

Data Structures and Algorithms (6)

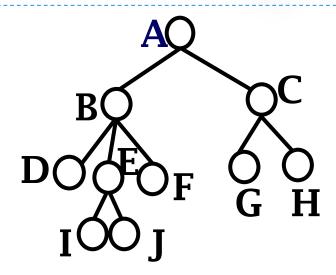
Instructor: Ming Zhang

Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook)

https://courses.edx.org/courses/PekingX/04830050x/2T2014/

Chapter 6 Trees

General Definitions and Terminology
 of Tree



- Linked Storage Structure of Tree
- Sequential Storage Structure of Tree
- K-ary Trees

6.3 Sequential Storage Structure of Tree

Sequential Storage Structure of Tree

- Preorder sequence with right link representation
- Double-tagging preorder sequence representation
- Double-tagging level-order sequence representation
- Postorder sequence with degree representation

6.3 Sequential Storage Structure of Tree

Preorder sequence with right link representation

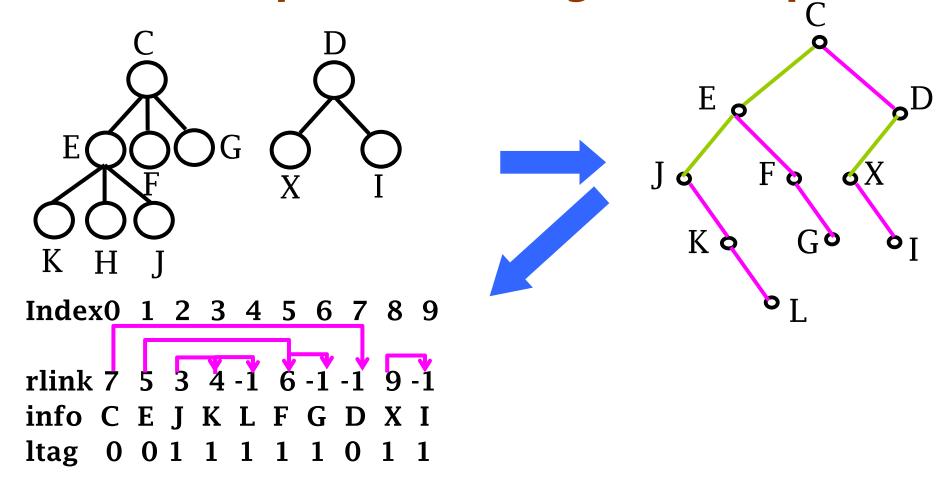
Nodes are stored continuously according to preorder sequence

ltag	info	rlink
------	------	-------

- info : the data of the node
- rlink : right link
 - Point to the next sibling of the node, which is corresponding to the right child node of the parent node in the binary tree
- Itag : tag
 - If the node has no child node, which means the node doesn't have a left child node in the binary tree, and Itag will be 1.
 - Otherwise, Itag will be 0.

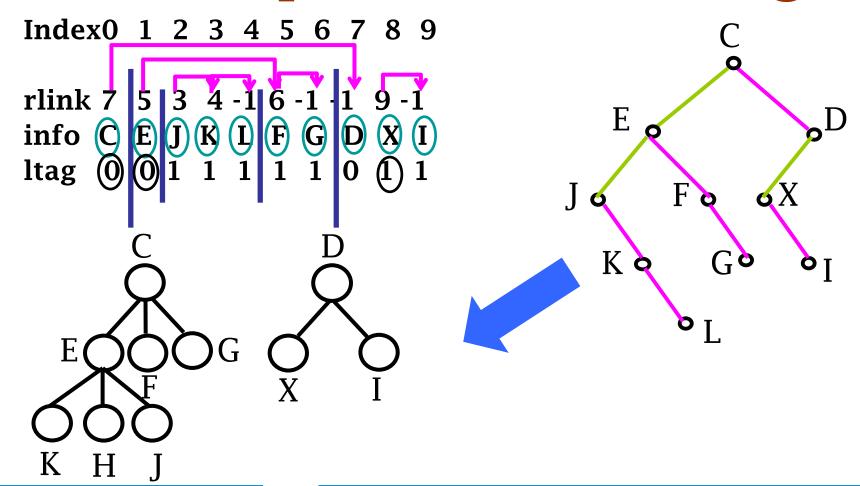
6.3 Sequential Storage Structure of Tree

Preorder sequence with right link representation



6.3 Sequential Storage Structure of Tree

From a preorder rlink-ltag to a tree



rtag

Trees

6.3 Sequential Storage Structure of Tree

Double-tagging preorder sequence representation

□ In preorder sequence with right link representation, rlink is still redundant, so we can replace the pointer rlink with a tag rtag, then it is called "double-tagging preorder sequence representation". Each node includes data and 2 tags(ltag and rtag), the form of the node is like: □ □ □

