
Introduction to ELEC301x
Discrete-Time Signals
and Systems



Welcome to Elec301x – Discrete Time Signals and Systems

This is an introductory course on signal processing, which studies signals and systems

Signal (n): A detectable physical quantity . . . by which messages or information
can be transmitted (Merriam-Webster)
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Signals carry information

Examples:

•
Speech signals transmit language via acoustic waves

•
Radar signals transmit the position and velocity of targets via electromagnetic waves

•
Electrophysiology signals transmit information about processes inside the body

•
Financial signals transmit information about events in the economy
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Welcome to Elec301x – Discrete Time Signals and Systems

Systems manipulate the information carried by signals

Signal processing involves the theory and application of

•
filtering, coding, transmitting, estimating, detecting, analyzing, recognizing,

synthesizing, recording, and reproducing signals by digital or analog devices or

techniques

•
where signal includes audio, video, speech, image, communication, geophysical,

sonar, radar, medical, musical, and other signals

(IEEE Signal Processing Society Constitutional Amendment, 1994)
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Signal Processing

Signal processing has traditionally been a part of electrical and computer engineering

But now expands into applied mathematics, statistics, computer science, geophysics, and host of
application disciplines

Initially analog signals and systems implemented using resistors, capacitors, inductors, and
transistors

Since the 1940s increasingly digital signals and systems implemented using computers and
computer code (Matlab, Python, C, . . . )

•
Advantages of digital include stability and programmability

•
As computers have shrunk, digital signal processing has become ubiquitous
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Digital Signal Processing Applications
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Rice ELEC301x

This edX course consists of one-half of the core
Electrical and Computer Engineering course entitled
“Signals and Systems” taught at Rice University
in Houston, Texas, USA (see www.dsp.rice.edu)

Goals: Develop intuition into and learn how to reason analytically about signal processing
problems

Video lectures, primary sources, supplemental materials, practice exercises, homework,
programming case studies, final exam

Integrated Matlab!

Important: This is a mathematical treatment of signals and systems (no pain, no gain!)
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Before You Start

Please make sure you have a solid understanding of

•
Complex numbers and arithmetic

•
Linear algebra (vectors, matrices, dot products, eigenvectors, bases . . . )

•
Series (finite and infinite)

•
Calculus of a single variable (derivatives and integrals)

•
Matlab

To test your readiness or refresh your knowledge, visit the “Pre-class Mathematics Refresher”
section of the course
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Course Outline

Week 1: Signals

Week 2: Systems

Week 3: Discrete Fourier Transform (DFT)

Week 4: Discrete-Time Fourier Transform (DTFT)

Week 5: z Transform

Week 6: Filter Design

Week 7: Study Week and Final Exam

8



What You Should Do Each Week

Watch the Lecture videos

Do the Exercises (on the page to the right of the videos)

As necessary, refer to the lesson’s Supplemental Resources (the page to the right of the exercises)

Do the homework problems

Some weeks will also have graded MATLAB case study homework problems
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Logistics and Grading

How to get help: Course Discussion page
•

Use a thread set up for a particular topic, or

•
Start a new thread

Rules for discussion
•

Be respectful and helpful

•
Do not reveal answers to any problem that will be graded

Grading

Homework 22% (lowest score dropped)
Practice exercises 15%
Final exam 30%
Matlab case studies (four) 15% (lowest score dropped)
Exit survey 3%

Passing grade: 60%
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Supplemental Materials

After the video lecture and a practice exercise or two, you will often see additional
Supplemental Resources

Sometimes these will contain background material to provide motivation for the topic

Sometimes these will provide a refresher of pre-requisite concepts

Sometimes these will provide deeper explanations of the content (more rigorous proofs, etc.)

Sometimes a particular signal processing application will be showcased

Important: Though the content in these resources will not be assessed in the homework or exam,
you may find that they help you to understand a concept better or increase your interest in it
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Rice ELEC301x
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Discrete Time Signals



Before We Start

Please make sure you have a solid understanding of

•
Complex numbers and arithmetic

•
Linear algebra (vectors, matrices, dot products, eigenvectors, bases . . . )

•
Series (finite and infinite)

•
Calculus of a single variable (derivatives and integrals)

•
Matlab

To test your readiness or refresh your knowledge, visit the “Pre-class Mathematics Refresher”
section of the course

2



Signals

Signal (n): A detectable physical quantity . . . by which messages or information
can be transmitted (Merriam-Webster)
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Signals carry information

Examples:

•
Speech signals transmit language via acoustic waves

•
Radar signals transmit the position and velocity of targets via electromagnetic waves

•
Electrophysiology signals transmit information about processes inside the body

•
Financial signals transmit information about events in the economy

Signal processing systems manipulate the information carried by signals

This is a course about signals and systems
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Signals are Functions

A signal is a function that maps an independent variable to a dependent variable.
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Signal x[n]: each value of n produces the value x[n]

In this course, we will focus on discrete-time signals:

•
Independent variable is an integer: n 2 Z (will refer to as time)

•
Dependent variable is a real or complex number: x[n] 2 R or C

n

x[n]
......

