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Module Outline

Application: 

OCR using MNIST data

Model:

Recap Multi-Layer Perceptron

Convolution Network

Popular Deep Convolution Networks

Concepts:

Convolution

Pooling

Train-Test-Predict Workflow



Applications of Conv Nets

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf https://github.com/Microsoft/CNTK/wiki/Object-Detection-using-Fast-R-CNN

Image Tagging Object Detection
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Fully Connected Networks
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For all positions: 
10 x (28-2) x (28-2)

= 6760 parameters
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Fully Connected Networks
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= 6760 parameters



Convolution Networks
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n-filters

W is called a filter: shape (3,3)

With convolution (10 - 3 x 3 filters and 5 layers):
= 500 parameters

Allows for: 
✓ Handling of larger image sizes (512 x 512)
✓ Trying larger filter sizes (11 x 11)
✓ Learning more filters (128 filters) 
✓ Deeper architecture (152 layers)

With larger image size:
Image size = 200 x 200 pixels 
Filter size   = 3 x 3  (W , 𝑏 = 10 values)
Stride         = 1
Layers        = 5
Number of  filters per layer = 20
Number of parameters = 

10 x 5 x 20

1000

Primitive features such as edges (First few layers)

Complex features such as corners (Deeper layers)

Color features (for color images) 
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Image Data

MNIST data
- Matrix of dimensions: 28 (width) x 28 (height) pixels

- Each pixel has 1 integer value

Natural scene images
- Matrix of dimensions: width x height pixels

- Each pixel has 3 different integers, 
- 1 each for Red, Green and Blue channels 

Dim = (1, width, height)

Dim = (3, width, height)



Input = (3, width, height)

Convolution with Images
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Ref:
http://cs231n.github.io/convolutional-networks/



No Padding vs Padding 

No Padding

Stride = 1



No Padding vs Padding 

With Padding
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Ref:
http://cs231n.github.io/convolutional-networks/



Pure Convolution Network
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def create_model(features):

with default_options(activation = relu):

h = features

h = Convolution2D(filter_shape=(5,5),

num_filters=8, 

strides=(2,2), pad=True)(h)

h = Convolution2D(filter_shape=(5,5),

num_filters=16,

strides=(2,2), pad=True)(h)

r = Dense(num_output_classes, 

activation = None)(h)

return r

z = create_model(input)

(16 x 7 x 7)

% Error with MNIST Data = 1.56% 



Pooling

Typically inserted in-between successive Convolution layers

Goal is to reduce number of parameters
✓ Control overfitting

Popular pooling options

Max pooling Average pooling



Typical Convolution Network

def create_model(features):

with default_options(activation = relu):

h = features

h = Convolution2D(filter_shape=(5,5),

num_filters=8, 

strides=(1,1), pad=True)(h)

h = MaxPooling(filter_shape=(2,2), 

strides=(2,2))(h)

h = Convolution2D(filter_shape=(5,5),

num_filters=16,

strides=(2,2), pad=True)(h)

h = MaxPooling(filter_shape=(2,2), 

strides=(2,2))(h)

r = Dense(num_output_classes, 

activation = None)(h)

return r

z = create_model(input)

C

f= (5, 5)
n= 8
s = (2, 2)
p = pad: T 
a = relu

C

f= (5, 5)
n= 16
s = (2, 2)
p = pad: T
a = relu

D
i = (16,4,4)
O= 10
a = None

P
f= (5, 5)
s = (2, 2)

P
f= (5, 5)
s = (2, 2)

% Error with MNIST Data =~ 1% 



Convolution Workflow
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Train Workflow
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Model

Loss cross_entropy_with_softmax(z,Y)

Trainer(model, (loss, error), learner)

Trainer.train_minibatch({X, Y})

Error classification_error(z,Y)

Learner
sgd, adagrad etc, are solvers to estimate –W & b

z = model(X):

h = Convolution2D((5,5),filt=8, …)(X)

h = MaxPooling(…)(h)

h = Convolution2D ((5,5),filt=16, …)((h)

h = MaxPooling(…)(h) 

r = Dense(output_classes, act= None)(h)

return r

Weights 
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Input feature (X: 128 x 1 x 28 x 28)
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Test Workflow
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Trainer.test_minibatch({X, Y})

Model

z = model(X):

h = Convolution2D((5,5),filt=8, …)(X)

h = MaxPooling(…)(h)

h = Convolution2D ((5,5),filt=16, …)((h)

h = MaxPooling(…)(h) 

r = Dense(output_classes, act= None)(h)

return r

Weights 
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Model Parameters

8 (5 x 5) 16 (5 x 5)

16x7x7
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Input feature (X*: 32 x 1 x 28 x 28)

Returns the classification error as % incorrectly
labeled MNIST image. 



Prediction Workflow

Any 
MNIST

Input feature (new X: 1 x 28 x 28)
Model
(w, b)

Model.eval(new X)

0.02 0.09 0.03 0.03 0.01 0.02 0.02 0.06 0.02 0.70

Predicted Softmax Probabilities (predicted_label)

[ numpy.argmax(predicted_label) for predicted_label in predicted_labels ]

[9]



Popular Convolution Networks

LeNet

- First successful CNN by Yann LeCun in 1990

- Used to read zip codes / digits



Popular Convolution Networks

AlexNet
- Popularized conv nets by Alex Krishevsky, Ilya Sutskever and Geoff Hinton

- In 2012 ImageNet ISLVRC challenge: 
- outperformed then state-of-the-art by reducing the error from 26% to 16% 

- First introduced the use of deeper, bigger stacked convolutional layers



Popular Convolution Networks

GoogLeNet
- ILSVRC 2014 winner by Szegedy et al from Google

- Introduced the inception module

- Reduced the parameters dramatically from 60M in AlexNet to 4M

- Uses Average-pooling instead of fully connected layers

https://arxiv.org/abs/1409.4842



Popular Convolution Networks

VGGNet
- ILSVRC 2014 runner-up by Simoyan and Zisserman

- Showed depth of network is key to performance

- 16 CONV/FC layers and extremely homogeneous architecture (with end-to-end 
having only 3x3 convolutions and 2x2 pooling)

- It is more expensive to evaluate and requires large memory
- It has 140M compared to 60M AlexNet

- Most parameters are in fully connected layers (which when removed do not cause significant 
performance drop

http://www.robots.ox.ac.uk/~vgg/research/very_deep/



Popular Convolution Networks

ResNet
- ILSVRC 2015 winner by Kaiming He et al from Microsoft

- State-of-the-art (May 2016) and default choice

- Original implementation has 152 layers

- Introduces the concept of residual learning  

https://arxiv.org/abs/1512.03385



Applications of Conv Nets

https://arxiv.org/pdf/1512.08512.pdf

https://arxiv.org/pdf/1603.06668.pdf

Coloring grayscale images

Visually indicated sounds



Applications of Conv Nets

https://github.com/Microsoft/CNTK/blob/master/Tutorials
/CNTK_205_Artistic_Style_Transfer.ipynb

https://arxiv.org/abs/1411.4555

Automated image captioning Neuro artistic painting



https://arxiv.org/pdf/1308.0850v5.pdf https://github.com/Newmu/dcgan_code

Applications of Conv Nets

Handwriting generation Image generation



Conclusion

CNNs are widely used in computer vision with increasing popularity 
for text processing

Convolutions allow for deeper architectures that affects performance

Different CNNs of varying complexity can be easily be built using 
Cognitive Toolkit (layers library)