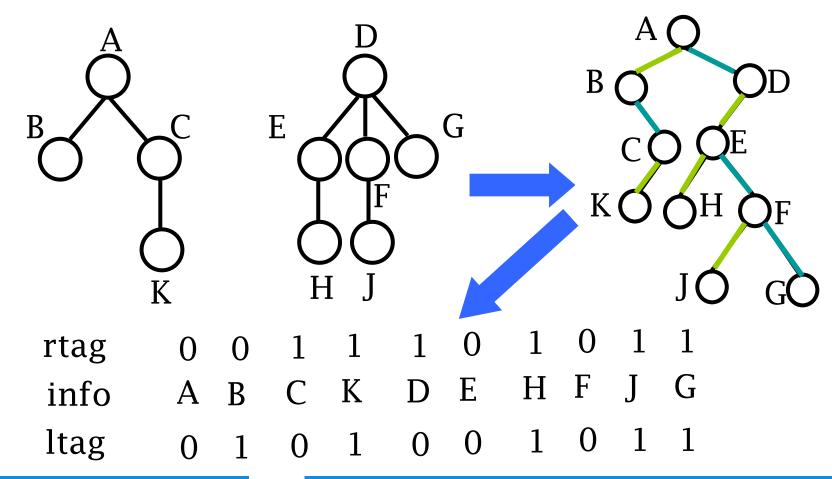
According to the preorder sequence and 2 tags(ltag, rtag), we can calculate the value of llink and rlink of each node in the "Left-child/Right-sibling" list. And llink will be the same as that in preorder sequence with right link representation.

ltag

info

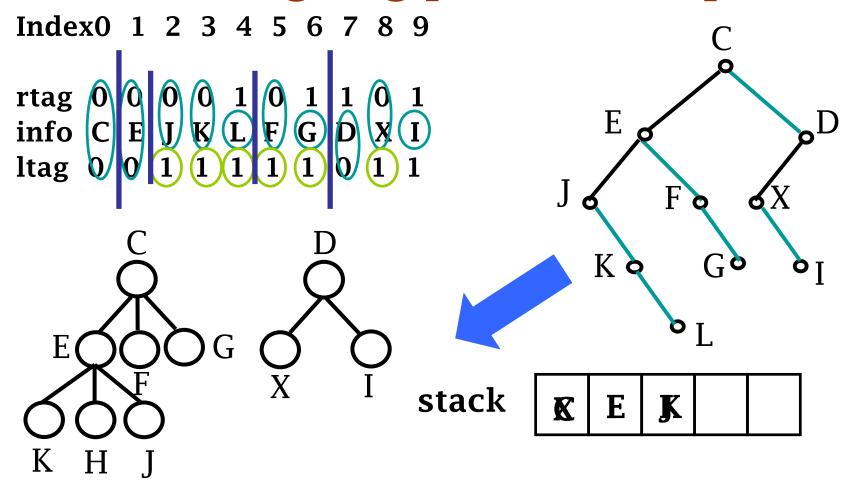
6.3 Sequential Storage Structure of Tree

Double-tagging preorder sequence representation



6.3 Sequential Storage Structure of Tree

From a rtag-ltag preorder sequence to a tree



6.3 Sequential Storage Structure of Tree

Rebuild the tree by double-tagging preorder sequence

```
template<class T>
class DualTagTreeNode {
                                           // class of double-tagging preorder sequence node
public:
  T info:
                                           // data information of the node
  int ltag, rtag;
                                           // left/right tag
  DualTagTreeNode();
                                           // constructor
  virtual ~DualTagTreeNode();
};
template <class T>
Tree<T>::Tree(DualTagTreeNode<T> *nodeArray, int count) {
 // use double-tagging preorder sequence representation to build "Left-child/Right-sibling" tree
  using std::stack;
                                           // Use the stack of STL
  stack<TreeNode<T>* > aStack:
  TreeNode<T> *pointer = new TreeNode<T>; // ready to set up root node
  root = pointer;
```


6.3 Sequential Storage Structure of Tree

```
for (int i = 0; i < count-1; i++) { // deal with one node
 pointer->setValue(nodeArray[i].info); // assign the value to the node
 if (nodeArray[i].rtag == 0)
                                       // if rtag equals to 0, push the node into the stack
   aStack.push(pointer);
 else pointer->setSibling(NULL);
                                       // if rtag equals to 1, then right sibling pointer
                                       // should be NULL
 TreeNode<T> *temppointer = new TreeNode<T>; // get ready for the next node
 if (nodeArray[i].ltag == 0)
                                       // if ltag equals to 0, then set the child node
   pointer->setChild(temppointer);
 else {
                                       // if ltag equals to 1
   pointer->setChild(NULL);
                                       // set child pointer equal to NULL
                                       // get the top element of the stack
   pointer = aStack.top();
   aStack.pop();
   pointer->setSibling(temppointer); } // set a sibling node for the top element of the stack
 pointer = temppointer; }
pointer->setValue(nodeArray[count-1].info); // deal with the last node
pointer->setChild(NULL); pointer->setSibling(NULL);
```


