Leader-Based Sequence Paxos
Assumptions

- Assume **eventual leader election abstraction** with a **ballot number** $\langle \text{Leader}, L, n \rangle$
 - BLE satisfies completeness and eventually accuracy
 - And also monotonically unique ballots
- The Leader-based Sequence Paxos is optimized for the case when a **single proposer** runs for a longer period of time as a leader
 - Thus, will not be aborted for a while
 - But must guarantee safety if aborted
The state of proposers

- We still have a set of proposers
- Any proposer will be either a **leader** or a **follower**
- A **leader** may be in either:
 - Prepare state, or
 - Accept state
- Until overrun by a higher leader, and moves to a **follower** state
Prepare phase

- On \langle Propose, C \rangle:
 - \(n_p := \) unique higher proposal number
 - \(S := \emptyset \), \(\text{acks} := 0 \)
 - send \langle Prepare, n_p \rangle to all acceptors

- On \langle Promise, n, n', v' \rangle s.t. \(n = n_p \):
 - add \((n', v')\) to \(S \) (multiset union)
 - if \(|S| = \lceil (N+1)/2 \rceil \):
 - \((k, v) := \text{max}(S)\) // adopt \(v \)
 - \(v_p := \) if \(v \neq \bot \) then \(v \) else \(C \)
 - \(v_p := v \oplus \langle C \rangle \)
 - send \langle Accept, n_p, v_p \rangle to all acceptors

Accept phase

- On \langle Prepare, n \rangle:
 - if \(n_{\text{prom}} < n \):
 - \(n_{\text{prom}} := n \)
 - send \langle Promise, n, n_a, v_a \rangle to Proposer

- On \langle Accept, n, v \rangle:
 - if \(n_{\text{prom}} \leq n \):
 - \(n_{\text{prom}} := n \)
 - \((n_a, v_a) := (n, v) \)
 - send \langle Accepted, n \rangle to Proposer

Learner

- On \langle Decide, v \rangle:
 - If \(|v_d| < |v| \):
 - \(v_d := v \)
 - trigger Decide(v_d)

\(\text{max}(S) \) is any element \((k, v)\) of \(S \) s.t. \(k \) is highest proposal number and \(v \) is a sequence

S. Haridi, KTHx ID2203.2x
Prepare once and Pipeline Accept
Solution outline

- Current Sequence-Paxos is inefficient:
 - With multiple concurrent proposers, conflicts and restarts are likely (higher load → more conflicts)
 - 2 rounds of messages for each value chosen (Prepare, Accept)

Solution:

- Pick a Leader(L, n) where n is a unique higher round number (leader election algorithm)
- The Leader acts as sole Proposer for round n
- After first Prepare (if not aborted) only perform Accepts until aborted by another Leader(n’), where n’ > n
Prepare Once, Pipeline Accept

- Benefit:
 - Proposer does prepare(n) before first-accept(n,v)
 - After that only one round-trip to decide on an extension of sequence v, as long as round is not aborted
 - (new leader with higher number)
 - Allows multiple outstanding accept requests (pipelining)
 - Lower propose-to-decide latency for multiple proposals
Chosen Sequence at round n

- **Sequence v is chosen in round n** if acceptors in a majority set have accepted (in round n) sequences having v as a prefix

<table>
<thead>
<tr>
<th>Round</th>
<th>Accepted by p_1</th>
<th>Accepted by p_2</th>
<th>Accepted by p_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 5</td>
<td>$\langle C_2, C_3, C_1 \rangle$</td>
<td>$\langle C_2, C_3 \rangle$</td>
<td>$\langle C_2, C_3, C_1, C_4 \rangle \atop \langle C_2, C_3, C_1 \rangle \atop \langle C_2, C_3 \rangle$</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=2</td>
<td></td>
<td>$\langle C_2 \rangle$</td>
<td>$\langle C_2 \rangle$</td>
</tr>
<tr>
<td>n=1</td>
<td>$\langle C_1 \rangle$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=0</td>
<td>$\langle \rangle$</td>
<td>$\langle \rangle$</td>
<td>$\langle \rangle$</td>
</tr>
</tbody>
</table>

- $\langle C_2, C_3, C_1 \rangle$ and all its prefixes are chosen in round 5
Prepare Once, Pipeline Accepts

- After first Prepare
 - Allow issuing and accepting multiple proposals in round n
- We have now multiple (values) v’s issued in the same round n?
- Acceptor accepts longer sequences in the same round n as long as $n \geq n_{prom}$ (acceptor’s promise)
Prepare at round n, Proposer (Leader) behavior

- Proposer \(p \) becomes a leader with round \(n \) (By a leader election algorithm)
 - At this state \(n \) is the highest known proposal number
 - But \(p \) might be aborted by a leader with higher number \(m > n \)
 - \(n \) is unique, since only one leader is elected with a given round number \(n \), \(n \) is higher than the rounds of previous leaders
- After successful completion of prepare phase the leader has the sequence \(v_0 \), and following invariant holds
 - The longest chosen sequence at any lower round \(m < n \) is a prefix of \(v_0 \) (quorum property guarantee)
Chosen Sequence at round n

- **Sequence v is chosen in round n** if acceptors in a majority set have accepted (in round n) sequences having v as a prefix

<table>
<thead>
<tr>
<th>Round</th>
<th>Accepted by p_1</th>
<th>Accepted by p_2</th>
<th>Accepted by p_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 5</td>
<td>$\langle C_2, C_3, C_1 \rangle$</td>
<td>$\langle C_2, C_3 \rangle$</td>
<td>$\langle C_2, C_3, C_1, C_4 \rangle$</td>
</tr>
<tr>
<td></td>
<td>$\langle C_2, C_3 \rangle$</td>
<td>$\langle C_2, C_3 \rangle$</td>
<td>$\langle C_2, C_3 \rangle$</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=2</td>
<td></td>
<td>$\langle C_2, C_3 \rangle$</td>
<td>$\langle C_2 \rangle$</td>
</tr>
<tr>
<td>n=1</td>
<td>$\langle C_1 \rangle$</td>
<td>$\langle C_1 \rangle$</td>
<td>$\langle C_1 \rangle$</td>
</tr>
<tr>
<td>n=0</td>
<td>$\langle \rangle$</td>
<td>$\langle \rangle$</td>
<td>$\langle \rangle$</td>
</tr>
</tbody>
</table>

- $\langle C_2, C_3, C_1 \rangle$ and all its prefixes are chosen in round 5
Accepts in round n, Proposer behavior

- A proposer (leader) issues multiple proposals in round n extending v_0
 - (n, v_0), (n, v_1), (n, v_2), ...
 - Proposer guarantees that $v_0 < v_1 < v_2 < ...$
 - Doesn’t have to wait for one proposal to be chosen before the next is issued

- Continues until aborted
Accepts in round n, Acceptor behavior

- We order proposals in the following way:
 - \((n, v) < (n', v')\) iff \(n < n'\) or \(n = n'\) and \(|v| < |v'|\)

- An acceptor extends its accepted sequence when it receives a new proposal
 - As long as it is a higher proposal according to the ordering above

- Accepted messages include the length of accepted values
 - Since multiple outstanding accept/accepted requests can be delivered out of order
Accepts in round n, Acceptor behavior

- Let $v_{a,q} = v_a$ at acceptor q, and $v_{p,L} = v_p$ at a leader L
- After q has accepted a proposal sent by L, it must be the case that $v_{a,q} \leq v_{p,L}$
 - It is enough for q to send back $|v_{a,q}|$
 - The proposer L can recreate $v_{a,q}$ from its $v_{p,L}$ as $\text{prefix}(v_{p,L}, |v_{a,q}|)$

