Deep Learning Explained

Module 4: Convolution Neural Networks (CNN or Conv Nets)

Sayan D. Pathak, Ph.D., Principal ML Scientist, Microsoft Roland Fernandez, Senior Researcher, Microsoft

Module Outline

Application:

OCR using MNIST data

Model:

Recap Multí-Layer Perceptron Convolutíon Network Popular Deep Convolutíon Networks

Concepts:

Convolution

Pooling

Train-Test-Predict Workflow

Image Tagging

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

https://github.com/Microsoft/CNTK/wiki/Object-Detection-using-Fast-R-CNN

Object Detection

Fully Connected Networks 784 píxels (x) 784 píxels (x) Weights 35 + n bías N 28 píx 1 $\vec{z} = \mathbf{0}$ Σ n-hidden nodes Bías Σ 784 (७) Total parameters: 784n + n 28 píx (28-2) píxels ĿĿ, $\vec{\chi}$ W b $\vec{z} = \mathbf{W} \, \vec{x}^T + \mathbf{b}$

For 1 position: $3 \times 3 + 1 = 10$ parameters

For all positions: 10 × (28-2) × (28-2) = 6760 parameters

For 1 position: $3 \times 3 + 1 = 10$ parameters

For 1 position: $3 \times 3 + 1 = 10$ parameters

For all positions with each having individual (W, b) : $10 \times (28-2) \times (28-2)$ = 6760 parameters

Convolution Networks

W X D	W X D	• • •	W X D
$z = \mathbf{W} x + \mathbf{b}$	$z = \mathbf{W} x + \mathbf{b}$	n-filters	$z = \mathbf{W} x + b$

W is called a filter: shape (3,3)

Total parameters: 9n + n

With convolution (10 -3×3 filters and 5 layers): = 500 parameters

With larger image size:

```
Image síze = 200 x 200 píxels

Filter síze = 3 \times 3 (W, b = 10 values)

Stríde = 1

Layers = 5

Number of filters per layer = 20

Number of parameters =

10 \times 5 \times 20

1000
```

Allows for:

- ✓ Handling of larger image sizes (512 x 512)
- ✓ Trying larger filter sizes (11 x 11)
- ✓ Learning more filters (128 filters)
- ✓ Deeper architecture (152 layers)

Primitive features such as edges (First few layers)

Color features (for color ímages)

Complex features such as corners (Deeper layers)

Convolution Networks

$\mathbf{w} \mathbf{x} \mathbf{b}$	$\begin{array}{c} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{array} + \blacksquare \\ \bullet \bullet \bullet \end{array}$	• • •	w x	+ 🔳
$z = \mathbf{W} x + \mathbf{b}$	$z = \mathbf{W} x + \mathbf{b}$	n-filters	$z = \mathbf{W} x$	+ <i>b</i>

W is called a filter: shape (3,3)

With convolution (10 -3×3 filters and 5 layers): = 500 parameters

With larger image size:

Image síze = 200 x 200 píxels Fílter síze = 3×3 (**W**, **b** = 10 values) Stríde = 1 Layers = 5Number of filters per layer = 20Number of parameters = $10 \times 5 \times 20$ 1000 Total parameters: 9n + n

Allows for:

- ✓ Handling of larger image sizes (512 x 512)
- ✓ Trying larger filter sizes (11 × 11)
- ✓ Learning more filters (128 filters)
- ✓ Deeper architecture (152 layers)

Primitive features such as edges (First few layers)

Color features (for color ímages)

Complex features such as corners (Deeper layers)

Image Data

MNIST data

- Matrix of dimensions: 28 (width) x 28 (height) pixels
- Each pixel has 1 integer value

Natural scene images

- Matrix of dimensions: width x height pixels
- Each pixel has 3 different integers,
- 1 each for Red, Green and Blue channels

Dim = (3, width, height)

Convolution with Images

(n, width/2, height/2) => n = number of filters

Convolution with Images

(n, width/2, height/2) => n = number of filters

Input Volume (9x9x3)

Output Volume (4x4x1)

<u>o[:</u> ,:,0]								
5	-1	2	-9					
-3	0	2	1					
-1	-1	1	-1					
0	2	1	-4					

Ref: http://cs231n.github.io/convolutional-networks/

No Padding vs Padding

No Padding

No Padding vs Padding

With Padding

Input Volume (+pad 1) (9x9x3)

x [:	:,:	,1]						
0	0	0	0	0	0	0	0	0
0	2	0	0	1	2	0	2	0
0	0	2	0	1	1	1	2	0
0	2	1	0	1	0	0	1	0
0	2	1	0	1	1	1	2	0
0	2	2	2	0	0	2	1	0
0	2	0	2	1	1	2	1	0
0	0	1	0	2	2	1	1	0
0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0
0	2	2	2	1	0	0	2	0
0	0	1	1	2	2	0	1	0
0	0	,0 ₁	1	2	0	1	0	0
0	1	1	1	0	2	1	0	0
0	1	1	0	0	2	1	2	0
0	1	21	0	2	1	2	2	0
0	2	2	1	1	1	2	0	0
0	0	0	0	0	0	0	0	0

