
Deep Learning Explained
Module 4: Convolution Neural Networks (CNN or Conv Nets)

Sayan D. Pathak, Ph.D., Principal ML Scientist, Microsoft

Roland Fernandez, Senior Researcher, Microsoft

Module Outline

Application:

OCR using MNIST data

Model:

Recap Multi-Layer Perceptron

Convolution Network

Popular Deep Convolution Networks

Concepts:

Convolution

Pooling

Train-Test-Predict Workflow

Applications of Conv Nets

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf https://github.com/Microsoft/CNTK/wiki/Object-Detection-using-Fast-R-CNN

Image Tagging Object Detection

Multi-layer Perceptron

28 pix

2
8

 pix

.

784 pixels (x)

.

D
i = 784
O= 400
a = relu

D
i = 400
O= 200
a = relu

D
10 nodes i = 200

O= 10
a = none

0.08 0.08 0.10 0.17 0.11 0.09 0.08 0.08 0.13 0.01softmax

Weights

784

400 + 400 bias

400

200 + 200 bias

200

10 + 10 bias

Deep
Model

Fully Connected Networks
784 pixels (x)

28 pix

2
8

 pix

. 784 pixels (x)

SBias
(b)

Ԧ𝑧 = S n-hidden nodes

Total parameters: 784n + n

Weights

784

n + n bias

Ԧ𝑧 = W Ԧ𝑥𝑇 + 𝑏

W Ԧ𝑥

+

𝑏

For 1 position: 3 x 3 + 1 = 10 parameters

(28-2) pixels

For all positions:
10 x (28-2) x (28-2)

= 6760 parameters

Fully Connected Networks
784 pixels (x)

28 pix

2
8

 pix

. 784 pixels (x)

SBias
(b)

Ԧ𝑧 = S n-hidden nodes

Total parameters: 784n + n

Weights

784

n + n bias

Ԧ𝑧 = W Ԧ𝑥𝑇 + 𝑏

W Ԧ𝑥

+

𝑏

For 1 position: 3 x 3 + 1 = 10 parameters

Fully Connected Networks
784 pixels (x)

28 pix

2
8

 pix

. 784 pixels (x)

SBias
(b)

Ԧ𝑧 = S n-hidden nodes

Total parameters: 784n + n

Weights

784

n + n bias

Ԧ𝑧 = W Ԧ𝑥𝑇 + 𝑏

W Ԧ𝑥

+

𝑏

For 1 position: 3 x 3 + 1 = 10 parameters

(28-2) pixels

For all positions with each having individual (W, b) :
10 x (28-2) x (28-2)

= 6760 parameters

Convolution Networks

𝑧 = W 𝑥 + 𝑏

W 𝑥

+

𝑏

𝑧 = W 𝑥 + 𝑏

W 𝑥

+

𝑏

Total parameters: 9n + n

𝑧 = W 𝑥 + 𝑏

W 𝑥

+

𝑏

n-filters

W is called a filter: shape (3,3)

With convolution (10 - 3 x 3 filters and 5 layers):
= 500 parameters

Allows for:
✓ Handling of larger image sizes (512 x 512)
✓ Trying larger filter sizes (11 x 11)
✓ Learning more filters (128 filters)
✓ Deeper architecture (152 layers)

With larger image size:
Image size = 200 x 200 pixels
Filter size = 3 x 3 (W , 𝑏 = 10 values)
Stride = 1
Layers = 5
Number of filters per layer = 20
Number of parameters =

10 x 5 x 20

1000

Primitive features such as edges (First few layers)

Complex features such as corners (Deeper layers)

Color features (for color images)

Convolution Networks

𝑧 = W 𝑥 + 𝑏

W 𝑥

+

𝑏

𝑧 = W 𝑥 + 𝑏

W 𝑥

+

𝑏

Total parameters: 9n + n

𝑧 = W 𝑥 + 𝑏

W 𝑥

+

𝑏

n-filters

W is called a filter: shape (3,3)

With convolution (10 - 3 x 3 filters and 5 layers):
= 500 parameters

Allows for:
✓ Handling of larger image sizes (512 x 512)
✓ Trying larger filter sizes (11 x 11)
✓ Learning more filters (128 filters)
✓ Deeper architecture (152 layers)

With larger image size:
Image size = 200 x 200 pixels
Filter size = 3 x 3 (W , 𝑏 = 10 values)
Stride = 1
Layers = 5
Number of filters per layer = 20
Number of parameters =

10 x 5 x 20

1000

Primitive features such as edges (First few layers)

Complex features such as corners (Deeper layers)

Color features (for color images)

Image Data

MNIST data
- Matrix of dimensions: 28 (width) x 28 (height) pixels

- Each pixel has 1 integer value

Natural scene images
- Matrix of dimensions: width x height pixels

- Each pixel has 3 different integers,
- 1 each for Red, Green and Blue channels

Dim = (1, width, height)