- **on** $\langle \text{Accept, n, v} \rangle$ from p:
 - if $n_{prom} \leq n$:
 - $n_{prom} := n$
 - $(n_a, v_a) := \max((n_a, v_a), (n, v))$
 - **send** $\langle \text{Accepted, n, |v_a|} \rangle$ to p
Deciding on Sequences
Proposer behavior upon Accepted

- Proposer maintains in $\text{las}[p]$ the length of longest sequence accepted by acceptor p

- Sequence v is chosen
 - If for a majority of acceptors p: $\text{las}[p] \geq |v|$
 - If v is longer than previous sequence and chosen:
 - v is Decided and learners notified
Proposer behavior upon Accepted

- rename v_p to v_L the current extended proposed sequence
- At round n_L any value accepted by an acceptor a is a prefix of v_L
- A leader L, maintains l_c:
 - l_c is the length of the longest sequence that L knows is chosen (initially 0)
- On $\langle\text{Accepted}, n, m\rangle$ from a, $n = n_L$:
 - $\text{las}[a] := \max(m, \text{las}[a])$
 - if prefix(v_L, m) is chosen and $l_c < m$:
 - $l_c := m$
 - send $\langle\text{Decide, prefix}(v_L, m)\rangle$ to learners
Our leader-based Sequence Paxos
Initial State for Sequence Paxos

- **Proposers**
 - \(n_L = 0, v_L = \) Leader’s current round number, proposed value
 - \(\text{propCmds} = \langle \rangle \) Leader’s current set of proposed commands (empty set)
 - \(\text{las} = [0]^N \) Length of longest accepted sequence per acceptor
 - \(l_c = 0 \) Length of longest chosen sequence
 - \(\text{state} = \{(\text{leader, prepare}), (\text{leader, accept}), \text{follower}\} \)

- **Acceptor**
 - \(n_{\text{prom}} = 0 \) Promise not to accept in lower rounds
 - \(n_a = 0 \) Round number in which a value is accepted
 - \(v_a = \langle \rangle \) Accepted value (empty sequence)

- **Learner**
 - \(v_d = \langle \rangle \) Decided value (empty sequence)
Leader Initiation & Prepare Phase

- On \(\langle \text{Leader}, L, n \rangle\):
 - if \(\text{self} = L \text{ and } n > n_L\):
 - \(S := \emptyset\); state := \((\text{leader}, \text{prepare})\)
 - propCmds = \(\langle \rangle\); \((v_L, n_L) := (\langle \rangle, n)\)
 - \(\text{lS} := [0]^N, l_c := 0\)
 - send \(\langle \text{Prepare}, n_L \rangle\) to all acceptors
 - else: \((\text{state}, \text{leader}) := (\text{follower}, L)\)

- On \(\langle \text{Propose}, C \rangle\) and. state = \((\text{leader}, \text{prepare})\)
 - propCmds := propCmds \(\oplus \langle C \rangle\)

- On \(\langle \text{Promise}, n, n_a, v_a \rangle\) s.t. \(n = n_L\) and state = \((\text{leader}, \text{prepare})\)
 - add \((n_a, v_a)\) to \(S\)
 - If \(|S| = \lceil (N+1)/2 \rceil\):
 - \((k, v) := \max(S)\) // adopt \(v\)
 - \(v_L = v \oplus \text{propCmds}; \text{propCmds} = \emptyset\)
 - send \(\langle \text{Accept}, n_L, v_L \rangle\) to all acceptors
 - state := \((\text{leader}, \text{accept})\)
Leader Accept Phase

- On \(\langle\text{Propose}, C\rangle\) and state = (leader, accept)
 - \(v_L := v_L \oplus \langle C \rangle\)
 - send \(\langle\text{Accept}, n_L, v_L\rangle\) to all acceptors

- On \(\langle\text{Accepted}, n, m\rangle\) from \(a\), and \(n = n_L\) and state = (leader, accept)
 - \(\text{las}[a] := \max(m, \text{las}[a])\)
 - If \(l_c < m\) and \(\text{prefix}(v_L, m)\) is chosen:
 - \(l_c := m\),
 - send \(\langle\text{Decide}, \text{prefix}(v_L, m)\rangle\) to all learners
Acceptor and Learner behavior

- On \(\langle \text{Prepare}, n_p \rangle\) from (a leader) \(p\):
 - if \(n_{prom} < n_p\):
 - \(n_{prom} := n_p\)
 - send \(\langle \text{Promise}, n_p, n_a, v_a \rangle\) to \(p\)

- On \(\langle \text{Accept}, n_p, v \rangle\) from (a leader) \(p\):
 - If \(n_{prom} \leq n_p\):
 - \(n_{prom} := n_p\)
 - \((n_a, v_a) := \max((n_a, v_a), (n_p, v))\)
 - send \(\langle \text{Accepted}, n, |v_a| \rangle\) to \(p\)

- On \(\langle \text{Decide}, v \rangle\):
 - If \(|v_d| < |v|\):
 - \(v_d := v\)
 - trigger Decide\((v_d)\)
Leader

On \(\text{Leader}, L, n\):
 • if self = L and n > n_L:
 • S := \emptyset, state := (leader, prepare)
 • propCmds := \langle \rangle; (v_L, n_L) := (\langle \rangle, n)
 • las := \lfloor 0 \rfloor N, l_c := 0
 • send \langle \text{Prepare}, n_L \rangle to all acceptor
 • else: state, leader := follower, L

On \langle Promise, n, n_a, v_a \rangle s.t. n = n_L and state = (leader, prepare)
 • add \((n_a, v_a)\) to S
 • if \(|S|\leq \lfloor (N+1)/2 \rfloor:
 • \((k, v) := \max(S) \text{ // adopt } v\)
 • v_L := v + propCmds; propCmds := \emptyset
 • send \langle \text{Accept}, n_L, v_L \rangle to all acceptors
 • state := (leader, accept)

On \langle Propose, C \rangle and state = (leader, accept)
 • v_L := v_L + \langle C \rangle
 • send \langle \text{Accept}, n_L, v_L \rangle to all acceptors

On \langle Propose, C \rangle and state = (leader, prepare)
 • propCmds := propCmds + \langle C \rangle

On \langle Accepted, n, m \rangle from a, and n = n_L and state = (leader, accept)
 • las[a] := max(las[a], m)
 • If \(l_c < m\) and prefix(v_L, m) is supported:
 • \(l_c := m, \)
 • send \langle \text{Decide}, \text{prefix}(v_L, m) \rangle to all learners

Acceptors

On \langle \text{Prepare}, n_p \rangle from (a leader) p:
 • if \(n_{\text{prom}} < n_p:\)
 • \(n_{\text{prom}} := n_p\)
 • send \langle \text{Promise}, n_p, n_a, v_a \rangle to p

On \langle \text{Accept}, n_p, v \rangle from (a leader) p:
 • If \(n_{\text{prom}} \leq n_p:\)
 • \(n_{\text{prom}} := n_p\)
 • \((n_a, v_a) := \max((n_a, v_a), (n_p, v))\)
 • send \langle \text{Accepted}, n, |v_a| \rangle to p

Learner

On \langle \text{Decide}, v \rangle:
 • If \(|v_d| < |v|:\)
 • \(v_d := v\)
 • trigger Decide(v_d)
Correctness
Leader Based Algorithm
Correctness

- We must guarantee that:
 - If proposal \((n, v)\) is chosen, then for every higher proposal \((n', v')\) that is chosen, \(v \leq v'\)

- We have two cases:
 - \(n = n'\): only successively longer sequences can become chosen within the same round since acceptors accept growing sequences
 - \(n < n'\): the prepare phase guarantees that all chosen sequences in round \(n\) will be adopted in round \(n'\), and no new sequences can be chosen in round \(n\) after that
Performance

- At this point, the algorithm
 - Pipelines of proposals for each proposer (leader) until losing leader role
 - Only first proposal requires two round-trips once a proposer becomes a leader

