pr(𝑟|𝑎) is unknown

• At each step 𝑡 = 1, 2, … , 𝑇:

1. Choose 𝑎𝑡 ∈ 𝐴

2. Receive 𝑟𝑡 ∼ Pr(𝑟|𝑎𝑡)

• Can you build an agent to maximize σ𝑡 𝑟𝑡?

[research.microsoft.com]



• Many candidate variations to try

• Quickly find best candidate

• Option 1: A/B/n test 

(Randomized Controlled Trial)

• Option 2: Bandit algorithm

http://aka.ms/mwt/

http://aka.ms/mwt/


• 𝐴: Set of experimental drugs

• 𝑅𝑒𝑤𝑎𝑟𝑑 = {0: die, 1:live}

• 𝑇 patients

• Save as many as you can!

• Could we have saved more?

• Can we write an optimal

algorithm?

http://iosband.github.io/2015/

07/28/Beat-the-bandit.html

http://iosband.github.io/2015/07/28/Beat-the-bandit.html


• Assign 
𝑇

𝑘
patients to each action

• Implement: e.g. round-robin through available actions

Exercise 0: Implement the round-robin algorithm

Can we do better to maximize σ𝑡 𝑟𝑡?



• Exploration: Gather information

• Exploitation: Optimal decision using current information

Fundamental trade-off between exploration and exploitation!

reward

Algo

world

action



𝑛𝑎 = 

𝑡:𝑎𝑡=𝑎

1 ; Ƹ𝑟𝑎 = ൗ

𝑡:𝑎𝑡=𝑎

𝑟𝑡 𝑛𝑎

• Pick the action with the highest estimate 

𝑎𝑡 = argmax
𝑎∈𝐴

Ƹ𝑟𝑎

Problem: Greedy can lock-on to sub-optimal action forever



• Optimistic-Greedy: Initialize Ƹ𝑟𝑎 to a large initial value, 𝑅

➢ Then play Greedy algorithm

• 𝜖-Greedy: 

➢ With probability 𝜖, pick a uniformly random action

➢ With probability 1 − 𝜖, play Greedy algorithm

Question: How should we set 𝑅 or 𝜖?

Exercise 1: Empirically try different ways to set hyper-parameters



• Chapter 2; Reinforcement Learning: An Introduction, Sutton and Barto

http://ufal.mff.cuni.cz/~straka/courses/npfl114/2016/sutton-bookdraft2016sep.pdf

• Preliminary book, http://slivkins.com/work/MAB-book.pdf

• Platform: http://aka.ms/mwt/

• Demo: http://iosband.github.io/2015/07/28/Beat-the-bandit.html

http://ufal.mff.cuni.cz/~straka/courses/npfl114/2016/sutton-bookdraft2016sep.pdf
http://slivkins.com/work/MAB-book.pdf
http://aka.ms/mwt/
http://iosband.github.io/2015/07/28/Beat-the-bandit.html
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• Suppose we know all reward distributions Pr(𝑟|𝑎)

• Optimal policy is to always play 𝑎∗ = max
𝑎∈𝐴

𝑬[𝑟|𝑎]

Regret: 𝐿𝑇 = 𝑇𝑬 𝑟 𝑎∗ − σ𝑡𝑬[𝑟|𝑎𝑡]

Maximize σ𝑡 𝑟𝑡 ≡    Minimize regret 𝐿𝑇



• Greedy and 𝝐-Greedy have linear regret 𝐿𝑇 ≥ 𝐶𝑜𝑛𝑠𝑡 ⋅ 𝑇

• No matter the algorithm, lower bound on regret is [Lai and Robbins]

lim
𝑇→∞

𝐿𝑇 ≥ 𝐶𝑜𝑛𝑠𝑡′ ⋅ log 𝑇

Can we write an algorithm with 𝐿𝑇 ≤ 𝐶𝑜𝑛𝑠𝑡′′ ⋅ log 𝑇?

Lower bound

Greedy variants

R
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Insight 1:  Greedy exploits too much!  ⇒ Pr 𝑎𝑡 ≠ 𝑎∗ ≥ 𝑐

Insight 2: 𝜖-Greedy explores too much!  Pr 𝑎𝑡 ≠ 𝑎∗ ≥ 𝑐′



To achieve low regret, we only need to identify an optimal arm!

• Good algorithm should not play sub-optimal arms too often…

• So:

➢ Use collected data to eliminate arms that “very likely” are sub-optimal

➢ Choose the most optimistic remaining option



1. [Initialization]  For each arm 𝑎, maintain 𝑛𝑎 and Ƹ𝑟𝑎
2. [Initialization]  For first 𝑘 rounds, play each arm once.

3. At round 𝑡, play  at = argmax
𝑎∈𝐴

Ƹ𝑟𝑎 +
2 log 𝑡

𝑛𝑎

UCB1 achieves* logarithmic regret 𝑳𝑻 ≤ 𝑪𝒐𝒏𝒔𝒕′′ ⋅ 𝒍𝒐𝒈𝑻

Gentle proof sketch: https://jeremykun.com/2013/10/28/optimism-in-the-face-of-uncertainty-the-ucb1-

algorithm/

Exercise 3: Implement the UCB1 algorithm

https://jeremykun.com/2013/10/28/optimism-in-the-face-of-uncertainty-the-ucb1-algorithm/
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• Suppose we have prior on Pr(𝑟|𝑎)

➢ Bayesian MAB 

• Idea: Choose arm 𝑎 according to probability that 𝑎 is optimal

• This probability can be hard to compute…

➢ So: Sample!