�1 0 1 2 3 4 5 6 7
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Plotting Real Signals

When x[n] 2 R (ex: temperature in a room at noon on Monday), we use one signal plot

−15 −10 −5 0 5 10 15
−1

0
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n

x
[n

]

When it is clear from context, we will often suppress the labels on one or both axes, like this
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A Menagerie of Signals
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Plotting Signals Correctly

In a discrete-time signal x[n], the independent variable n is discrete (integer)

To plot a discrete-time signal in a program like Matlab, you should use the stem or similar
command and not the plot command

Correct:
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Incorrect:
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x
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]
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Plotting Complex Signals

Recall that a complex number a 2 C can be equivalently represented two ways:

•
Polar form: a = |a| ej\a

•
Rectangular form: a = Re{a}+ j Im{a}

Here j =
p
�1 (engineering notation; mathematicians use i =

p
�1)

When x[n] 2 C (ex: magnitude and phase of an electromagnetic wave), we use two signal plots

•
Rectangular form: x[n] = Re{x[n]}+ j Im{x[n]}

•
Polar form: x[n] = |x[n]| ej\x[n]
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Plotting Complex Signals (Rectangular Form)

Rectangular form: x[n] = Re{x[n]}+ j Im{x[n]} 2 C

−15 −10 −5 0 5 10 15
−2

−1

0

1

n

R
e{
x
[n

]}

−15 −10 −5 0 5 10 15
−2

−1

0

1

n

Im
{x

[n
]}

9



Plotting Complex Signals (Polar Form)

Polar form: x[n] = |x[n]| ej\(x[n]) 2 C
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Summary

Discrete-time signals

•
Independent variable is an integer: n 2 Z (will refer to as time)

•
Dependent variable is a real or complex number: x[n] 2 R or C

Plot signals correctly!
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Signal Properties



Signal Properties

Real signals

Complex signals

Infinite/finite-length signals

Periodic signals

Causal signals

Even/odd signals

Digital signals

2



Finite/Infinite-Length Signals

An infinite-length discrete-time signal x[n] is defined for all n 2 Z, i.e., �1 < n < 1

−15 −10 −5 0 5 10 15
−1

0

1

n

x
[
n
] . . .

A finite-length discrete-time signal x[n] is defined only for a finite range of N1  n  N2

−15 −10 −5 0 5 10 15
−1

0
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n
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[
n
]

Important: a finite-length signal is undefined for n < N1 and n > N2
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Periodic Signals

A discrete-time signal is periodic if it repeats with period N 2 Z:

x[n+mN ] = x[n] 8m 2 Z
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−15 −10 −5 0 5 10 15 20
0

2

4

n

x
[
n
]

Notes:

The period N must be an integer

A periodic signal is infinite in length

A discrete-time signal is aperiodic if it is not periodic
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Converting between Finite and Infinite-Length Signals

Convert an infinite-length signal into a finite-length signal by windowing

Convert a finite-length signal into an infinite-length signal by either

•
(infinite) zero padding, or

•
periodization
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Windowing

Converts a longer signal into a shorter one y[n] =

(
x[n] N1  n  N2

0 otherwise

−15 −10 −5 0 5 10 15
−1

0

1

x[n ]

n
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Zero Padding

Converts a shorter signal into a longer one

Say x[n] is defined for N1  n  N2

Given N0  N1  N2  N3 y[n] =

8
><

>:

0 N0  n < N1

x[n] N1  n  N2

0 N2  n  N3

−15 −10 −5 0 5 10 15
−1

0

1

x[n ]

n
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Periodization

Converts a finite-length signal into an infinite-length, periodic signal

Given finite-length x[n], replicate x[n] periodically with period N

y[n] =

1X

m=�1
x[n�mN ], n 2 Z

= · · ·+ x[n+ 2N ] + x[n+N ] + x[n] + x[n�N ] + x[n� 2N ] + · · ·

0 1 2 3 4 5 6 7
0

2

4

x[n ]

n

−15 −10 −5 0 5 10 15 20
0

2

4

y [n ] with period N = 8

n
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Useful Aside – Modular Arithmetic