- What remains
 - v_L, v_a and v_d are mostly redundant
 - Entire sequences are sent back and forth

- We fix these in the next unit
Removing redundancy of v_L, v_a and v_d
Assumptions so far

- **A1**: Optimized for the case when a single proposer runs for a longer period of time (leader)
- **We add a new assumption**
 - **A2**: Each process acts in all roles as proposer, acceptor and learner (replicated state machines)
 - Proposers have access to is own \(v_a \) and \(v_d \)
 - Acceptors know what is decided \(v_d \)
Removing V_L

- The leader p has access to its own v_a
- When p becomes a leader, it is possible to remove the need to store the sequences v_L and v_a separately at the leader
- By updating the local replica (acceptor) directly instead of sending a `prepare` message to itself it is possible to merge v_L into v_a
- At this state when p gets $\langle \text{Leader}, L, n \rangle$ and $L = p$:
 - $n > n_{(\text{prom at } p)}$
 - Hence $\langle \text{Promise}, n, n_{(a \text{ at } p)}, v_{(a \text{ at } p)} \rangle$ is unnecessary
- From now on the leader is extending his v_a
Leader

On $\langle \text{Leader}, L, n \rangle$:
- if $\text{self} = L$ and $n > n_L$:
 - $\text{propCmds} = \langle \rangle$, $(n_L, n_{\text{prom}}) := (n, n)$
 - $S := \{ (n_a, v_a) \}$, state := (leader, prepare)
 - $\text{las} := [0]^N$, $l_c := 0$, leader := self
 - send $\langle \text{Prepare}, n_L \rangle$ to all acceptor – { self }
- else: (state, leader) := (follower, L) abort()

On $\langle \text{Promise}, n, n_a, v_a \rangle$ s.t. $n = n_L$ and state := (leader, prepare)
- add (n_a, v_a) to S
- if $|S| = \lceil (N+1)/2 \rceil$:
 - $(k, v_a) := \text{max}(S)$ // adopt v
 - $v_a = v_a \oplus \text{propCmds}$; propCmds := $\langle \rangle$
 - send $\langle \text{Accept}, n_L, v_a \rangle$ to all acceptors
 - state := (leader, accept)

On $\langle \text{Propose}, C \rangle$ s.t. state = (leader, accept)
- $v_a = v_a \oplus \langle C \rangle$
- send $\langle \text{Accept}, n_L, v_a \rangle$ to all acceptors

On $\langle \text{Propose}, C \rangle$ and state = (leader, prepare)
- propCmds := propCmds $\oplus \langle C \rangle$

On $\langle \text{Accepted}, n, m \rangle$ from a, s.t. $n = n_L$ and state = accept
-

Acceptor

On $\langle \text{Prepare}, n_p \rangle$ from (a leader) p:
- if $n_{\text{prom}} < n_p$:
 - $n_{\text{prom}} := n_p$
 - send $\langle \text{Promise}, n_p, n_a, v_a \rangle$ to p

On $\langle \text{Accept}, n_p, v \rangle$ from (a leader) p:
- If $n_{\text{prom}} \leq n_p$:
 - $n_{\text{prom}} := n_p$
 - $(n_a, v_a) := \text{max}((n_a, v_a), (n_p, v))$
 - send $\langle \text{Accepted}, n, |v_a| \rangle$ to p

Learner

On $\langle \text{Decide}, v \rangle$:
- If $|v_d| < |v|$:
 - $v_d := v$
- trigger Decide(v_d)
Removing redundancy of v_a and v_d
Assumptions so far

- **A1**: Optimized for the case when a single proposer runs for a longer period of time (leader)

- **A2**: Each process acts in all roles as proposer, acceptor and learner (replicated state machines)

- We add a new assumption
 - **A3**: FIFO Perfect Links
The FIFO link assumption

- We assume FIFO Perfect Links (FPL)
 - This will be important for accepting commands incrementally
 - No performance penalties
 - Out of order commands has be buffered before decision
 - Not a too strong assumption in practice
 - In Fail-Silent model you get FPL from PL (Perfect Link) by adding sequence numbers
 - ZooKeeper makes this assumption too
 - If we implement Perfect Links on top of TCP then FIFO is more or less already provided during a session
Removing v_d

- Each replica stores both v_a and v_d, even though they are highly redundant
- Because of FIFO links:
 - At the **same round** n **accept** messages are delivered before corresponding **decide** messages from to any replica:
 - it always holds that at any replica q: $v_{(d \text{ at } q)}$ is a prefix of $v_{(a \text{ at } q)}$
 - Sequence v_d can be replaced with an integer l_d, such that $v_d = \text{prefix}(v_a, l_d)$
Leader

- On \(\langle\text{Leader}, L, n\rangle\):
 - if \(\text{self} = L\) and \(n > n_L\):
 - \(S := \{(n_a, v_a)\}\), state := (leader, prepare)
 - ...
 - send \(\langle\text{Prepare}, n_L\rangle\) to all acceptor – \{self\}
 - else: (state, leader) := (follower, L)

- On \(\langle\text{Promise}, n, n_a, v_a\rangle\) s.t. \(n = n_L\) and state := (leader, prepare):
 - ...

- On \(\langle\text{Propose}, C\rangle\) s.t. state = (leader, accept)
 - \(v_a = v_a + \langle C \rangle\)
 - send \(\langle\text{Accept}, n_L, v_a\rangle\) to all acceptors

- On \(\langle\text{Propose}, C\rangle\) s.t. state = (leader, prepare)
 - propCmds := propCmds + \langle C \rangle

- On \(\langle\text{Accepted}, n, m\rangle\) from \(a\), s.t. \(n = n_L\) and state = (leader, accept)
 - las[a] := max(las[a], m)
 - If \(l_c < m\) and prefix\((v_a, m)\) is supported:
 - \(l_c := m\)
 - send \(\langle\text{Decide}, \text{prefix}(v_a, m), n_L\rangle\) to all learners

Acceptor

- On \(\langle\text{Prepare}, n_p\rangle\) from (a leader) \(p\):
 - if \(n_{\text{prom}} < n_p\):
 - \(n_{\text{prom}} := n_p\)
 - send \(\langle\text{Promise}, n_p, n_a, v_a\rangle\) to \(p\)

- On \(\langle\text{Accept}, n_p, v\rangle\) from (a leader) \(p\):
 - If \(n_{\text{prom}} \leq n_p\):
 - \(n_{\text{prom}} := n_p\)
 - \((n_a, v_a) := \max((n_a, v_a), (n_p, v))\)
 - send \(\langle\text{Accepted}, n, \lvert v_a \rvert\rangle\) to \(p\)

Learner

- Initially \(l_d\) is 0
- On \(\langle\text{Decide}, v, n\rangle\):
 - If \(l_d < |v|\) and \(n_{\text{prom}} = n\):
 - \(l_d := |v|\)
 - trigger \(\text{Decide}(\text{prefix}(v_a, l_d))\)
Avoid sending sequences
Leader

- On \(\langle \text{Leader}, L, n \rangle\):
 - if \(\text{self} = L \text{ and } n > n_L\):
 - \(S := \{ (n_a, v_a) \}\), state := (leader, prepare)
 - propCmds = \(\emptyset\), \((n_L, n_{prom}) := (n, n)\)
 - las := \([0]^N\), \(l_c := 0\), leader := self
 - send \(\langle \text{Prepare}, n_L \rangle\) to all acceptor – \{ self \}
 - else:
 - \((\text{state}, \text{leader}) := (\text{follower}, L)\)

- On \(\langle \text{Promise}, n, n_a, v_a \rangle\) s.t. \(n = n_L\) and state = ...prepare...
 - add \((n_a, v_a)\) to \(S\)
 - if \(|S| = \lfloor (N+1)/2 \rfloor\):
 - \((k, v_a) := \max(S)\) // adopt \(v\)
 - \(v_a = v_a + \text{propCmds}; \text{propCmds} = \emptyset\)
 - send \(\langle \text{Accept}, n_L, v_a \rangle\) to all acceptors
 - state := (leader, accept)

