

Data Structures and Algorithms (2)

Instructor: Ming Zhang Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook) <u>https://courses.edx.org/courses/PekingX/04830050x/2T2014/</u>

a_{n-1}

Linear List Linear List

head _____

Chapter II Linear Lists

- 2.1 Linear list $\{a_0, a_1, ..., a_{n-1}\}$

 \mathbf{a}_1

 \mathbf{a}_0

 2.4 Comparison of sequential list and linked list

Linear List 2.1 Linear List

The Concepts of Linear List

- List for short, is a finite sequence of zero or more elements, usually represented as k_0 , k_1 , ... , $k_{n\text{-}1}$ ($n\geq 1$)
 - Entries: elements of linear list (can contain multiple data items, records)
 - Index: i is called the "Index" of entry ki
 - Length of the list: the number of elements contained in the list n
 - **Empty list:** a linear list with the length of zero (n = 0)
- Features of Linear list:
 - Flexible operations
 - Dynamically changed length

Linear List 2.1 Linear List

Linear structure

- Tuple $B = (K, R) K = \{a_0, a_1, \dots, a_{n-1}\} R = \{r\}$
 - There is one and only one starting point that has no previous node and has only one successive node.
 - There is one and only one ending point that has only one previous node and has no successive node.
 - The other nodes are called internal nodes that have only one previous node and also have only one successive node.

 $<\!a_i,\!a_{i+1}\!>a_i$ is previous node of a_{i+1} , and a_{i+1} is the successive node of a_i

Linear structure

- \cdot Features
- Uniformity: Although the data elements of different linear lists may be diverse, but the data elements of the same linear list normally have the same data type and length
- ✓ Orderliness: each data element has its own position in the list and their relative positions are linear

Linear List Classification

Linear structure

- According to the complexity
 - Simple: Linear lists, stacks, queues, hash tables
 - Advanced: generalized lists, multidimensional arrays, files etc.
- Divided by access ways
 - Direct access type

Chapter II

- Sequential access type
- Contents Index type (directory access)

Chapter IILinear ListClassification

Linear structure

Classified by operation (see later)

-Linear List

- \cdot All entries are nodes of the same type of linear lists
- \cdot No need to limit the form of operation
- Divided into: the sequential list, linked list depending on the difference of storage
- -Stack (LIFO, Last In First Out)

Insert and delete operations are restricted to the same end of the list

-Queue (FIFO, First In First Out)

Insert at one end of the list, while delete at the other end

2.1 Linear List

Three aspects

Chapter II

- Logical structure of the linear list
- Storage structure
- Operation of linear list

Linear List 2.1 Linear List

Logical structure of the linear list

- The main properties
 - Length
 - Head
 - Tail
 - Current position

Linear List 2.1 Linear List

Classification (By storage)

- Linear List
 - All entries are nodes of the same type of linear lists
 - No need to limit the form of operation
 - Divided into: the sequential list, linked list depending on the difference of storage

Storage Structures

Sequential list

Chapter II

- Store according to index values from small to large in an adjacent continuous region

- Compact structure, and the storage density is 1

.....

- \cdot Linked list
 - Single list \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

- Double linked list
- Circular list

Classification (By operation)

• Linear List

Chapter II

- No need to limit the form of operation
- Stack
 - At the same end

- Queue
 - At both ends

Linear List2.1 Linear List

Classification (By operation) • Stack (LIFO, Last In First Out)

- Insert and delete operations are restricted to the same end of the list

Classification (By operation)

- Queue (FIFO, First In First Out)
 - Insert at one end of the list while delete at the other end
- Rear(true pointer)

Chapter II

Linear List 2.1 Linear List

Operation on linear Lists

- Construct a linear list
- Destruct the linear list
- Insert a new element
- Delete a specific element
- Modify a specific element

- \cdot Sort
- Search

Linear List 2.1 Linear List

Class Template of Linear lists

template <class T> class List { void clear(); // clear the linear list **bool** isEmpty(); // When it is empty, returns true bool append(const T value); // insert the value at the end , length adds by 1 bool insert(const int p, const T value); // insert the value at position P , length adds by 1 bool delete(const int p); // delete the value at position p , length decreases by 1 bool getPos(int& p, const T value); // find the value and returns its position bool getValue(const int p, T& value); // return the element's value at position P //and assign it to the variable of value bool setValue(const int p, const T value); // set value for position P

Thinking

- What kind of classification are there for the linear list?
- In all kinds of names of linear lists

 which are related to storage
 structures? Which are related to
 operations?

Data Structures and Algorithms

Thanks

the National Elaborate Course (Only available for IPs in China) http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/

Ming Zhang, Tengjiao Wang and Haiyan Zhao Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)