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Preorder sequence with right link representation
• Nodes are stored continuously according to preorder sequence

– info：the data of the node

– rlink：right link

• Point to the next sibling of the node, which is
corresponding to the right child node of the parent node
in the binary tree

– ltag：tag

• If the node has no child node, which means the node
doesn’t have a left child node in the binary tree, and ltag
will be 1.

• Otherwise, ltag will be 0.

Trees

Chapter 6

6.3  Sequential Storage Structure of Tree

 rlink info ltag 
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Index0 1 2 3 4 5 6 7 8 9

rlink 7 5 3 4 -1 6 -1 -1 9 -1

info C E J K L F G D X I

ltag 0 0 1 1 1 1 1 0 1 1

Preorder sequence with right link representation
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From a preorder rlink-ltag to a tree
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Double-tagging preorder sequence representation
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 In preorder sequence with right link representation, rlink is

still redundant, so we can replace the pointer rlink with a

tag rtag, then it is called “double-tagging preorder sequence

representation”. Each node includes data and 2 tags(ltag

and rtag), the form of the node is like:
 rtag info ltag 

According to the preorder sequence and 2 tags(ltag, rtag), we 

can calculate the value of llink and rlink of each node in the 

“Left-child/Right-sibling” list. And llink will be the same as 

that in preorder sequence with right link representation.
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Double-tagging preorder sequence representation
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From a rtag-ltag preorder sequence to a tree
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Rebuild the tree by double-tagging preorder sequence

template<class T>

class DualTagTreeNode  { // class of double-tagging preorder sequence node

public:

T info; // data information of the node

int ltag, rtag; // left/right tag

DualTagTreeNode(); // constructor

virtual ~DualTagTreeNode();

};

template <class T>

Tree<T>::Tree(DualTagTreeNode<T> *nodeArray, int count)  {

// use double-tagging preorder sequence representation to build “Left-child/Right-sibling” tree

using std::stack;        // Use the stack of STL

stack<TreeNode<T>* > aStack;

TreeNode<T> *pointer = new TreeNode<T>;   // ready to set up root node

root = pointer;

Trees

Chapter 6

6.3  Sequential Storage Structure of Tree
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for (int i = 0; i < count-1; i++) { // deal with one node

pointer->setValue(nodeArray[i].info); // assign the value to the node

if (nodeArray[i].rtag == 0) // if rtag equals to 0, push the node into the stack

aStack.push(pointer); 

else pointer->setSibling(NULL);    // if rtag equals to 1, then right sibling pointer 

// should be NULL

TreeNode<T> *temppointer = new TreeNode<T>; // get ready for the next node

if (nodeArray[i].ltag == 0)              // if ltag equals to 0, then set the child node

pointer->setChild(temppointer);

else { // if ltag equals to 1

pointer->setChild(NULL); // set child pointer equal to NULL

pointer = aStack.top(); // get the top element of the stack

aStack.pop();

pointer->setSibling(temppointer); } // set a sibling node for the top element of the stack

pointer = temppointer; }

pointer->setValue(nodeArray[count-1].info); // deal with the last node

pointer->setChild(NULL);  pointer->setSibling(NULL);

}

Trees

Chapter 6

6.3  Sequential Storage Structure of Tree
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Double-tagging level-order sequence representation
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• Nodes are stored continuously according to level-

order sequence

– Info represents the data of the node.

– ltag is a 1-bit tag, if the node doesn’t have a child node, which means 

the node of the corresponding binary tree doesn’t have a left child 

node, then ltag equals to 1, otherwise, ltag equals to 0.

– rtag is a 1-bit tag, if the node doesn’t have a right sibling node , which 

means the node of the corresponding binary tree doesn’t have a right 

child node, then rtag equals to 1, otherwise, rtag equals to 0.

 rtag info ltag 
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From a double-tagging level-order sequence to a tree
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From a double-tagging level-order sequence to a tree
template <class T>

Tree<T>::Tree(DualTagWidthTreeNode<T>* nodeArray, int count)  {

using std::queue;                                 // use the queue of STL

queue<TreeNode<T>*> aQueue;

TreeNode<T>* pointer=new TreeNode<T>; // build the root node

root=pointer;

for(int i=0;i<count-1;i++) { // deal with each node

pointer->setValue(nodeArray[i].info);

if(nodeArray[i].ltag==0)

aQueue.push(pointer);   // push the pointer into the queue

else pointer->setChild(NULL);   // set the left child node as NULL

TreeNode<T>* temppointer=new TreeNode<T>;

Trees

Chapter 6

6.3  Sequential Storage Structure of Tree
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if(nodeArray[i].rtag == 0)

pointer->setSibling(temppointer);

else {

pointer->setSibling(NULL);     // set the right sibling node as NULL

pointer=aQueue.front();         // get the pointer of the first node in the queue

aQueue.pop();                         // and pop it out of the queue

pointer->setChild(temppointer);

}

pointer=temppointer;

}

pointer->setValue(nodeArray[count-1].info); // the last node

pointer->setChild(NULL);  pointer->setSibling(NULL);

}

Trees

Chapter 6
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Postorder sequence with degree representation
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• In postorder sequence with degree 

representation, nodes are stored contiguously 

according to postorder sequence, whose form 

are like:

• info represents the data of the node, and 

degree represents the degree of the node

 degree info 
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Postorder sequence with degree representation
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Postorder sequence with degree representation
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• Preorder sequence of the full 
tagging binary tree

A’ B’ I C D’ E’ H F’ J G K

Trees
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Thinking: Sequential Storage of the Forest
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• Information redundancy

• Other sequential storage of tree

– Preorder sequence with degree?

– Level-order sequence with degree?

• Sequential storage of the binary tree?

– The binary tree is corresponding to the tree, but their 

semantemes are different

• Preorder sequence of the binary tree with right link

• Level-order sequence of the binary tree with left link
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Definition of K-ary tree
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6.4  K-ary Trees

• K-ary tree T is a finite node set, which can be 

defined recursively:

– (a) T is an empty set.

– (b) T consists of a root node and K disjoint K-

ary subtrees.

• Nodes except the root R are devided into K 

subsets (T
0
, T

1
, …, T

K–1
), and each subset is a K-

ary tree, such that T = {R, T
0
, T

1
, …, T

K-1
}.

• Each branch node of K-ary tree has K child nodes.
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Full K-ary trees and complete K-ary trees
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6.4  K-ary Trees

• The nodes of K-ary tree have K child nodes

• Many properties of binary tree can be generalized to K-ary tree

– Full K-ary trees and complete K-ary trees are similar to full 

binary trees and complete binary trees

– Complete K-ary trees can also be storeed in an array

Full 3-ary tree Complete 3-ary tree
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