- On \(\langle \text{Propose}, C \rangle\) s.t. state = ...accept..
 - \(v_a = v_a + \langle C \rangle\)
 - send \(\langle \text{Accept}, n_L, v_a \rangle\) to all acceptors

- On \(\langle \text{Propose}, C \rangle\) s.t. state = ...prepare..
 - propCmds := \text{propCmds} + \langle C \rangle

- On \(\langle \text{Accepted}, n, m \rangle\) from \(a\), s.t. \(n = n_L\) and state = ...
 - \(\text{las}[a] := \max(\text{las}[a], m)\)
 - If \(l_c < m\) and prefix(\(v_a\), \(m\)) is supported:
 - \(l_c := m\)
 - send \(\langle \text{Decide}, \text{prefix}(v_a, m), n_L \rangle\) to all learners

Acceptors

- On \(\langle \text{Prepare}, n_p \rangle\) from (a leader) \(p\):
 - if \(n_{prom} < n_p\):
 - \(n_{prom} := n_p\)
 - send \(\langle \text{Promise}, n_p, n_a, v_a \rangle\) to \(p\)
 - On \(\langle \text{Accept}, n_p, v \rangle\) from (a leader) \(p\):
 - If \(n_{prom} \leq n_p\):
 - \((n_a, v_a) := \max((n_a, v_a), (n_p, v))\)
 - send \(\langle \text{Accepted}, n, |v_a| \rangle\) to \(p\)

Learner

- Initially \(l_d \) is 0

On \(\langle \text{Decide}, v, n \rangle\):
 - If \(l_d < |v|\) and \(n_{prom} = n\):
 - \(l_d := |v|\)
 - trigger \(\text{Decide(prefix}(v_a, l_d))\)
Idea of Trim Promise

- Leader L sends a **Prepare** message to replica p that responds with a **Promise** msg
- Promise message **currently** contains entire sequence \(v_a\) at p
- But L knows that the sequence that will eventually by adopted by all replicas is an extension of \(v_d\) at L
- Changes:
 - Prepare message at L includes \((l_d = |v_d|, n_a)\) at L
 - Promise message includes either
 - \((n_a, \text{suffix}(v_a, l_d))_p\) if \(n_a\) at \(p\) \(\geq n_a\) at L
 - \((n_a, \langle \rangle)_p\) if \(n_a\) at \(p\) \(< n_a\) at L
- Proposer reconstructs the adopted sequence using \(\max()\)
Leader at round 3 p1 leader

- If p_1 becomes a leader at 3
 - Its decided sequence is $\langle C_1 \rangle$
 - $(n = 1, \text{suffix} = \langle A, B, D \rangle)_p$
 - p_1 consults a majority, itself and either p_2 or p_3 by sending $\langle \langle C_1 \rangle \rangle$
 - p_2 sends $(n = 2, \text{suffix} = \langle C_2, C_3 \rangle)_p$
 - p_3 sends $(n = 2, \text{suffix} = \langle C_2 \rangle)_p$
 - If p_2 consulted: $v_{a,p1} = \langle C_1 \rangle + \langle C_2, C_3 \rangle$ and extended locally by $\langle E, F, G \rangle$
 - $v_{a,p1} = \langle C_1, C_2, C_3, E, F, G \rangle$

<table>
<thead>
<tr>
<th>Round</th>
<th>Accepted by p_1</th>
<th>Accepted by p_2</th>
<th>Accepted by p_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 3$</td>
<td>$\langle C_1, C_2, C_3, E, F, G \rangle$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 2$</td>
<td>$\langle C_1, C_2, C_3 \rangle$</td>
<td>$\langle C_1, C_2 \rangle$</td>
<td></td>
</tr>
<tr>
<td>$n = 1$</td>
<td>$\langle C_1, A, B, D \rangle$</td>
<td></td>
<td>$\langle C_1 \rangle$</td>
</tr>
<tr>
<td>$n = 0$</td>
<td>$\langle \rangle$</td>
<td>$\langle \rangle$</td>
<td>$\langle \rangle$</td>
</tr>
</tbody>
</table>
Leader at round 3 p1 leader

- If p_1 becomes a leader at 3
 - Its decided sequence is $\langle C_1 \rangle$
 - $(n = 1, \text{suffix} = \langle A, B, D \rangle)_p$
 - p_1 consults a majority, itself and either p_2 or p_3 by sending $\langle \langle C_1 \rangle \rangle$
 - p_2 sends $(n = 2, \text{suffix} = \langle C_2, C_3 \rangle)_p$
 - p_3 sends $(n = 2, \text{suffix} = \langle C_2 \rangle)_p$
 - If p_3 consulted: $\langle C_2 \rangle$ is added to $\langle C_1 \rangle$ extended locally by $\langle E, F, G \rangle$
 - $v_{a,p1} = \langle C_1, C_2, E, F, G \rangle$

<table>
<thead>
<tr>
<th>Round</th>
<th>Accepted by p_1</th>
<th>Accepted by p_2</th>
<th>Accepted by p_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 3$</td>
<td>$\langle C_1, C_2, E, F, G \rangle$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 2$</td>
<td>$\langle C_1, C_2, C_3 \rangle$</td>
<td>$\langle C_1, C_2 \rangle$</td>
<td></td>
</tr>
<tr>
<td>$n = 1$</td>
<td>$\langle C_1, A, B, D \rangle$</td>
<td>$\langle C_1 \rangle$</td>
<td></td>
</tr>
<tr>
<td>$n = 0$</td>
<td>$\langle \rangle$</td>
<td>$\langle \rangle$</td>
<td>$\langle \rangle$</td>
</tr>
</tbody>
</table>
If \(p_3 \) becomes a leader at 3

- Its decided sequence is \(\langle C_1, C_2 \rangle \)
 - \((n_a = 2, \text{ suffix } = \langle \rangle)_p^3 \)
- \(p_3 \) consults a majority, itself and either \(p_1 \) or \(p_2 \) by sending \((|v_d| = |\langle C_1, C_2 \rangle|, n_a=2) \)
 - \(p_1 \) sends \((n_a = 1, \text{ suffix } = \langle \rangle)_p^1 \)
 - \(p_2 \) sends \((n_a = 2, \text{ suffix } = \langle C_3 \rangle)_p^2 \)
- If \(p_1 \) consulted: \(v_{a,p^3} = \langle C_1, C_2 \rangle + \langle \rangle \) and extended locally by \(\langle E, F, G \rangle \)
- \(v_{a,p^3} = \langle C_1, C_2, E, F, G \rangle \)

<table>
<thead>
<tr>
<th>Round</th>
<th>Accepted by (p_1)</th>
<th>Accepted by (p_2)</th>
<th>Accepted by (p_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 3)</td>
<td></td>
<td></td>
<td>(\langle C_1, C_2, E, F, G \rangle)</td>
</tr>
<tr>
<td>(n = 2)</td>
<td>(\langle C_1, C_2, C_3 \rangle)</td>
<td>(\langle C_1, C_2 \rangle)</td>
<td></td>
</tr>
<tr>
<td>(n = 1)</td>
<td>(\langle C_1, A, B, D \rangle)</td>
<td></td>
<td>(\langle C_1 \rangle)</td>
</tr>
<tr>
<td>(n = 0)</td>
<td>(\langle \rangle)</td>
<td>(\langle \rangle)</td>
<td>(\langle \rangle)</td>
</tr>
</tbody>
</table>
Leader at round 3 p3 is a leader

