
Basic Python Revision Notes
With help from Nitish Mittal

HELP from Documentation

dir(module)

help()

Important Characters and Sets of Characters

 tab \t

 new line \n

 backslash \\

 string " " or ' '

 docstring """ """

 comparison operators == , < , > , <= , >= , !=

 Python type boolean True , False.

 Logical operators not , and , or

Order of Operations (from Emory)

Operator Description
() Parentheses (grouping)

f(args...) Function call
x[index:index] Slicing

x[index] Subscription
x.attribute Attribute reference

** Exponentiation
+x, -x Positive, negative
*, /, % Multiplication, division, remainder
+, - Addition, subtraction

in, not in, is, is not, <, <=, >, >=,

<>, !=, ==
Comparisons, membership, identity

not x Boolean NOT
and Boolean AND
or Boolean OR

http://www.mathcs.emory.edu/~valerie/courses/fall10/155/resources/op_precedence.html

Variable Names

 case sensitive

 cannot start with a number (ex, 1_assd is not allowed)

Six Steps to Defining a Function

1. What should your function do? Type a couple of example calls.

2. Pick a meaningful name (often a verb or verb phrase): What is a short answer to "What does

your function do"?

3. Decide how many parameters the function takes and any return values

4. Describe what your function does and any parameters and return values in the docstring

5. Write the body of the function

6. Test your function. Think about edge cases.

Integers and Strings

>>> int(45)

45

>>> int('45')

45

>>> str(45)

'45'

>>> str('45')

'45'

>>> int(str(45))

45

Calling Methods

module_name.function_name(x)

 math.sqrt(x)

 random.randrange(2,5)

Conditionals and Branching

 if

 elif

 else

We have a boolean logic expression for if which works when the Boolean evaluates to True

String Operators

Description Operator Example Output

equality == 'cat' == 'cat' True

inequality != 'cat' != 'Cat' True

less than < 'A' < 'a' True

greater than > 'a' > 'A' True

less than or equal <= 'a' <= 'a' True

greater than or equal >= 'a' >= 'A' True

contains in 'cad' in 'abracadabra' True

length of str s len(s) len("abc") 3

String Indexing and Slicing

(s[a:b] means index a to length (b-a) or a to b index but not including b)

 s[2:3]

 s[0]

 s[:5]

 s[4:]

String is immutable (ex. s[4]='a' will not replace 'a' and index 4 of s)

String Methods

 A method is a function inside of an object.

 The general form of a method call is:

o object.method(arguments)

o dir(str)

o help(str.method)

for Loops

num_vowels = 0

 for char in s:

 if char in 'aeiouAEIOU':

 num_vowels = num_vowels + 1

 print num_vowels

vowels = ''

for char in s:

 if char in 'aeiouAEIOU':

 vowels = vowels + char

print vowels

Lists

Like for strings, slicing and indexing can also be used for lists

List = ['a','b',1]

 length of list len(list)

 smallest element in list min(list)

 largest element in list max(list)

 sum of elements of list (where list items must be numeric) sum(list)

>>> a=[1,'ab',2,'pq']

>>> a[1][0]

'a'

>>> a[1][1]

'b'

>>> a[3][1]

'q'

>>> a[3][2]

List Methods

 append a value or string list.append('a')

 extended by another list list.extend(['a', 'b'])

>>> a = [5] + [6] + ['a',7]

>>> print (a)

[5, 6, 'a', 7]

List Mutability

We say that lists are mutable: they can be modified.

>>> lst = [1, 2, 3]

>>> lst[0] = 'apple'

>>> lst

['appple, 2, 3]

List Aliasing

Consider the following code:

>>> lst1 = [11, 12, 13, 14, 15, 16, 17]

>>> lst2 = lst1

>>> lst1[-1] = 18

>>> lst2

[11, 12, 13, 14, 15, 16, 18]

After the second statement executes, lst1 and lst2 both refer to the same list. When two

variables refer to the same objects, they are aliases. If that list is modified, both of lst1 and lst2

will see the change.

But be careful about:

>>> lst1 = [11, 12, 13, 14, 15, 16, 17]

>>> lst2 = lst1

>>> lst1 = [5, 6]

>>> lst2

[11, 12, 13, 14, 15, 16, 17]

And also:

>>> lst1 = [1,2,3]

>>> lst2 = lst1[:]

>>> lst2.remove(2)

>>> lst1

[1,2,3]

while Loops

i = 0

while i < len(s) and not (s[i] in 'aeiouAEIOU'):

 print(s[i])

 i = i + 1

for char in s:

 if not (char in 'aeiouAEIOU'):

 print(char)

The difference between the two is that the for loop looks at every character in s, but the while

loop ends as soon a vowel is found. So the loops differ on any string where a consonant follows a

vowel. while is an if statement in motion. It is a repeated loop until the boolean test evaluates to
False.

def secret(s):

 i = 0

 result = ''

 while s[i].isdigit():

 result = result + s[i]

 i = i + 1

 print result

>>> secret('123') will give an error message when it runs the fourth time.

Global and Local Variables

Variables defined outside functions are global variables. Their values may be accessed inside

functions without declaration.

To modify to a global variable inside a function, the variable must be declared inside the function

using the keyword global.

def x():

 global num

 num = 5

def y():

 num = 4

>>> num = 7

>>> print (num)

7

>>> x()

>>> print (num)

5

>>> y()

>>> print (num)

5

Dictionaries

The values of a dictionary can be of any type, but the keys must be of an immutable data type such

as strings, numbers, or tuples.

 keys can be numbers, strings, Booleans

o a list is unhashable in a dictionary (cannot be used as a key)

o a tuple is hashable in a dictionary (can be used as a key).

 values can be dicts, strings, numbers, booleans, lists

for key in my_dict:

 value = my_dict[key]

This is same as:

for key, value in my_dict.items():