Dim = (3, width, height)

Input = (3, width, height)

Convolution with Images

𝑧 = W 𝑥 + 𝑏

W 𝑥

+

𝑏

= Activation function

(n, width/2, height/2) => n = number of filters

C

f= (f_h, f_w)
n= num filters
s = (s_h, s_w)
p = pad: T or F
a = activation

Convolution2D(filter_shape=(3,3),

num_filters=8,

strides=(2,2),

pad=True,

activation=relu)
n

Stride = 2

(3, filter_width, filter_height)

Input = (3, width, height)

Convolution with Images

𝑧 = W 𝑥 + 𝑏

W 𝑥

+

𝑏

= Activation function

(n, width/2, height/2) => n = number of filters

C

f= (f_h, f_w)
n= num filters
s = (s_h, s_w)
p = pad: T or F
a = activation

Convolution2D(filter_shape=(3,3),

num_filters=8,

strides=(2,2),

pad=True,

activation=relu)
n

Stride = 2

(3, filter_width, filter_height)

Ref:
http://cs231n.github.io/convolutional-networks/

No Padding vs Padding

No Padding

Stride = 1

No Padding vs Padding

With Padding

Stride = 2Stride = 1

Ref:
http://cs231n.github.io/convolutional-networks/

Pure Convolution Network

0.1 0.1 0.3 0.9 0.4 0.2 0.1 0.1 0.6 0.3

C

f= (5, 5)
n= 8
s = (2, 2)
p = pad: T
a = relu

C

f= (5, 5)
n= 16
s = (2, 2)
p = pad: T
a = relu

(1, 28, 28)

(8, 14, 14)

(16, 7, 7)

D
i = (16,7,7)
O= 10
a = None

def create_model(features):

with default_options(activation = relu):

h = features

h = Convolution2D(filter_shape=(5,5),

num_filters=8,

strides=(2,2), pad=True)(h)

h = Convolution2D(filter_shape=(5,5),

num_filters=16,

strides=(2,2), pad=True)(h)

r = Dense(num_output_classes,

activation = None)(h)

return r

z = create_model(input)

(16 x 7 x 7)

% Error with MNIST Data = 1.56%

Pooling

Typically inserted in-between successive Convolution layers

Goal is to reduce number of parameters
✓ Control overfitting

Popular pooling options

Max pooling Average pooling

Typical Convolution Network

def create_model(features):

with default_options(activation = relu):

h = features

h = Convolution2D(filter_shape=(5,5),

num_filters=8,

strides=(1,1), pad=True)(h)

h = MaxPooling(filter_shape=(2,2),

strides=(2,2))(h)

h = Convolution2D(filter_shape=(5,5),

num_filters=16,

strides=(2,2), pad=True)(h)

h = MaxPooling(filter_shape=(2,2),

strides=(2,2))(h)

r = Dense(num_output_classes,

activation = None)(h)

return r

z = create_model(input)

C

f= (5, 5)
n= 8
s = (2, 2)
p = pad: T
a = relu

C

f= (5, 5)
n= 16
s = (2, 2)
p = pad: T
a = relu

D
i = (16,4,4)
O= 10
a = None

P
f= (5, 5)
s = (2, 2)

P
f= (5, 5)
s = (2, 2)

% Error with MNIST Data =~ 1%

Convolution Workflow

28 pix

2
8

 pix

0.1 0.1 0.3 0.9 0.4 0.2 0.1 0.1 0.6 0.3

8 (5 x 5) weight matrix + 8 bias

16x7x7

10 + 10 bias

C

f= (5, 5)
n= 8
s = (2, 2)
p = pad: T
a = relu

C

f= (5, 5)
n= 16
s = (2, 2)
p = pad: T
a = relu

D
i = (16,7,7)
O= 10
a = None

P
f= (5, 5)
s = (2, 2)

P
f= (5, 5)
s = (2, 2)

16 (5 x 5) weight matrix + 16 bias

28 pix

2
8

 pix

Error or Loss Function

Loss
function

ce = −σ𝑗=0
9 𝑦𝑗 𝑙𝑜𝑔 𝑝𝑗

Cross entropy
error

1 5 4 3
5 3 5 3
5 9 0 6

Label One-hot encoded (Y)

0 0 0 1 0 0 0 0 0 0

Model
(w, b)

Predicted Probabilities (p)

0.08 0.08 0.10 0.17 0.11 0.09 0.08 0.08 0.13 0.01

Train
(learner)

Reporting

Training
Data

Train
more?

Data Sampler
Features (x), Labels (Y)

Data Sampler
Features (x), Labels (Y)

Validate

Reporting

More?