- If p_3 becomes a leader at 3
 - Its decided sequence is $\langle C_1, C_2 \rangle$
 - $(n_a = 2, \text{suffix} = \langle \rangle)_p$3
 - p_3 consults a majority, itself and either p_1 or p_2 by sending $(|v_d| = |\langle C_1, C_2 \rangle|, n_a=2)$
 - p_1 sends $(n_a = 1, \text{suffix} = \langle \rangle)_p$1
 - p_2 sends $(n_a = 2, \text{suffix} = \langle C_3 \rangle)_p$2
 - If p_2 consulted: $\langle C_3 \rangle$ is added to $\langle C_1, C_2 \rangle$ and extended locally by $\langle E, F, G \rangle$
 - $v_{a,p} = \langle C_1, C_2, C_3, E, F, G \rangle$

<table>
<thead>
<tr>
<th>Round</th>
<th>Accepted by p_1</th>
<th>Accepted by p_2</th>
<th>Accepted by p_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 3$</td>
<td></td>
<td>$\langle C_1, C_2, C_3, E, F, G \rangle$</td>
<td></td>
</tr>
<tr>
<td>$n = 2$</td>
<td>$\langle C_1, C_2, C_3 \rangle$</td>
<td>$\langle C_1, C_2 \rangle$</td>
<td></td>
</tr>
<tr>
<td>$n = 1$</td>
<td>$\langle C_1, A, B, D \rangle$</td>
<td></td>
<td>$\langle C_1 \rangle$</td>
</tr>
<tr>
<td>$n = 0$</td>
<td>$\langle \rangle$</td>
<td>$\langle \rangle$</td>
<td>$\langle \rangle$</td>
</tr>
</tbody>
</table>
Leader at round 3 p2 is a leader

- If p_2 becomes a leader at 3
 - Its decided sequence is \(\langle C_1, C_2 \rangle \)
 - \((n_a = 2, \text{suffix} = \langle C_3 \rangle)_{p_3} \)
 - p_2 consults a majority, itself and either p_1 or p_3 by \((|v_d| = |\langle C_1, C_2 \rangle|, n_a=2)_{p_2} \)
 - p_1 sends \((n_a = 1, \text{suffix} = \langle \rangle)_{p_1} \)
 - p_3 sends \((n_a = 2, \text{suffix} = \langle \rangle)_{p_2} \)
 - If p_1 consulted: \(v_{a,p_2} = \langle C_1, C_2 \rangle + \langle C_3 \rangle \) and extended locally by \(\langle E, F, G \rangle \)
 - \(v_{a,p_2} = \langle C_1, C_2, C_3, E, F, G \rangle \)
 - If p_2 consulted: \(v_{a,p_2} = \langle C_1, C_2 \rangle + \langle C_3 \rangle \) and extended locally by \(\langle E, F, G \rangle \)
 - \(v_{a,p_2} = \langle C_1, C_2, C_3, E, F, G \rangle \)

<table>
<thead>
<tr>
<th>Round</th>
<th>Accepted by p_1</th>
<th>Accepted by p_2</th>
<th>Accepted by p_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 3</td>
<td>(\langle C_1, C_2, C_3, E, F, G \rangle)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 2</td>
<td>(\langle C_1, C_2, C_3 \rangle)</td>
<td>(\langle C_1, C_2 \rangle)</td>
<td></td>
</tr>
<tr>
<td>n = 1</td>
<td>(\langle C_1, A, B, D \rangle)</td>
<td>(\langle C_1 \rangle)</td>
<td></td>
</tr>
<tr>
<td>n = 0</td>
<td>(\langle \rangle)</td>
<td>(\langle \rangle)</td>
<td>(\langle \rangle)</td>
</tr>
</tbody>
</table>
Implementation

- **On** \(\langle \text{Leader}, L, n \rangle\):
 - if \(\text{self} = L \text{ and } n > n_L\):
 - leader := self, state := prepare
 - \(S := \{(n_a, \text{suff}(v_a, l_d))\}\)
 - propCmds = \(\langle \rangle\), \((n_L, n_{\text{prom}}) := (n, n)\)
 - las := \([0]^N\), \(l_c := 0\), leader := self
 - send \(\langle \text{Prepare}, n_L, l_d, n_a \rangle\) to all acceptor – { self }
 - else: (state, leader) := (follower, L) abort()

- **On** \(\langle \text{Prepare}, n_p, l_d, n \rangle\) from (a leader) \(p\):
 - if \(n_{\text{prom}} < n_p\):
 - \(n_{\text{prom}} := n_p\)
 - suffix := if \(n_a \geq n : \text{suff}(v_a, l_d)\) else \(\langle \rangle\)
 - send \(\langle \text{Promise}, n_p, n_a, \text{suff} \rangle\) to \(p\)
Implementation

- On \(\text{Promise}, \ n, \ n_a, \ \text{suffx}_a\) s.t. \(n = n_L\) and state = \text{prepare}
 - add \((n_a, \ \text{suffx}_a)\) to \(S\)
 - if \(|S| = \lfloor (N+1)/2 \rfloor\):
 - \((k, \ \text{suffx}) := \max(S) /\text{ adopt v}\)
 - \(v_a = \text{prefix}(v_a, l_d) + \text{suffx} + \text{propCmds};\)
 - \(\text{propCmds} = \langle \rangle\)
 - \text{send} \\langle \text{Accept}, \ n_L, \ v_a \rangle \text{ to all acceptors}\)
 - state := \text{accept}\)

- S = \{(n_1, v_1), \ldots, (n_k, v_k)\}

- \text{fun max}(S):
 - \((n,v) := (0,\langle \rangle)\)
 - \text{for} \((n',v)\) \text{ in} \(S\):
 - if \(n < n'\) or \((n = n' \text{ and } |v| < |v'|)\):
 - \((n,v) := (n',v')\)
 - \text{return} \((n,v)\)

- On \(\text{Prepare}, \ n_p, \ l_d, \ n\) from \text{(a leader)} \(p\):
 - if \(n_{prom} < n_p\):
 - \(n_{prom} := n_p\)
 - suffix := if \(n_a \geq n\) : suffix(v_a, l_d) else \langle \rangle\)
 - \text{send} \\langle \text{Promise}, \ n_p, \ n_a, \ \text{suffx} \rangle \text{ to} \ p\)
Leader

On \(\langle \text{Leader}, \text{L}, n \rangle\):
- if \(\text{self} = \text{L} \text{ and } n > n_L\):
 - leader := self, state := \ldots \text{prepare}\ldots
 - \(S := \{ (n_a, \text{suffix}(v_a, l_d)) \}\)
 - propCmds = \(\langle \rangle\), \(n_{\text{prom}} := (n, n)\)
 - \(l_a := [0]^N, l_c := 0\), leader := self
 - \(\text{send} \langle \text{Prepare}, n_L, l_d, n_a \rangle\) to all acceptor \{- self \}
- else: (state, leader) := (follower, L)

On \(\langle \text{Promise}, n, n_a, \text{suffix}_a \rangle\) s.t. \(n = n_L\) and state = \text{prepare}…
- add \((n_a, \text{suffix}_a)\) to \(S\)
- if |\(S|\geq \lceil (N+1)/2 \rceil:\)
 - \((k, \text{suffix}) := \text{max}(S) // \text{adopt } v\)
 - \(v_a = \text{prefix}(v_a, l_d) + \text{suffix} + \text{propCmds};\)
 - propCmds := \(\varnothing\)
 - \(\text{send} \langle \text{Accept}, n_L, v_a \rangle\) to all acceptors
 - state := \ldots \text{accept}…

On \(\langle \text{Propose}, C \rangle\) s.t. state = \text{accept}…
- \(v_a = v_a + \langle C \rangle\)
- \(\text{send} \langle \text{Accept}, n_L, v_a \rangle\) to all acceptors

On \(\langle \text{Propose}, C \rangle\) s.t. state = \text{prepare}…
- propCmds := propCmds + \(\langle C \rangle\)

