Umesh V. Vazirani University of California, Berkeley

Lecture 4: Bell Inequalities

EPR and Bell

Einstein, Podolsky, Rosen (EPR) Paradox (1935) Local hidden variable theory

Bell 1965

There is an experiment that distinguishes between the predictions of quantum mechanics and any local hidden variable theory.

Clausser, Horne, Shimony, Holt 1969 Simplification

Aspect 1982 Experiment

No Signaling Theorem

Cannot use entanglement to send a message faster than the speed of light.

But can use it to create non-classical correlations...!

Bell State

Umesh V. Vazirani University of California, Berkeley

Lecture 4: Bell Inequalities

No Signaling Theorem

Cannot use entanglement to send a message faster than the speed of light.

But can use it to create non-classical correlations...!

Umesh V. Vazirani University of California, Berkeley

Lecture 4: Bell Inequalities

CHSH Inequality

CHSH Game

Imputs
$$x \in \{0,1\}$$
 $(-,-)$ Imputs $x \in \{0,1\}$ $y \in \{0,1\}$ Ouput $a \in \{0,1\}$ $b \in \{0,1\}$

$$\frac{\text{Win}}{\text{Win}} \qquad \begin{array}{l} x = y = 1 & \text{and} & a \neq b \\ \hline \partial z & \overline{x n y} = 0 & \text{and} & a = b \\ \hline \partial x & \overline{x n y} = 0 & \text{and} & a = b \end{array}$$

$$max \quad \mathcal{P}\left[x \cdot y = a \oplus b \right]$$

Classically:
$$\leq {}^{3}/_{4}$$
.
Quantum $\cos^{2\pi}/_{p}$
 \approx
 \approx
 $\cdot p5$.

CHSH Game

Umesh V. Vazirani University of California, Berkeley

Lecture 4: Bell Inequalities

Bell & local realism

Inputs Ouput

h/in

and a ≠ b x=y=1 $\delta z = b$ and $\Delta = b$ $\max P[x \cdot y = a \oplus b]$

Classically	$\therefore \leq \frac{3}{4}$
Quantinm	COP ² TT/P 21
	·\$5.V

