A Proof of that Linearizability is a Compositional Condition

Niklas Ekström & Seif Haridi
Compositionality

- A correctness condition CC is compositional if:
 - History H satisfies CC iff every register subhistory $H|x$ satisfies CC

- Linearizability is compositional:
 - $\text{LIN}(H) \iff \forall x: \text{LIN}(H|x)$

- We will prove that this is the case
Definition of Linearizability

• Remember the definition of linearizability:
 – LIN(H) iff there exists a sequential history S satisfying the following requirements:
 (1) S is legal
 (2) S and H are equivalent
 (3) If \(o_1 <_H o_2 \) then \(o_1 <_S o_2 \)

 – \(o_1 <_H o_2 \) denotes that \(\text{res}(o_1) \rightarrow_H \text{inv}(o_2) \)
 • \(e_1 \rightarrow_H e_2 \) denotes that \(e_1 \) precedes \(e_2 \) in \(H \)
The Proof

• We must show that:
 – \(\text{LIN}(H) \Rightarrow \forall x: \text{LIN}(H|x) \), and
 – \(\text{LIN}(H) \iff \forall x: \text{LIN}(H|x) \)

• The \(\Rightarrow \) direction follows trivially
 – Exercise: Complete the proof
 • Assume \(\text{LIN}(H) \), implying that there exists a sequential history \(S \) satisfying requirements (1)-(3)
 • Show that subhistory \(S|x \) satisfies the requirements of a sequential history for \(\text{LIN}(H|x) \)
The \Leftrightarrow Direction

• We must show that $\text{LIN}(H) \Leftrightarrow \forall x: \text{LIN}(H|x)$

• Assume that the right-hand side holds:
 – For each x, there exists a sequential history S_x that satisfies the requirements of $\text{LIN}(H|x)$
 (1) S_x is legal
 (2) S_x and $H|x$ are equivalent
 (3) If $o_1 <_{H|x} o_2$ then $o_1 <_{S_x} o_2$

• We will construct a sequential history S that satisfies the requirements of $\text{LIN}(H)$
Constructing Operation Graph

• Create a graph, whose vertices are operations in H, and edges are added as follows:
 – Add an edge from o to o' if $o <_{Sx} o'$
 – Add an edge from o to o' if $o <_{H} o'$

 – We refer to an edge as a $<_{Sx}$ edge or a $<_{H}$ edge (there can be zero, one, or two edges from o to o')
Constructing Sequential History S

• If the constructed graph is acyclic, then a topological sort can be performed
 – Creates a total order on operations, compatible with the partial ordering in the graph
 – History S is created directly from this total ordering

• Sequential history S created in this way satisfies the requirements for LIN(H) by construction:
 – S is legal since the total ordering in $<_x$ is legal,
 – S and H are equivalent,
 – $o_1 <_H o_2$ implies $o_1 <_S o_2$
Acyclic

• We need to show that any graph constructed as described is acyclic
 – So that the graph can be topologically sorted

 – Proof by contradiction: assume a minimal cycle exists of a certain length, and reach contradiction
Cycle of Length n=2

• Cycles with two operations:

 – $o_1 <_H o_2 <_H o_1$

 • Not possible, as $<_H$ is a partial order

 – $o_1 <_{sx} o_2 <_{sx} o_1$

 • Not possible, as $<_{sx}$ is a total order

 – $o_1 <_H o_2 <_{sx} o_1$

 • As o_1 and o_2 are both ops on x, then $o_1 <_H o_2$ implies that $o_1 <_{sx} o_2$, which is contradicted in previous case
Cycle of Length n=3

• Cycles with three operations:
 – $O_1 <_H O_2 <_H O_3 <_H O_1$
 • Not minimal as $<_H$ is partial order
 • Similar contradiction if $<_x$ instead of $<_H$
 – $O_1 <_H O_2 <_H O_3 <_x O_1$
 • Not minimal as $<_H$ is partial order
 – In fact any cycle of length three must have two consecutive edges of same type ($<_H$ or $<_x$), and therefore cannot be minimal
Cycle of Length $n \geq 4$

- Consider a cycle of arbitrary length $n \geq 4$
- At some point in the cycle there is a section:
 - $o_1 <_H o_2 <_{Sx} o_3 <_H o_4$
 - We will show that this cycle is not minimal, as there must exist an edge $o_1 <_H o_4$
- Focus on edge $o_2 <_{Sx} o_3$, there are two cases:
 - Either $o_2 <_H o_3$, and hence $o_1 <_H o_4$ by transitivity of $<_H$
 - Or, not($o_3 <_H o_2$), this case is handled on next slide
Cycle of Length n≥4, case 2

- Second case, continued from previous slide:
 - not(o₃ <ₜ o₂) implies that not(res(o₃) →ₜ inv(o₂))
 - As →ₜ is a total order, we have inv(o₂) →ₜ res(o₃)
 - Together with o₁ <ₜ o₂, and o₃ <ₜ o₄, we have:
 - res(o₁) →ₜ inv(o₂) →ₜ res(o₃) →ₜ inv(o₄)
 - Implying that res(o₁) →ₜ inv(o₄) ⇒ o₁ <ₜ o₄

- Hence, the cycle containing o₁ <ₜ o₂ <ₕ o₃ <ₜ o₄ is not minimal
Summary

• Cycles of all lengths have been contradicted and the graph is therefore acyclic
• It can be topologically sorted into a sequential history S that meets requirements of $\text{LIN}(H)$

• We have proven that:
 – Linearizability is compositional
 • $\text{LIN}(H) \iff \forall x: \text{LIN}(H \mid x)$