On \(\langle \text{Accepted}, n, m \rangle\) from \(a\), s.t. \(n = n_L\) and state = \text{accept}.
- las[a] := max(las[a], m)
 - If \(l_c < m\) and prefix(v_a, m) is supported:
 - \(l_c := m\)
 - \(\text{send} \langle \text{Decide}, \text{prefix}(v_a, l_d), n_L \rangle\) to all learners

Acceptor

On \(\langle \text{Prepare}, n_p, l_d, n \rangle\) from (a leader) \(p\):
- if \(n_{\text{prom}} < n_p:\)
 - \(n_{\text{prom}} := n_p\)
 - \(n_{\text{prom}} := n_p\)
 - \(\text{suffix} := \text{if } n_a \geq n : \text{suffix}(v_a, l_d) \text{ else } \varnothing\)
 - \(\text{send} \langle \text{Promise}, n_p, n_a, \text{suffix} \rangle\) to \(p\)

On \(\langle \text{Accept}, n_p, v \rangle\) from (a leader) \(p\):
- If \(n_{\text{prom}} \leq n_p:\)
 - \(n_{\text{prom}} := n_p\)
 - \((n_a, v_a) := \text{max}((n_a, v_a), (n_p, v))\)
 - \(\text{send} \langle \text{Accepted}, n, |v_a| \rangle\) to \(p\)

Learner

Initially \(l_d\) is 0

On \(\langle \text{Decide}, v, n \rangle\):
- If \(l_d < |v|\) and \(n_{\text{prom}} = n:\)
 - \(l_d := |v|\)
 - \(\text{trigger} \text{Decide(prefix}(v_a, l_d))\)
The Accept phase
The first Accept AcceptSync
First Accept

- After getting Promise messages from a majority, The leader L updates the state of its accepted sequence v_a
- Leader needs to update the accepted sequence v_a’s of the replicas
- We have two cases
 - Replica q_i from which L received a promise message in state prepare
 - Replicas q_i from which L received a promise message in state accept
- In both cases the leader needs to know the length of decided sequence at each replica

$\langle \text{Leader, L, n} \rangle$

prepare

$\langle \text{Prepare ...} \rangle$

$\langle \text{Promise ...} \rangle$

$\langle \text{Accept ...} \rangle$

accept

$\langle \text{Promise ...} \rangle$

follower

$\langle \text{Leader, L', n'} \rangle$

follower

replica q

S. Haridi, KTHx ID2203.2x
AcceptSync

- In both cases the first accept is special
- It synchronizes the state of the replicas to reflect the state of the leader

- We call the first Accept **AcceptSync**
- We extend the state of a follower to distinguish the first accept from subsequent accepts
 - (follower, _) initially
 - (follower, prepare) after Prepare message
 - (follower, accept) after AcceptSync message
AcceptSync, leader in prepare state

- Leader L has acquired the knowledge of the length of decided sequence from a majority of replicas through promise messages
 - Each replica q sends the length of its decided sequence l_d at q in the promise
 - Leader L reconstructs his own v_a
 - For each replica q in the majority: L sends an AcceptSync message $\text{suffix}(v_a \text{ at } L, l_d \text{ at } q)$ and l_d at q
Implementation

- On \langle \text{Promise}, n, n_a, \text{suff}_a, l_d \rangle \text{ from a s.t. } n = n_L \text{ and state } = \ldots\text{prepare}\ldots

 add \ (n_a, \text{suff}_a) \text{ to } S, \ lds[a] := l_d

 if \ |S| = \lceil \frac{N+1}{2} \rceil:
 \ (k, \text{suff}) := \max(S) // \text{adopt v}
 \ v_a = \text{prefix}(v_a, l_d) + \text{suff} + \text{propCmds};

 \ lds[\text{self}] := |v_a| //** selecting chosen sequence */
 \ \text{propCmds} = \emptyset, \ \text{state} := (\text{leader, accept})

 \text{for } p \text{ in } \pi- \{\text{self}\} \text{ s.t. } lds[p] \neq \bot:

 \text{send } \langle \text{AcceptSync}, n_L, \text{suff}(v_a, lds[p]), lds[p] \rangle \text{ to } p

- On \langle \text{Prepare}, n_L, l_d, n \rangle \text{ from } (\text{a leader}) L:

 if \ n_{\text{prom}} < n_L:
 \ n_{\text{prom}} := n_L

 \ \text{state} := (\text{follower, prepare})

 \text{suff} := \text{if } n_a \geq n : \text{suff}(v_a, l_d) \ \text{else } \langle \rangle

 \text{send } \langle \text{Promise}, n_L, n_a, \text{suff}, l_d \rangle \text{ to } p
Implementation

- On \(\langle \text{Promise}, n, n_a, \text{suff}x_a, ld_a \rangle \) from a \text{s.t.} \(n = n_L \) and state = (leader, prepare):
 - add \((n_a, \text{suff}x_a)\) to \(S \), \(lds[a] := ld_a \)
 - if \(|S|=(N+1)/2\):
 - \((k, \text{suff}) := \max(S) \) // adopt \(v \)
 - \(v_a := \text{prefix}(v_a, l_d) + \text{suff}x + \text{propCmds} \)
 - \(las[self] := |v_a| \) /* selecting chosen sequence */
 - \(\text{propCmds} = \emptyset \), state := (leader, accept)
 - for \(p \) in \(\pi - \{\text{self}\} \) \text{s.t.} \(lds[p] \neq \bot \):
 - send \(\langle \text{AcceptSync}, n_L, \text{suff}x(v_a, lds[p]), lds[p] \rangle \) to \(p \)

- On \(\langle \text{AcceptSync}, n_L, \text{suff}x_v, ld \rangle \) from \(L \) and state = (follower, prepare):
 - If \(n_{prom} = n_L \):
 - \(n_a := n_L \)
 - \(v_a := \text{prefix}(v_a, ld) + \text{suff}x_v \)
 - send \(\langle \text{Accepted}, n_L, |v_a| \rangle \) to \(p \)
 - state = (follower, accept)
Leader at round 3

- If \(p_1 \) becomes a leader at 3
 - Its decided sequence is \(\langle C_1 \rangle \)
 - \((n = 1, \text{suffix} = \langle A, B, D \rangle)_{p_1} \)
 - \(p_1 \) consults itself and \(p_2 \) by sending \(\langle C_1 \rangle \)
 - \(p_2 \) sends \((n = 2, \text{suffix} = \langle C_2, C_3 \rangle)_{p_2}, l_{d,p2} = 2 \)
 - \(P_1 \) constructs \(v_{a,p1} = \langle C_1 \rangle + \langle C_2, C_3 \rangle \)
 - extended locally by \(\langle E, F, G \rangle \)
 - \(v_{a,p1} = \langle C_1, C_2, C_3, E, F, G \rangle \)
 - \(p_1 \) sends
 - suffix\((v_{a,p1}, l_{d,p2}) = \langle C_3, E, F, G \rangle \)
 - \(l_{d,p2} = 2 \)
 - \(p_2 \) reconstructs its \(v_a \) at round 3
 - \(v_{a,p2} = \langle C_1, C_2, C_3, E, F, G \rangle \)
Leader at round 3

- If p_1 becomes a leader at 3
 - Its decided sequence is $\langle C_1 \rangle$
 - $(n = 1, \text{suffix} = \langle A, B, D \rangle)_p$ p_1
 - p_1 consults a majority
 - If p_3 consulted: $v_{a,p_1} = \langle C_1 \rangle + \langle C_2 \rangle$ and extended locally by $\langle E, F, G \rangle$
 - $v_{a,p_1} = \langle C_1, C_2, E, F, G \rangle$
 - p_1 sends
 - $\text{suffix}(v_{a,p_1}, l_{d,p_3}) = \langle E, F, G \rangle +$
 - $l_{d,p_2} = 2$
 - p_3 reconstructs its v_a at round 3
 - $v_{a,p_2} = \langle C_1, C_2, E, F, G \rangle$