• Drug discovery example

➢ Rewards are 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑎)

➢ Assume 𝑝𝑎 ∼ 𝐵𝑒𝑡𝑎(1,1) [Prior] 

➢ Posterior of Beta-Bernoulli is also Beta! [Conjugate families]

• For each arm 𝑎, maintain #𝑙𝑖𝑣𝑒𝑎, #𝑑𝑖𝑒𝑎
• At round 𝑡,

➢ Ƹ𝑝𝑎 ∼ 𝐵𝑒𝑡𝑎(1 + #𝑙𝑖𝑣𝑒𝑎, 1 + #𝑑𝑖𝑒𝑎)

➢ Play 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎∈𝐴

Ƹ𝑝𝑎

Posterior sampling also achieves* logarithmic regret bound

Exercise 4: Implement the Beta-Bernoulli Posterior Sampling algorithm



• Drug discovery example

➢ Rewards are 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑎)

➢ Assume 𝑝𝑎 ∼ 𝐵𝑒𝑡𝑎(1,1)

➢ Suppose 𝑘 = 3

https://dataorigami.net/blogs/napkin-

folding/79031811-multi-armed-bandits

Optional Exercise: Implement the Posterior 

Sampling algorithm for a Gaussian prior

[dataorigami.net]

https://dataorigami.net/blogs/napkin-folding/79031811-multi-armed-bandits


• UCB: https://jeremykun.com/2013/10/28/optimism-in-the-face-of-uncertainty-the-ucb1-algorithm/

• Thompson sampling: https://dataorigami.net/blogs/napkin-folding/79031811-multi-armed-bandits

• Finite-time Analysis of the Multi-armed Bandit Problem, Auer et al 

http://dl.acm.org/citation.cfm?id=599677

• An Empirical Evaluation of Thompson Sampling, Chapelle and Li https://papers.nips.cc/paper/4321-

an-empirical-evaluation-of-thompson-sampling

• Tutorial, Dave Silver http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching_files/XX.pdf

https://jeremykun.com/2013/10/28/optimism-in-the-face-of-uncertainty-the-ucb1-algorithm/
https://dataorigami.net/blogs/napkin-folding/79031811-multi-armed-bandits
http://dl.acm.org/citation.cfm?id=599677
https://papers.nips.cc/paper/4321-an-empirical-evaluation-of-thompson-sampling
http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching_files/XX.pdf
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• State 𝑠𝑡 depends on previous actions

• Typically delayed reward

Agent plays white

“action”

“state” “next state” “final state”

White wins

𝑠𝑡+1, 𝑟𝑡

RL

world

𝑎𝑡



➢ Exploration-exploitation dilemma

[research.microsoft.com]
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𝑠𝑡+1, 𝑟𝑡

RL

world

𝑎𝑡

• A set of 𝑘 arms 𝐴 = {𝑎1, … 𝑎𝑘}

• At each turn 𝑡:

➢ Receive context      𝑠𝑡 ∼ Pr(𝑆) [unknown distribution]

➢ Play action 𝑎𝑡
➢ Receive reward 𝑟𝑡 ∼ Pr(𝑟|𝑠𝑡 , 𝑎𝑡) [unknown distribution]

[unbxd.com]



• Assume linear relation between rewards and arms

➢ Arms have an embedding 𝑥𝑡,𝑎 = 𝜙(𝑠𝑡 , 𝑎)

➢ Reward 𝔼[𝑟𝑡,𝑎│𝑥𝑡,𝑎 ] = 𝜃𝑎 ⋅ 𝑥𝑡,𝑎

• Idea: Use ridge regression for መ𝜃𝑎 using 𝐴:σ 𝑥𝑡,𝑎𝑥𝑡,𝑎
𝑇 , 𝑏: σ𝑟𝑡,𝑎 ⋅ 𝑥𝑡,𝑎

• መ𝜃𝑎 = 𝐴−1 𝑏

• Add exploration bonus ≡ Std. dev of መ𝜃𝑎 ⋅ 𝑥𝑡,𝑎

𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

መ𝜃𝑎 ⋅ 𝑥𝑡,𝑎 + 𝛼 𝑥𝑡,𝑎
𝑇 𝐴−1𝑥𝑡,𝑎

Mean Conf.Interval



• MSN piloted contextual bandits

• Update model every 5 mins

• 𝜖-Greedy strategy for exploration ; no tuning

➢ 25% increase in clicks over static baseline!

• Yahoo Front Page news recommendation

➢ LinUCB gave ~10% increase in clicks compared to baseline 𝜖-Greedy

http://aka.ms/mwt

http://aka.ms/mwt


• Decision Service http://ds.microsoft.com

• Tutorial:  http://hunch.net/~exploration_learning/

• http://www.stat.berkeley.edu/~bartlett/courses/2014fall-cs294stat260/readings.html

• LinUCB:  https://arxiv.org/pdf/1003.0146.pdf

http://aka.ms/mwt

http://ds.microsoft.com/
http://hunch.net/~exploration_learning/
http://www.stat.berkeley.edu/~bartlett/courses/2014fall-cs294stat260/readings.html
https://arxiv.org/pdf/1003.0146.pdf
http://aka.ms/mwt