6.3 Sequential Storage Structure of Tree

rtag

Double-tagging level-order sequence representation

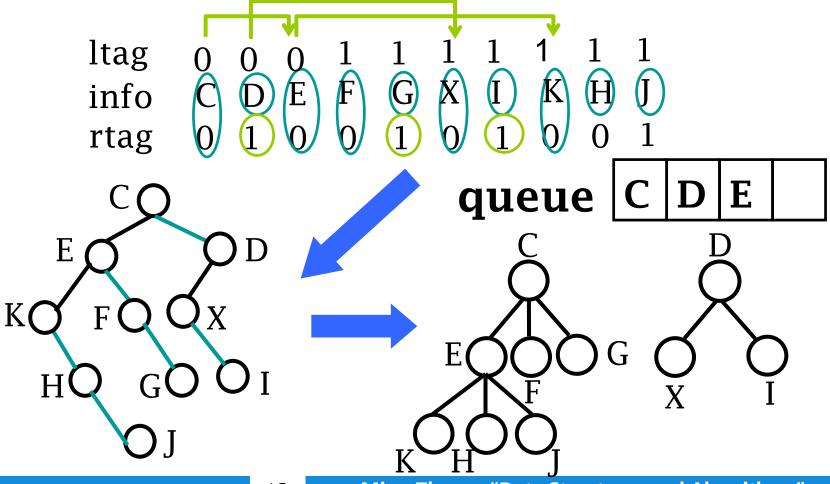
Nodes are stored continuously according to levelorder sequence info

ltag

- Info represents the data of the node.
- ltag is a 1-bit tag, if the node doesn't have a child node, which means the node of the corresponding binary tree doesn't have a left child node, then ltag equals to 1, otherwise, ltag equals to 0.
- rtag is a 1-bit tag, if the node doesn't have a right sibling node, which means the node of the corresponding binary tree doesn't have a right child node, then rtag equals to 1, otherwise, rtag equals to 0.

6.3 Sequential Storage Structure of Tree

From a double-tagging level-order sequence to a tree



6.3 Sequential Storage Structure of Tree

From a double-tagging level-order sequence to a tree

```
template <class T>
Tree<T>::Tree(DualTagWidthTreeNode<T>* nodeArray, int count) {
 using std::queue;
                                        // use the queue of STL
 queue<TreeNode<T>*> aQueue;
 TreeNode<T>* pointer=new TreeNode<T>; // build the root node
 root=pointer;
 for(int i=0;i<count-1;i++) {      // deal with each node</pre>
  pointer->setValue(nodeArray[i].info);
  if(nodeArray[i].ltag==0)
      aQueue.push(pointer); // push the pointer into the queue
    else pointer->setChild(NULL); // set the left child node as NULL
  TreeNode<T>* temppointer=new TreeNode<T>;
```



```
if(nodeArray[i].rtag == 0)
  pointer->setSibling(temppointer);
 else {
   pointer->setSibling(NULL); // set the right sibling node as NULL
   pointer=aQueue.front(); // get the pointer of the first node in the queue
                                // and pop it out of the queue
   aQueue.pop();
   pointer->setChild(temppointer);
 pointer=temppointer;
pointer->setValue(nodeArray[count-1].info); // the last node
pointer->setChild(NULL); pointer->setSibling(NULL);
```


6.3 Sequential Storage Structure of Tree

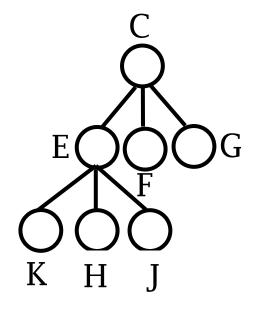
Postorder sequence with degree representation

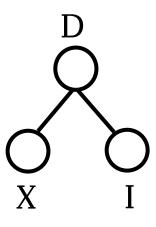
- info represents the data of the node, and degree represents the degree of the node