Filter W0 (3x3x3)

Filter W1 (3x3x3)

Output Volume (4x4x2)

o[:,:,0]			o[:	,:,	1]		
6	5	8	4	11	13	6	5
11	7	11	7	7	10	8	-1
14	11	12	5	13	4	12	9
5	3	6	4	б	8	4	3

Bias b0 (1x1x1)

b0[:,:,0]

1

0

Bias b1 (1x1x1) b1[:,:,0]

Pure Convolution Network

% Error with MNIST Data = 1.56%

Pooling

Typically inserted in-between successive Convolution layers

Goal is to reduce number of parameters ✓ Control overfitting

Popular pooling options

1.7	1.7	1.7
1.0	1.2	1.8
1.1	0.8	1.3

Average pooling

Typical Convolution Network

```
def create model(features):
    with default options (activation = relu):
        h = features
        h = Convolution2D(filter shape=(5,5),
                          num filters=8,
                          strides=(1,1), pad=True)(h)
        h = MaxPooling(filter_shape=(2,2),
                       strides=(2,2))(h)
        h = Convolution2D(filter shape=(5,5),
                          num filters=16,
                          strides=(2,2), pad=True)(h)
        h = MaxPooling(filter shape=(2,2))
                       strides=(2,2))(h)
        r = Dense(num output classes,
                  activation = None)(h)
        return r
```

z = create_model(input)

% Error with MNIST Data =~ 1%

Convolution Workflow

Train / Validation Workflow

Test Workflow

Prediction Workflow

[numpy.argmax(predicted_label) for predicted_label in predicted_labels]

LeNet

- Fírst successful CNN by Yann Lecun in 1990
- Used to read zip codes / digits

AlexNet

- Popularízed conv nets by Alex Kríshevsky, Ilya Sutskever and Geoff Hinton

- In 2012 ImageNet ISLVRC challenge:
 - outperformed then state-of-the-art by reducing the error from 26% to 16%
 - First introduced the use of deeper, bigger stacked convolutional layers

mite	container ship	motor scooter	leopard
mite	container ship	motor scooter	leopard
black widow	lifeboat	go-kart	jaguar
cockroach	amphibian	moped	cheetah
tick	fireboat	bumper car	snow leopard
starfish	drilling platform	golfcart	Egyptian cat
grille	mushroom	cherry	Madagascar cat
convertible	agaric	dalmatian	squirrel monkey
grille	mushroom	grape	spider monkey
pickup	jelly fungus	elderberry	titi
beach wagon	gill fungus	ffordshire bullterrier	indri
fire engine	dead-man's-fingers	currant	howler monkey

GoogLeNet

- ILSVRC 2014 winner by Szegedy et al from Google
- Introduced the inception module
- Reduced the parameters dramatically from 60M in AlexNet to 4M
- Uses Average-pooling instead of fully connected layers

https://arxiv.org/abs/1409.4842

VGGNet

- ILSVRC 2014 runner-up by Símoyan and Zísserman
 - Showed depth of network is key to performance
 - 16 CONV/FC layers and extremely homogeneous architecture (with end-to-end having only 3x3 convolutions and 2x2 pooling)
 - It is more expensive to evaluate and requires large memory
 - It has 140M compared to 60M AlexNet
 - Most parameters are in fully connected layers (which when removed do not cause significant performance drop

http://www.robots.ox.ac.uk/~vgg/research/very_deep/

ResNet

- ILSVRC 2015 winner by Kaiming He et al from Microsoft
- State-of-the-art (May 2016) and default choice
- Oríginal implementation has 152 layers
- Introduces the concept of residual learning

https://arxiv.org/abs/1512.03385

Coloring grayscale images

https://arxiv.org/pdf/1603.06668.pdf

Vísually indicated sounds

https://arxiv.org/pdf/1512.08512.pdf

Automated image captioning

A person on a beach flying a kite.

A person skiing down a snow covered slope.

A black and white photo of a train on a train track.

A group of giraffe standing next to each other.

https://arxiv.org/abs/1411.4555

Neuro artístic painting

https://github.com/Microsoft/CNTK/blob/master/Tutorials /CNTK_205_Artistic_Style_Transfer.ipynb

Handwriting generation

more of national temperament more of national temperament

https://arxiv.org/pdf/1308.0850v5.pdf

Image generation

https://github.com/Newmu/dcgan_code

Conclusion

CNNs are widely used in computer vision with increasing popularity for text processing

Convolutions allow for deeper architectures that affects performance

Dífferent CNNs of varying complexity can be easily be built using Cognitive Toolkit (layers library)