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Chapter 6 Trees

* General Definitions and Terminology

of Tree

* Linked Storage Structure of Tree
* Sequential Storage Structure of Tree

* K-ary Trees
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Sequential Storage Structure of Tree

Preorder sequence with right link representation

Double-tagging preorder sequence representation

Double-tagging level-order sequence representation

Postorder sequence with degree representation
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Trees 6.3 Sequential Storage Structure of Tree

Preorder sequence with right link representation

Nodes are stored continuously according to preorder sequence

Itag Info rlink

— info : the data of the node
— rlink : right link
« Point to the next sibling of the node, which s
corresponding to the right child node of the parent node
in the binary tree
- ltag : tag
o If the node has no child node, which means the node

doesn’t have a left child node in the binary tree, and Itag
will be 1.

« Otherwise, Itag will be 0.
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From a preorder rlink-Itag to a tree
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Double-tagging preorder sequence representation

O In preorder sequence with right link representation, rlink is
still redundant, so we can replace the pointer rlink with a
tag rtag, then it is called “double-tagging preorder sequence

representation”. Each node includes data and 2 tags(ltag
and rtag), the form of the node is like:

ltag Info rtag

According to the preorder sequence and 2 tags(ltag, rtag), we
can calculate the value of llink and rlink of each node in the
“Left-child/Right-sibling” list. And llink will be the same as
that in preorder sequence with right link representation.
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From a rtag-ltag preorder sequence to a tree
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Trees 6.3 Sequential Storage Structure of Tree

Rebuild the tree by double-tagging preorder sequence

template<class T>

class DualTagTreeNode { // class of double-tagging preorder sequence node
public:

T info; // data information of the node

int ltag, rtag; // left/right tag

DualTagTreeNode(); // constructor

virtual ~DualTagTreeNode();
I

template <class T>
Tree<T>::Tree(DualTagTreeNode<T> *nodeArray, int count) {
// use double-tagging preorder sequence representation to build “Left-child/Right-sibling” tree
using std::stack; // Use the stack of STL
stack<TreeNode<T>* > aStack;
TreeNode<T> *pointer = new TreeNode<T>; //ready to set up root node
root = pointer;
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Trees 6.3 Sequential Storage Structure of Tree
for (inti = 0;i < count-1; i++) { // deal with one node
pointer->setValue(nodeArrayli].info); // assign the value to the node
if (nodeArrayli].rtag == 0) // if rtag equals to O, push the node into the stack
aStack.push(pointer);
else pointer->setSibling(NULL); // if rtag equals to 1, then right sibling pointer

// should be NULL
TreeNode<T> *temppointer = new TreeNode<T>; // get ready for the next node

if (nodeArrayli].ltag == 0) // if ltag equals to O, then set the child node
pointer->setChild(temppointer);

else { // if ltag equals to 1
pointer->setChild(NULL); // set child pointer equal to NULL
pointer = aStack.top(); // get the top element of the stack

aStack.pop();
pointer->setSibling(temppointer); } // set a sibling node for the top element of the stack
pointer = temppointer; }
pointer->setValue(nodeArray[count-1].info); // deal with the last node
pointer->setChild(NULL); pointer->setSibling(NULL);

}
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Double-tagging level-order sequence representation

Nodes are stored continuously according to level-
order sequence

Itag info rtag

- Info represents the data of the node.

- Itag is a 1-bit tag, if the node doesn’t have a child node, which means
the node of the corresponding binary tree doesn’t have a left child
node, then ltag equals to 1, otherwise, ltag equals to O.

- rtagis a 1-bit tag, if the node doesn’t have a right sibling node , which
means the node of the corresponding binary tree doesn’t have a right
child node, then rtag equals to 1, otherwise, rtag equals to O.

_ 12 Ming Zhang “Data Structures and Algorithms”




_ Chapter 6
Trees 6.3 Sequential Storage Structure of Tree

Itag

[

0
info
rtag




. ot N I

Trees 6.3 Sequential Storage Structure of Tree

From a double-tagging level-order sequence to a tree

template <class T>
Tree<T>::Tree(DualTagWidthTreeNode<T>* nodeArray, int count) {
using std::queue; // use the queue of STL
queue<TreeNode<T>*> aQueue;
TreeNode<T>* pointer=new TreeNode<T>; // build the root node
root=pointer;
for(int i=0;i<count-1;i++) { // deal with each node
pointer->setValue(nodeArrayli].info);
if(nodeArrayli].ltag==0)
aQueue.push(pointer); // push the pointer into the queue
else pointer->setChild(NULL); // set the left child node as NULL
TreeNode<T>* temppointer=new TreeNode<T>;
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if(nodeArrayli].rtag == 0)
pointer->setSibling(temppointer);

else {
pointer->setSibling(NULL); // set the right sibling node as NULL
pointer=aQueue.front(); // get the pointer of the first node in the queue
aQueue.pop(); // and pop it out of the queue
pointer->setChild(temppointer);

}

pointer=temppointer;

}

pointer->setValue(nodeArray[count-1].info); // the last node
pointer->setChild(NULL); pointer->setSibling(NULL);
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6.3 Sequential Storage Structure of Tree

Postorder sequence with degree representation

In postorder sequence with degree

representation, nodes are stored contiguously

according to postorder sequence, whose form

are like:

Info degree

info represents the data of the node, and

degree represents the degree of the node
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Postorder sequence with degree representation

degree

info
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Trees 6.3 Sequential Storage Structure of Tree
Preorder sequence of the full . Preorder sequence of the virtual
tagging binary tree full tagging binary tree
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Thinking: Sequential Storage of the Forest

Information redundancy

Other sequential storage of tree

- Preorder sequence with degree?
- Level-order sequence with degree?

Sequential storage of the binary tree?

- The binary tree is corresponding to the tree, but their
semantemes are different

- Preorder sequence of the binary tree with right link
- Level-order sequence of the binary tree with left link
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Trees 6.4 K-ary Trees

Definition of K-ary tree

. K-ary tree T is a finite node set, which can be
defined recursively:

- (a) T is an empty set.

- (b) T consists of a root node and K disjoint K-
ary subtrees.

. Nodes except the root R are devided into K
subsets (T, Ty, ..., Tx_;), and each subset is a K-
ary tree, such that T ={R, T,, Ty, ..., Tx}.

- Each branch node of K-ary tree has K child nodes.
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Trees 6.4 K-ary Trees

Full K-ary trees and complete K-ary trees

The nodes of K-ary tree have K child nodes
Many properties of binary tree can be generalized to K-ary tree

- Full K-ary trees and complete K-ary trees are similar to full
binary trees and complete binary trees

- Complete K-ary trees can also be storeed in an array

A B

Full 3-ary tree Complete 3-ary tree
_ 22 Ming Zhang “Data Structures and Algorithms”




Ming Zhang “Data Structures and Algorithms”

'!

Data Structures and
Algorithms

Thanks

the National Elaborate Course (Only available for IPs in China)
http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/
Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)



