
Data Structures
and Algorithms（6）

Instructor: Ming Zhang
Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao

Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook)

https://courses.edx.org/courses/PekingX/04830050x/2T2014/

Ming Zhang "Data Structures and Algorithms"

2

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 6 Trees
• General Definitions and Terminology

of Tree

• Linked Storage Structure of Tree

• Sequential Storage Structure of Tree

• K-ary Trees

Trees

Chapter 6

JI

F
E

G

A

B
C

D

H

3

目录页

Ming Zhang “Data Structures and Algorithms”

• Preorder sequence with right link representation

• Double-tagging preorder sequence representation

• Double-tagging level-order sequence representation

• Postorder sequence with degree representation

Trees

Chapter 6

6.3 Sequential Storage Structure of Tree

Sequential Storage Structure of Tree

4

目录页

Ming Zhang “Data Structures and Algorithms”

Preorder sequence with right link representation
• Nodes are stored continuously according to preorder sequence

– info：the data of the node

– rlink：right link

• Point to the next sibling of the node, which is
corresponding to the right child node of the parent node
in the binary tree

– ltag：tag

• If the node has no child node, which means the node
doesn’t have a left child node in the binary tree, and ltag
will be 1.

• Otherwise, ltag will be 0.

Trees

Chapter 6

6.3 Sequential Storage Structure of Tree

 rlink info ltag

5

目录页

Ming Zhang “Data Structures and Algorithms”

Index0 1 2 3 4 5 6 7 8 9

rlink 7 5 3 4 -1 6 -1 -1 9 -1

info C E J K L F G D X I

ltag 0 0 1 1 1 1 1 0 1 1

Preorder sequence with right link representation

Trees

Chapter 6

6.3 Sequential Storage Structure of Tree

F

C

G

D

X I

E

K H J

J

K

D

G

C

E

F

I

X

L

6

目录页

Ming Zhang “Data Structures and Algorithms”

From a preorder rlink-ltag to a tree

Trees

Chapter 6

6.3 Sequential Storage Structure of Tree

Index0 1 2 3 4 5 6 7 8 9

rlink 7 5 3 4 -1 6 -1 -1 9 -1

info C E J K L F G D X I

ltag 0 0 1 1 1 1 1 0 1 1

J

K

D

G

C

E

F

I

X

L

F

C

G

D

X I

E

K H J

7

目录页

Ming Zhang “Data Structures and Algorithms”

Double-tagging preorder sequence representation

Trees

Chapter 6

6.3 Sequential Storage Structure of Tree

 In preorder sequence with right link representation, rlink is

still redundant, so we can replace the pointer rlink with a

tag rtag, then it is called “double-tagging preorder sequence

representation”. Each node includes data and 2 tags(ltag

and rtag), the form of the node is like:
 rtag info ltag

According to the preorder sequence and 2 tags(ltag, rtag), we

can calculate the value of llink and rlink of each node in the

“Left-child/Right-sibling” list. And llink will be the same as

that in preorder sequence with right link representation.

8

目录页

Ming Zhang “Data Structures and Algorithms”

Double-tagging preorder sequence representation

Trees

Chapter 6

6.3 Sequential Storage Structure of Tree

00 000 111 1 1

info

ltag

H FD EC KA B J G

000 0 111 1 1 1rtag

A

B C

K

F

D

E G

H J G

FH

D

C

A

B

K

E

J

9

目录页

Ming Zhang “Data Structures and Algorithms”

From a rtag-ltag preorder sequence to a tree

Trees

Chapter 6

6.3 Sequential Storage Structure of Tree

Index0 1 2 3 4 5 6 7 8 9

rtag 0 0 0 0 1 0 1 1 0 1

info C E J K L F G D X I

ltag 0 0 1 1 1 1 1 0 1 1

G

C

I

L

X

D

K

E

FJ

F

C

G

D

X I

E

K H J

stack C E JKFX

10

目录页

Ming Zhang “Data Structures and Algorithms”

Rebuild the tree by double-tagging preorder sequence

template<class T>

class DualTagTreeNode { // class of double-tagging preorder sequence node

public:

T info; // data information of the node

int ltag, rtag; // left/right tag

DualTagTreeNode(); // constructor

virtual ~DualTagTreeNode();

};

template <class T>

Tree<T>::Tree(DualTagTreeNode<T> *nodeArray, int count) {

// use double-tagging preorder sequence representation to build “Left-child/Right-sibling” tree

using std::stack; // Use the stack of STL

stack<TreeNode<T>* > aStack;

TreeNode<T> *pointer = new TreeNode<T>; // ready to set up root node

root = pointer;

Trees

Chapter 6

6.3 Sequential Storage Structure of Tree

11

目录页

Ming Zhang “Data Structures and Algorithms”

for (int i = 0; i < count-1; i++) { // deal with one node

pointer->setValue(nodeArray[i].info); // assign the value to the node

if (nodeArray[i].rtag == 0) // if rtag equals to 0, push the node into the stack

aStack.push(pointer);

else pointer->setSibling(NULL); // if rtag equals to 1, then right sibling pointer

// should be NULL

TreeNode<T> *temppointer = new TreeNode<T>; // get ready for the next node

if (nodeArray[i].ltag == 0) // if ltag equals to 0, then set the child node

pointer->setChild(temppointer);

else { // if ltag equals to 1

pointer->setChild(NULL); // set child pointer equal to NULL

pointer = aStack.top(); // get the top element of the stack

aStack.pop();

pointer->setSibling(temppointer); } // set a sibling node for the top element of the stack

pointer = temppointer; }

pointer->setValue(nodeArray[count-1].info); // deal with the last node

pointer->setChild(NULL); pointer->setSibling(NULL);

}

Trees

Chapter 6

6.3 Sequential Storage Structure of Tree

12

目录页

Ming Zhang “Data Structures and Algorithms”

Double-tagging level-order sequence representation

Trees

Chapter 6

6.3 Sequential Storage Structure of Tree

• Nodes are stored continuously according to level-

order sequence

– Info represents the data of the node.