<table>
<thead>
<tr>
<th>Round</th>
<th>Accepted by p_1</th>
<th>Accepted by p_2</th>
<th>Accepted by p_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 3$</td>
<td>$\langle C_1, C_2, E, F, G \rangle$</td>
<td>$\langle C_1, C_2, E, F, G \rangle$</td>
<td>$\langle C_1, C_2, E, F, G \rangle$</td>
</tr>
<tr>
<td>$n = 2$</td>
<td>$\langle C_1, C_2, C_3 \rangle$</td>
<td>$\langle C_1, C_2 \rangle$</td>
<td>$\langle C_1, C_2 \rangle$</td>
</tr>
<tr>
<td>$n = 1$</td>
<td>$\langle C_1, A, B, D \rangle$</td>
<td>$\langle C_1 \rangle$</td>
<td>$\langle C_1 \rangle$</td>
</tr>
<tr>
<td>$n = 0$</td>
<td>$\langle \rangle$</td>
<td>$\langle \rangle$</td>
<td>$\langle \rangle$</td>
</tr>
<tr>
<td>Round</td>
<td>Accepted by p₁</td>
<td>Accepted by p₂</td>
<td>Accepted by p₃</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>n = 3</td>
<td>〈C₁, C₂, C₃ E, F, G〉</td>
<td>〈C₁, C₂, C₃ E, F, G〉</td>
<td></td>
</tr>
<tr>
<td>n = 2</td>
<td>〈C₁, C₂, C₃〉</td>
<td>〈C₁, C₂〉</td>
<td></td>
</tr>
<tr>
<td>n = 1</td>
<td>〈C₁, A, B, D〉</td>
<td>〈C₁〉</td>
<td></td>
</tr>
<tr>
<td>n = 0</td>
<td>〈〉</td>
<td>〈〉</td>
<td>〈〉</td>
</tr>
</tbody>
</table>

If \(p₂\) becomes a leader at 3

- Its decided sequence is \(\langle C₁, C₂ \rangle\)
 - \((n_a = 2, \text{suffix } = \langle C₃ \rangle)\) \(p₃\)
 - \(p₂\) consults a majority, itself and either \(p₁\) or \(p₃\) by \(|v_d| = |\langle C₁, C₂ \rangle|, n_a = 2\) \(p₂\)
 - \(p₁\) sends \((n_a = 1, \text{suffix } = \langle \rangle)\) \(p₁\), \(l_{d,p₁} = 1\)
 - \(p₂\) sends to \(p₁\)
 - suffix\((v_{a,p₁}, l_{d,p₁}) = \langle C₂, C₃ E,F,G \rangle\)
 - \(l_{d,p₁} = 1\)
 - \(p₁\) reconstructs its \(v_a\) at round 3
 - \(v_{a,p₁} = \langle C₁, C₂, C₃, E, F, G \rangle\)
Leader at the Accept Phase II
First Accept, leader in Accept State

- After getting Promise msgs from a majority, The leader L updates the state of its accepted sequence v_a

- Leader needs to update the accepted sequence v_a’s of the replicas

- We have two cases
 - Replica q_i from which L received a promise message in state prepare
 - Replicas q_i from which L received a promise message in state accept

- In both cases the leader needs to know the length of decided sequence at each replica
AcceptSync, leader in accept state

- Leader L receives a promise from replica q while in the accept state
 - Each replica q sends the length of its decided sequence l_d at q in the Promise
 - Leader has already reconstructed his sequence v_a
 - For each other replica q after receiving a promise, L sends an AcceptSync message:
 - $\text{suffix}(v_a \text{ at } L, \ l_d \text{ at } q)$ and l_d at q
 - If some sequence is already decided it sends the decide index l_d at L
AcceptSync, leader in accept state

- Other replicas
 - Leader L waits until it receives Promise msg from q before sending AcceptSync message to q
 - Receiving a promise synchronizes L’s knowledge about q
 - Maintain invariant at q: $v_d \leq v_a$
 - L may not send Decide msg or subsequent Accept msgs to q until AcceptSync msg is sent to q

- If some sequence has been chosen before L received promise from q then L must send Decide msg to q after first Accept
 - This is indicated by $l_c \neq 0$: Length of longest chosen (learned) sequence
Implementation

- On \(\langle Promise, n, n_a, \text{suffix}_a, ld_a \rangle \) from a and \(n = n_L \) and state = (leader, accept)
 - \(\text{lds}[a] := ld_a \)
 - send \(\langle AcceptSync, n_L, \text{suffix}(v_a, \text{lds}[a]), \text{lds}[a] \rangle \) to a
 - if \(l_c \neq 0 \):
 - send \(\langle Decide, l_d, n_L \rangle \) to a

- On \(\langle AcceptSync, n_L, \text{suffix}_v, ld \rangle \) from L and state = (follower, prepare):
 - If \(n_{\text{prom}} = n_L \):
 - \(n_a := n_L \)
 - \(v_a := \text{prefix}(v_a, ld) + \text{suffix}_v \)
 - send \(\langle Accepted, n_L, |v_a| \rangle \) to p
 - state = (follower, accept)
Updating replicas (incremental Accepts)

- Subsequent `Accept` messages:
 - Let \(m_1 = \langle \text{Accept}, n_L, v_1 \rangle \) and \(m_2 = \langle \text{Accept}, n_L, v_2 \rangle \), and \(m_1 \) is sent before \(m_2 \) from leader \(L \) to a replica \(q \)
 - \(L \) knows that at the time when \(q \) processes \(m_2 \), \(q \) will have accepted \(v_1 \), or blocked round \(n_L \)
 - Holds because of FIFO links
 - Therefore \(L \) will send \(vs = \text{suffix}(v_2, |v_1|) \) and \(\text{offset} = |v_1| \) instead of \(v_2 \)
 - In particular if \(v_2 = v_1 + \langle C \rangle \): \(m_2 \) is \(\langle \text{Accept}, n_L, \langle C \rangle, |v_1| \rangle \)
Implementation

- When a leader L in the accept state gets a new command C
 - Updates its accepted sequence and its $\text{las}[L]$
 - Sends Accept messages to all replicas that passed the prepare phase

- On $\langle\text{Propose}, C\rangle$ and state = (leader, accept)
 - $v_a = v_a \oplus \langle C\rangle$
 - $\text{las}[\text{self}] := \text{las}[\text{self}] + 1$
 - for p in π- {self} s.t. $\text{lds}[p] \neq \bot$
 - send $\langle\text{Accept}, n_L, \langle C\rangle\rangle$ to p

- A replica that moved to the accept phase will accept the command if leader is in the current round as the promise, extends its accepted sequence and acknowledges to the leader

- On $\langle\text{Accept}, n_L, \langle C\rangle\rangle$ from (a leader) L and state = (follower, accept)
 - If $n_{\text{prom}} = n_L$:
 - $v_a := v_a \oplus \langle C\rangle$
 - send $\langle\text{Accepted}, n_p, |v_a|\rangle$ to L
How to Decide
Implementation

- The leader maintains
 - $\textit{l}\text{as}[0]$: the leader’s knowledge of the longest accepted sequence per replica
 - l_c : the longest learned sequence so far
- If m the length of the acknowledged sequence is greater than l_c, a majority of replicas responded: a longer sequence is chosen (supported)
- A decision is sent to all replicas in the accept phase