Validation
Data

Model

z(params)

Train / Validation Workflow

params

update
params

trained
params

lo
ss

iterations

Model
final

Y Y

Train Workflow

MNIST
Train

1
2

8
 s

a
m

pl
es

(m
in

i-
ba

tc
h

)

One-hot
encoded
Label

(Y: 128 x 10)

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0

.

.

.

Model

Loss cross_entropy_with_softmax(z,Y)

Trainer(model, (loss, error), learner)

Trainer.train_minibatch({X, Y})

Error classification_error(z,Y)

Learner
sgd, adagrad etc, are solvers to estimate –W & b

z = model(X):

h = Convolution2D((5,5),filt=8, …)(X)

h = MaxPooling(…)(h)

h = Convolution2D ((5,5),filt=16, …)((h)

h = MaxPooling(…)(h)

r = Dense(output_classes, act= None)(h)

return r

Weights

+
8

+
16

+
10bias

Model Parameters

8 (5 x 5) 16 (5 x 5)

16x7x7

10

Input feature (X: 128 x 1 x 28 x 28)

Data Sampler
Features (x), Labels (Y)

Test

Reporting

Test
more?

Test
Data

Model
final

Test Workflow

trained
params

Y

Test Workflow

MNIST
Test

3
2

 s
a
m

pl
es

(m
in

i-
ba

tc
h

)

One-hot
encoded
Label

(Y*: 32 x 10)

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0

.

.

.

Trainer.test_minibatch({X, Y})

Model

z = model(X):

h = Convolution2D((5,5),filt=8, …)(X)

h = MaxPooling(…)(h)

h = Convolution2D ((5,5),filt=16, …)((h)

h = MaxPooling(…)(h)

r = Dense(output_classes, act= None)(h)

return r

Weights

+
8

+
16

+
10bias

Model Parameters

8 (5 x 5) 16 (5 x 5)

16x7x7

10

Input feature (X*: 32 x 1 x 28 x 28)

Returns the classification error as % incorrectly
labeled MNIST image.

Prediction Workflow

Any
MNIST

Input feature (new X: 1 x 28 x 28)
Model
(w, b)

Model.eval(new X)

0.02 0.09 0.03 0.03 0.01 0.02 0.02 0.06 0.02 0.70

Predicted Softmax Probabilities (predicted_label)

[numpy.argmax(predicted_label) for predicted_label in predicted_labels]

[9]

Popular Convolution Networks

LeNet

- First successful CNN by Yann LeCun in 1990

- Used to read zip codes / digits

Popular Convolution Networks

AlexNet
- Popularized conv nets by Alex Krishevsky, Ilya Sutskever and Geoff Hinton

- In 2012 ImageNet ISLVRC challenge:
- outperformed then state-of-the-art by reducing the error from 26% to 16%

- First introduced the use of deeper, bigger stacked convolutional layers

Popular Convolution Networks

GoogLeNet
- ILSVRC 2014 winner by Szegedy et al from Google

- Introduced the inception module

- Reduced the parameters dramatically from 60M in AlexNet to 4M

- Uses Average-pooling instead of fully connected layers

https://arxiv.org/abs/1409.4842

Popular Convolution Networks

VGGNet
- ILSVRC 2014 runner-up by Simoyan and Zisserman

- Showed depth of network is key to performance

- 16 CONV/FC layers and extremely homogeneous architecture (with end-to-end
having only 3x3 convolutions and 2x2 pooling)

- It is more expensive to evaluate and requires large memory
- It has 140M compared to 60M AlexNet

- Most parameters are in fully connected layers (which when removed do not cause significant
performance drop

http://www.robots.ox.ac.uk/~vgg/research/very_deep/

Popular Convolution Networks

ResNet
- ILSVRC 2015 winner by Kaiming He et al from Microsoft

- State-of-the-art (May 2016) and default choice

- Original implementation has 152 layers

- Introduces the concept of residual learning

https://arxiv.org/abs/1512.03385

Applications of Conv Nets

https://arxiv.org/pdf/1512.08512.pdf

https://arxiv.org/pdf/1603.06668.pdf

Coloring grayscale images

Visually indicated sounds

Applications of Conv Nets

https://github.com/Microsoft/CNTK/blob/master/Tutorials
/CNTK_205_Artistic_Style_Transfer.ipynb

https://arxiv.org/abs/1411.4555

Automated image captioning Neuro artistic painting

https://arxiv.org/pdf/1308.0850v5.pdf https://github.com/Newmu/dcgan_code

Applications of Conv Nets

Handwriting generation Image generation

Conclusion

CNNs are widely used in computer vision with increasing popularity
for text processing

Convolutions allow for deeper architectures that affects performance

Different CNNs of varying complexity can be easily be built using
Cognitive Toolkit (layers library)