6.3 Sequential Storage Structure of Tree

Postorder sequence with degree representation

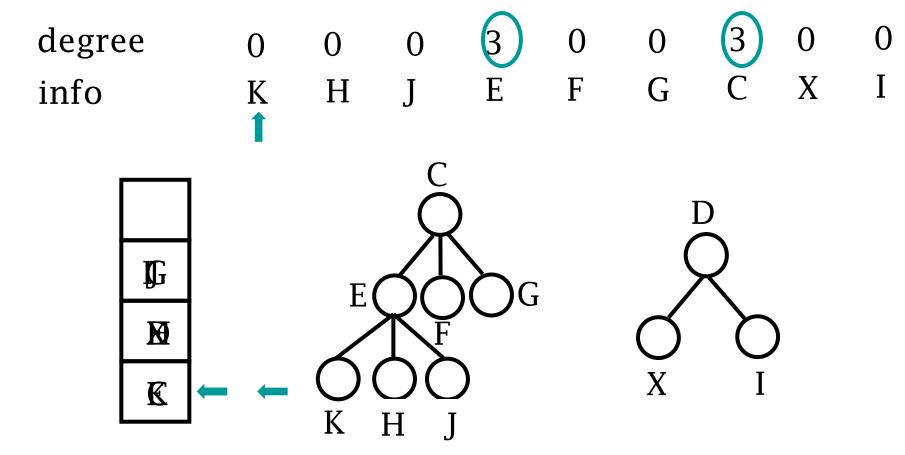
degree 0 0 0 3 0 0 3 0 0 2 info K H J E F G C X I D





6.3 Sequential Storage Structure of Tree

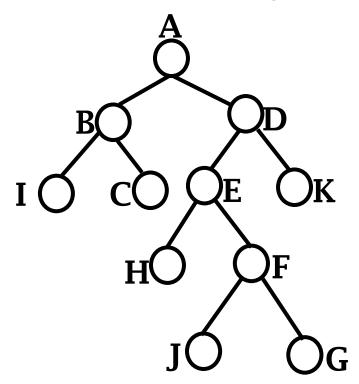
Postorder sequence with degree representation



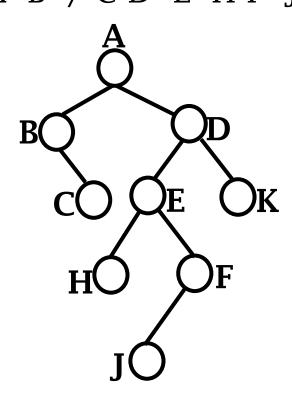
6.3 Sequential Storage Structure of Tree

 Preorder sequence of the full tagging binary tree

A'B'ICD'E'HF'JGK



Preorder sequence of the virtual full tagging binary tree
 A' B' / C D' E' H F' J / K



6.3 Sequential Storage Structure of Tree

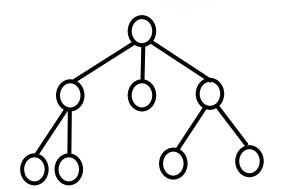
Thinking: Sequential Storage of the Forest

- Information redundancy
- Other sequential storage of tree
 - Preorder sequence with degree?
 - Level-order sequence with degree?
- Sequential storage of the binary tree?
 - The binary tree is corresponding to the tree, but their semantemes are different
 - Preorder sequence of the binary tree with right link
 - Level-order sequence of the binary tree with left link

6.4 K-ary Trees

Definition of K-ary tree

• K-ary tree T is a finite node set, which can be defined recursively:

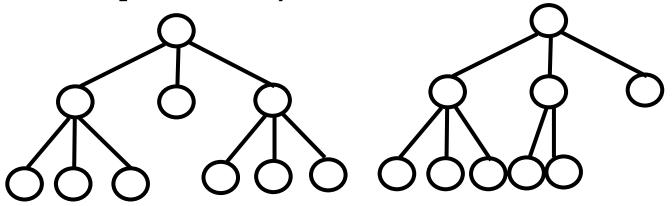


- (a) T is an empty set.
- (b) T consists of a root node and K disjoint K-ary subtrees.
- Nodes except the root R are devided into K subsets $(T_0, T_1, ..., T_{K-1})$, and each subset is a K-ary tree, such that $T = \{R, T_0, T_1, ..., T_{K-1}\}$.
- Each branch node of K-ary tree has K child nodes.

6.4 K-ary Trees

Full K-ary trees and complete K-ary trees

- The nodes of K-ary tree have K child nodes
- Many properties of binary tree can be generalized to K-ary tree
 - Full K-ary trees and complete K-ary trees are similar to full binary trees and complete binary trees
 - Complete K-ary trees can also be storeed in an array



Full 3-ary tree

Complete 3-ary tree

Data Structures and Algorithms

Thanks

the National Elaborate Course (Only available for IPs in China)

http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/

Ming Zhang, Tengjiao Wang and Haiyan Zhao

Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)