- On $\langle \text{Accepted}, n, m \rangle$ from a, s.t. $n = n_L$ and state = (leader, accept)
 - $\textit{l}\text{as}[a] := m$
 - If $l_c < m \text{ and } |\{p \in \pi : \textit{l}\text{as}[a] \geq m\}| \geq \lfloor (N+1)/2 \rfloor$
 - $l_c := m$
 - for p in π s.t. $\text{lds}[p] \neq \perp$
 - send $\langle \text{Decide}, l_c, n_L \rangle$ to p
Deliver One Command At A Time

- Currently every decided sequence is handed to the application in its entirety
- It makes more sense to change the API and decide one command at a time

- Initially \(l_d \) is 0 // zero-based indexing

- On \(\langle \text{Decide}, l, n_L \rangle \):
 - if \(n_{\text{prom}} = n_L \):
 - while \(l_d < l \):
 - trigger Decide\((v_a[l_d]) \)
 - \(l_d := l_d + 1 \)

Initially \(l_d \) is 0
On \(\langle \text{Decide}, v, n \rangle \):
 - if \(l_d < |v| \) and \(n_{\text{prom}} = n \):
 - \(l_d = |v| \)
 - trigger Decide\((\text{prefix}(v_a, l_d)) \)
The final algorithm
The final Sequence Paxos algorithm

- The algorithm uses:
 - BallotLeaderElection
 - FIFOPerfectPointToPointLinks
 - The algorithm works in the asynchronous model
 - but requires BLE which works in the partially synchronous model
Initial Replica for Sequence Paxos

- **Leader specific**
 - propCmds = \(\langle\rangle\) Leader’s current set of proposed commands (empty set)
 - las = \([0]^N\) Length of longest accepted sequence per acceptor
 - lds = \([\bot]^N\) Length of longest known decided sequence per acceptor
 - \(l_c = 0\) Length of longest chosen (learned) sequence
 - acks = \([\bot]^N\) Promise acks per acceptor \(p \mapsto (n, v)\)

- **Replica (including Acceptor and Learner)**
 - \((n_L, \text{leader}) = (0, \bot)\) Leader’s current round number, leader process
 - state = \(\{(\text{follower, leader}), \{\text{prepare, accept, } \bot\}\}\) initially \((\text{follower, } \bot)\)
 - \(n_{\text{prom}} = 0\) Promise not to accept in lower rounds
 - \(n_a = 0\) Round number in which a value is accepted
 - \(v_a = \langle\rangle\) Accepted value (empty sequence)
 - \(l_d = 0\) Length of decided value (length of empty sequence)
Replicas

On \(\text{Leader}, \ L, \ n\):
 if \(n > n_L\):
 leader := L _ n_L := n
 if self = L and \(n_L > n_{\text{prom}}\):
 state := (leader, prepare)
 propCmds = \(\langle \rangle\); las := [0]^N; lds := [\bot]^N
 acks := [\bot]^N; \(l_c := 0\),
 send \(\langle \text{Prepare}, \ n_L, l_d, n_a \rangle\) to all \(\pi _ \{\text{self}\}\)
 acks[L] := (n_a, suffix(v_a, l_d))
 lds[\text{self}] := l_d; n_{\text{prom}} := n_L
 else:
 state = (follower, state[2])

On \(\text{Prepare}, \ n_L, l_d, n\) from L:
 if \(n_{\text{prom}} < n_L\):
 n_{\text{prom}} := n_L; state := (follower, prepare)
 suffix := if \(n_a \geq n\) : suffix(v_a, l_d) else \(\langle \rangle\)
 send \(\langle \text{Promise}, n_L, n_a, \text{suffix}, l_d \rangle\) to L

On \(\text{Promise}, n, n_{a}, \text{suffix}_a, l_d\) from a
 s.t. \(n = n_L\ and\ state = (\text{leader, prepare})\):
 acks[a] := (n_a, \text{suffix}_a), lds[a] := l_d
 \(P := \{p \in \pi : \text{acks}[p] \neq \bot\}\)
 if \(|P| = \lceil (N+1)/2 \rceil\):
 \((k, \text{suffix}) := \max\{\text{acks}[p] : p \in P\}\) // adopt \(v\)
 \(v_a = \text{prefix}(v_a, l_d) + \text{suffix} + \text{propCmds};\)
 las[\text{self}] := \(|v_a|\)
 propCmds := \(\langle \rangle\); state := (leader, accept)
 for p in \(\pi_\{\text{self}\}\) and lds[p] \(\neq \bot\):
 suf := suffix(v_a, lds[p])
 send \(\langle \text{AcceptSync}, n_L, \text{suf}, \text{lds}[p] \rangle\) to p

On \(\text{Promise}, n, n_{a}, \text{suffix}_a, l_d\) from a
 s.t. \(n = n_L\ and\ state = (\text{leader, accept})\):
 lds[a] := l_d
 send \(\langle \text{AcceptSync}, n_L, \text{suffix}(v_a, lds[a]), \text{lds}[a] \rangle\) to a
 if \(l_c \neq 0\):
 send \(\langle \text{Decide}, l_d, n_L \rangle\) to a

S. Haridi, KTHx ID2203.2x
On \(\texttt{AcceptSync}, n_L, \text{sufx}, ld\) from p

s.t. state = (follower, prepare):

If \(n_{prom} = n_L:

n_a := n_L

v_a := \text{prefix}(v_a, ld) + \text{sufx}

send \(\texttt{Accepted}, n_L, |v_a|\) to p

state = (follower, accept)

On \(\texttt{Accept}, n_L, \langle C\rangle, ld\) from p

s.t. state = (follower, accept):

If \(n_{prom} = n_L:

v_a := n_L + \langle C\rangle

send \(\texttt{Accepted}, n_L, |v_a|\) to p

On \(\texttt{Decide}, l, n_L\):

if \(n_{prom} = n_L:

while \(l_d < l:

\text{trigger} \ \text{Decide}(v_a[l_d])

l_d := l_d + 1

On \(\texttt{Propose}, C\)

s.t. state = (leader, prepare):

\(\text{propCmds} := \text{propCmds} + \langle C\rangle\)

On \(\texttt{Propose}, C\)

s.t. state = (leader, accept):

\(v_a = v_a + \langle C\rangle\)

\(l\text{as}[\text{self}] := l\text{as}[\text{self}] + 1\)

for \(p\) in \(\pi\) - \{self\} s.t. \(lds[p] \neq \perp:\n
\quad \text{send} \(\texttt{Accept}, n_L, \langle C\rangle\) to p\)

On \(\texttt{Accepted}, n, m\) from a,

s.t. \(n = n_L\) and state = (leader, accept):

\(l\text{as}[a] := m\)

If \(l_c < m\) and \(|\{p \in \pi : l\text{as}[a] \geq m\}| \geq \lceil (N+1)/2 \rceil :\n
\quad l_c := m,

\quad \text{for} \ p \ \text{in} \ l\ s.t. \ lds[p] \neq \perp:\n
\quad \quad \text{send} \(\texttt{Decide}, l_c, n_L\) to p\)
The final Sequence Paxos algorithm

- We developed a complete, simple and efficient Sequence Paxos algorithm in the fail-silent model (asynchronous model) that creates a consistent replicated log v_a

- The algorithm guarantees the safety properties of sequence consensus as long as the following assumptions hold:
 - FIFO perfect links
 - An eventual leader election abstraction that guarantees for any indication (response) event $<\text{Leader}, L, n>$ the combination (L,n) is unique (same requirement as single value Paxos)
The final Sequence Paxos algorithm

- Most of the time once a command C is delivered to the leader, one round trip is needed for deciding on C

- For liveness (progress) the leader election should satisfy
 - For any process p: if p is elected by $\langle \text{Leader}, p, n \rangle$, then for any for previous event and process q:
 - $\langle \text{Leader}, q, n' \rangle$: $n' < n$ should hold
 - A leader p should stay and be considered as a leader by a majority of processes “for a sufficient time” before overtaken by a higher numbered process
 - **No requirement** on strong accuracy on the leader election algorithm otherwise.