Modular arithmetic with modulus N (mod-N) takes place on a clock with N “hours”

•
Ex: (12)8 (“twelve mod eight”)

Modulo arithmetic is inherently periodic

•
Ex: . . . (�12)8 = (�4)8 = (4)8 = (12)8 = (20)8 . . .
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Periodization via Modular Arithmetic

Consider a length-N signal x[n] defined for 0  n  N � 1

A convenient way to express periodization with period N is y[n] = x[(n)N ], n 2 Z

0 1 2 3 4 5 6 7
0

2

4

x[n ]

n

−15 −10 −5 0 5 10 15 20
0

2

4

y [n ] with period N = 8

n

Important interpretation

•
Infinite-length signals live on

the (infinite) number line

•
Periodic signals live on a circle

– a clock with N “hours”
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Finite-Length and Periodic Signals are Equivalent

0 1 2 3 4 5 6 7
0

2

4

x[n ]

n

−15 −10 −5 0 5 10 15 20
0

2

4

y [n ] with period N = 8

n

All of the information in a periodic signal is contained in one period (of finite length)

Any finite-length signal can be periodized

Conclusion: We can and will think of finite-length signals and periodic signals interchangeably

We can choose the most convenient viewpoint for solving any given problem

•
Application: Shifting finite length signals
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Shifting Infinite-Length Signals

Given an infinite-length signal x[n], we can shift it back and forth in time via x[n�m], m 2 Z

0 10 20 30 40 50 60
−1

0

1

x[n ]

n

When m > 0, x[n�m] shifts to the right (forward in time, delay)

0 10 20 30 40 50 60
−1

0

1

x[n � 10]

n

When m < 0, x[n�m] shifts to the left (back in time, advance)

0 10 20 30 40 50 60
−1

0

1

x[n + 10]

n
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Shifting Periodic Signals

Periodic signals can also be shifted; consider y[n] = x[(n)N ]

−15 −10 −5 0 5 10 15 20
0

2

4

y [n ] with period N = 8

n

Shift one sample into the future: y[n� 1] = x[(n� 1)N ]

−15 −10 −5 0 5 10 15 20
0

2

4

y [n � 1] with period N = 8

n

13



Shifting Finite-Length Signals

Consider finite-length signals x and v defined for 0  n  N � 1 and suppose “v[n] = x[n� 1]”

v[0] = ??

v[1] = x[0]

v[2] = x[1]

v[3] = x[2]

...

v[N � 1] = x[N � 2]

?? = x[N � 1]

What to put in v[0]? What to do with x[N � 1]? We don’t want to invent/lose information

Elegant solution: Assume x and v are both periodic with period N ; then v[n] = x[(n� 1)N ]

This is called a periodic or circular shift (see circshift and mod in Matlab)
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Circular Shift Example

Elegant formula for circular shift of x[n] by m time steps: x[(n�m)N ]

Ex: x and v defined for 0  n  7, that is, N = 8. Find v[n] = x[(n� 3)8]
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Circular Shift Example

Elegant formula for circular shift of x[n] by m time steps: x[(n�m)N ]

Ex: x and v defined for 0  n  7, that is, N = 8. Find v[n] = x[(n�m)N ]

v[0] = x[5]

v[1] = x[6]

v[2] = x[7]

v[3] = x[0]

v[4] = x[1]

v[5] = x[2]

v[6] = x[3]

v[7] = x[4]
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Circular Time Reversal

For infinite length signals, the transformation of reversing the time axis x[�n] is obvious

Not so obvious for periodic/finite-length signals

Elegant formula for reversing the time axis of a periodic/finite-length signal: x[(�n)N ]

Ex: x and v defined for 0  n  7, that is, N = 8. Find v[n] = x[(�n)N ]

v[0] = x[0]

v[1] = x[7]

v[2] = x[6]

v[3] = x[5]

v[4] = x[4]

v[5] = x[3]

v[6] = x[2]

v[7] = x[1]
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Causal Signals

A signal x[n] is causal if x[n] = 0 for all n < 0.
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A signal x[n] is anti-causal if x[n] = 0 for all n � 0

−10 −5 0 5 10 15
0

0.5
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n

x
[
n
]

A signal x[n] is acausal if it is not causal
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Even Signals