– ltag is a 1-bit tag, if the node doesn’t have a child node, which means

the node of the corresponding binary tree doesn’t have a left child

node, then ltag equals to 1, otherwise, ltag equals to 0.

– rtag is a 1-bit tag, if the node doesn’t have a right sibling node , which

means the node of the corresponding binary tree doesn’t have a right

child node, then rtag equals to 1, otherwise, rtag equals to 0.

 rtag info ltag

13

目录页

Ming Zhang “Data Structures and Algorithms”

From a double-tagging level-order sequence to a tree

Trees

Chapter 6

6.3 Sequential Storage Structure of Tree

JHD

1 000 1 00 0 1

J

IG

E

C

D

F X

H

K

1

info

rtag

I KG XE FC

ltag

F

C

G

D

X I

E

K H J

1 100 1 110
1 1

queue C D E

14

目录页

Ming Zhang “Data Structures and Algorithms”

From a double-tagging level-order sequence to a tree
template <class T>

Tree<T>::Tree(DualTagWidthTreeNode<T>* nodeArray, int count) {

using std::queue; // use the queue of STL

queue<TreeNode<T>*> aQueue;

TreeNode<T>* pointer=new TreeNode<T>; // build the root node

root=pointer;

for(int i=0;i<count-1;i++) { // deal with each node

pointer->setValue(nodeArray[i].info);

if(nodeArray[i].ltag==0)

aQueue.push(pointer); // push the pointer into the queue

else pointer->setChild(NULL); // set the left child node as NULL

TreeNode<T>* temppointer=new TreeNode<T>;

Trees

Chapter 6

6.3 Sequential Storage Structure of Tree

15

目录页

Ming Zhang “Data Structures and Algorithms”

if(nodeArray[i].rtag == 0)

pointer->setSibling(temppointer);

else {

pointer->setSibling(NULL); // set the right sibling node as NULL

pointer=aQueue.front(); // get the pointer of the first node in the queue

aQueue.pop(); // and pop it out of the queue

pointer->setChild(temppointer);

}

pointer=temppointer;

}

pointer->setValue(nodeArray[count-1].info); // the last node

pointer->setChild(NULL); pointer->setSibling(NULL);

}

Trees

Chapter 6

16

目录页

Ming Zhang “Data Structures and Algorithms”

Postorder sequence with degree representation

Trees

Chapter 6

6.3 Sequential Storage Structure of Tree

• In postorder sequence with degree

representation, nodes are stored contiguously

according to postorder sequence, whose form

are like:

• info represents the data of the node, and

degree represents the degree of the node

 degree info

17

目录页

Ming Zhang “Data Structures and Algorithms”

Postorder sequence with degree representation

Trees

Chapter 6

6.3 Sequential Storage Structure of Tree

info C XF GJ EK H I D

3 00 00 30 0 0 2degree

F

C

G

D

X I

E

K H J

18

目录页

Ming Zhang “Data Structures and Algorithms”

Postorder sequence with degree representation

Trees

Chapter 6

6.3 Sequential Storage Structure of Tree

info C XF GJ EK H I D

3 00 00 30 0 0 2degree

F

C

G

D

X I

E

K H J

K

H

J

E

F

G

C

X

I

D

19

目录页

Ming Zhang “Data Structures and Algorithms”

• Preorder sequence of the full
tagging binary tree

A’ B’ I C D’ E’ H F’ J G K

Trees

Chapter 6

6.3 Sequential Storage Structure of Tree

G

FH

D

C

A

B

E

J

I K

• Preorder sequence of the virtual
full tagging binary tree

A’ B’ / C D’ E’ H F’ J / K

FH

D

C

A

B

E

J

K

20

目录页

Ming Zhang “Data Structures and Algorithms”

Thinking: Sequential Storage of the Forest

Trees

Chapter 6

6.3 Sequential Storage Structure of Tree

• Information redundancy

• Other sequential storage of tree

– Preorder sequence with degree?

– Level-order sequence with degree?

• Sequential storage of the binary tree?

– The binary tree is corresponding to the tree, but their

semantemes are different

• Preorder sequence of the binary tree with right link

• Level-order sequence of the binary tree with left link

21

目录页

Ming Zhang “Data Structures and Algorithms”

Definition of K-ary tree

Trees

Chapter 6

6.4 K-ary Trees

• K-ary tree T is a finite node set, which can be

defined recursively:

– (a) T is an empty set.

– (b) T consists of a root node and K disjoint K-

ary subtrees.

• Nodes except the root R are devided into K

subsets (T
0
, T

1
, …, T

K–1
), and each subset is a K-

ary tree, such that T = {R, T
0
, T

1
, …, T

K-1
}.

• Each branch node of K-ary tree has K child nodes.

22

目录页

Ming Zhang “Data Structures and Algorithms”

Full K-ary trees and complete K-ary trees

Trees

Chapter 6

6.4 K-ary Trees

• The nodes of K-ary tree have K child nodes

• Many properties of binary tree can be generalized to K-ary tree

– Full K-ary trees and complete K-ary trees are similar to full

binary trees and complete binary trees

– Complete K-ary trees can also be storeed in an array

Full 3-ary tree Complete 3-ary tree

Data Structures and
Algorithms

Thanks

the National Elaborate Course (Only available for IPs in China)
http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/

Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)

Ming Zhang “Data Structures and Algorithms”