A real signal x[n] is even if x[�n] = x[n]
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Even signals are symmetrical around the point n = 0
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Odd Signals

A real signal x[n] is odd if x[�n] = �x[n]
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Even signals are anti-symmetrical around the point n = 0
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Even+Odd Signal Decomposition

Useful fact: Every signal x[n] can be decomposed into the sum of its even part + its odd part

Even part: e[n] =

1
2 (x[n] + x[�n]) (easy to verify that e[n] is even)

Odd part: o[n] =

1
2 (x[n]� x[�n]) (easy to verify that o[n] is odd)

Decomposition x[n] = e[n] + o[n]

Verify the decomposition:

e[n] + o[n] =

1

2

(x[n] + x[�n]) +

1

2

(x[n]� x[�n])

=

1

2

(x[n] + x[�n] + x[n]� x[�n])

=

1

2

(2x[n]) = x[n] X
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Even+Odd Signal Decomposition in Pictures

−15 −10 −5 0 5 10 15
0

0.5

1

x[n ]

n
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Even+Odd Signal Decomposition in Pictures

1
2

0

@
−15 −10 −5 0 5 10 15
0

0.5

1

x[n]

n

+

−15 −10 −5 0 5 10 15
0

0.5

1

x[�n]

n

1

A
=

−15 −10 −5 0 5 10 15
0

0.5

1

e[n]

n

+

1
2

0

@
−15 −10 −5 0 5 10 15
0

0.5

1

x[n]

n

�
−15 −10 −5 0 5 10 15
0

0.5

1

x[�n]

n

1

A
=

−15 −10 −5 0 5 10 15
−0.5

0

0.5

o[n]

n

=

−15 −10 −5 0 5 10 15
0

0.5

1

x[n]

n

23



Digital Signals

Digital signals are a special sub-class of discrete-time signals

•
Independent variable is still an integer: n 2 Z

•
Dependent variable is from a finite set of integers: x[n] 2 {0, 1, . . . , D � 1}

•
Typically, choose D = 2q and represent each possible level of x[n] as a digital code with q bits

•
Ex: Digital signal with q = 2 bits ) D = 22 = 4 levels

−15 −10 −5 0 5 10 15
0

1

2

3

n

Q
(
x
[
n
]
)

•
Ex: Compact discs use q = 16 bits ) D = 216 = 65536 levels
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Summary

Signals can be classified many di↵erent ways (real/complex, infinite/finite-length,
periodic/aperiodic, causal/acausal, even/odd, . . . )

Finite-length signals are equivalent to periodic signals, modulo arithmetic useful
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Key Test Signals



A Toolbox of Test Signals

Delta function

Unit step

Unit pulse (boxcar)

Real exponential

Next lecture

•
Sinusoids

•
(Complex) sinusoid

•
Complex exponential

Note: We will introduce the test signals as infinite-length signals, but each has a finite-length
equivalent
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Delta Function

The delta function (aka unit impulse) �[n] =

(
1 n = 0

0 otherwise
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The shifted delta function �[n�m] peaks up at n = m; here m = 9
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Delta Functions Sample

Multiplying a signal by a shifted delta function picks out one sample of the signal and sets all
other samples to zero

y[n] = x[n] �[n�m] = x[m] �[n�m]

Important: m is a fixed constant, and so x[m] is a constant (and not a signal)
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Unit Step

The unit step u[n] =

(
1 n � 0

0 n < 0
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The shifted unit step u[n�m] jumps from 0 to 1 at n = m; here m = 5
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Unit Step Selects Part of a Signal

Multiplying a signal by a shifted unit step function zeros out its entries for n < m

y[n] = x[n]u[n�m]

(Note: For m =, this makes y[n] causal)
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Unit Pulse (Boxcar)

The unit pulse (boxcar) p[n] =

8
><

>:

0 n < N1

1 N1  n  N2

0 n > N2D
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Ex: p[n] for N1 = �5 and N2 = 3
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One of many di↵erent formulas for the unit pulse

p[n] = u[n�N1]� u[n� (N2 + 1)]
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Real Exponential

The real exponential r[n] = a

n, a 2 R, a � 0
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For a > 1, r[n] shrinks to the left and grows to the right; here a = 1.1
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For 0 < a < 1, r[n] grows to the left and shrinks to the right; here a = 0.9
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Summary

We will use our test signals a lot, especially the delta function and unit step

9



Sinusoids



Table of Contents

Lecture in four parts:

•
Part 1: Real and Complex Sinusoids

•
Part 2: Sinusoids are Weird: Aliasing

•
Part 3: Sinusoids are Weird: Periodicity

•
Part 4: Complex Exponentials
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Sinusoids, Part 1
Real and Complex Sinusoids



A Toolbox of Test Signals, Cont’d

Sinusoids appear in myriad disciplines, in particular signal processing

They are the basis (literally) of Fourier analysis (DFT, DTFT)

We will introduce

•
Real-valued sinusoids

•
(Complex) sinusoid

•
Complex exponential
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Recall: Real Exponential

The real exponential r[n] = a

n, a 2 R, a � 0
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For a > 1, r[n] shrinks to the left and grows to the right; here a = 1.1
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For 0 < a < 1, r[n] grows to the left and shrinks to the right; here a = 0.9
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Sinusoids
There are two natural real-valued sinusoids: cos(!n+ �) and sin(!n+ �)

Frequency: ! (units: radians/sample)

Phase: � (units: radians)

cos(!n) (even)
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Sinusoid Examples

cos(0n)
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Get Comfortable with Sinusoids!

It’s easy to play around in Matlab to get comfortable with the properties of sinusoids

N=36;
n=0:N-1;
omega=pi/6;
phi=pi/4;
x=cos(omega*n+phi);
stem(n,x)
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Complex Sinusoid

The complex-valued sinusoid combines both the cos and sin terms (via Euler’s identity)

e

j(!n+�) = cos(!n+ �) + j sin(!n+ �)
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A Complex Sinusoid is a Helix

e

j(!n+�) = cos(!n+ �) + j sin(!n+ �)

A complex sinusoid is a helix in 3D space (Re{}, Im{}, n)
•

Real part (cos term) is the projection onto the Re{} axis

•
Imaginary part (sin term) is the projection onto the Im{} axis

Frequency ! determines rotation speed and direction of helix
•

! > 0 ) anticlockwise rotation

•
! < 0 ) clockwise rotation

10



Negative Frequency

Negative frequency is nothing to be afraid of! Consider a sinusoid with a negative frequency �!

e

j(�!)n = e

�j!n = cos(�!n) + j sin(�!n) = cos(!n)� j sin(!n)

Also note: e

j(�!)n = e

�j!n =
�
e

j!n
�⇤

Bottom line: negating the frequency is equivalent to complex conjugating a complex sinusoid,
which flips the sign of the imaginary, sin term

−15 −10 −5 0 5 10 15
−1

0

1

Re(ej!n) = cos(!n)

n

−15 −10 −5 0 5 10 15
−1

0

1

Re(e�j!n) = cos(!n)

n

−15 −10 −5 0 5 10 15
−1

0

1

Im(ej!n) = sin(!n)

n

−15 −10 −5 0 5 10 15
−1

0

1

Im(e�j!n) = � sin(!n)

n
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Phase of a Sinusoid ej(!n+�)

� is a (frequency independent) shift that is referenced to one period of oscillation

cos
�
⇡
6

n� 0
�

−15 −10 −5 0 5 10 15
−1

0

1

n

cos
�
⇡
6

n� ⇡
4

�

−15 −10 −5 0 5 10 15
−1

0

1

n

cos
�
⇡
6

n� ⇡
2

�
= sin

�
⇡
6

n

�

−15 −10 −5 0 5 10 15
−1

0

1

n

cos
�
⇡
6

n� 2⇡
�
= cos

�
⇡
6

n

�

−15 −10 −5 0 5 10 15
−1

0

1

n
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Sinusoids, Part 2
Sinusoids are Weird:
Aliasing



Discrete-Time Sinusoids are Weird!

Discrete-time sinusoids ej(!n+�) have two counterintuitive properties

Both involve the frequency !

15



Discrete-Time Sinusoids are Weird!

Weird property #1: ALIASING

16



Aliasing of Sinusoids

Consider two sinusoids with two di↵erent frequencies

•
! ) x1[n] = e

j(!n+�)

•
! + 2⇡ ) x2[n] = e

j((!+2⇡)n+�)

But note that

x

2

[n] = e

j(!+2⇡)n+�) = e

j(!n+�)+j2⇡n = e

j(!n+�)
e

j2⇡n = e

j(!n+�) = x

1

[n]

The signals x
1

and x

2

have di↵erent frequencies but are identical!

We say that x
1

and x

2

are aliases; this phenomenon is called aliasing

Note: Any integer multiple of 2⇡ will do; try with x

3

[n] = e

j((!+2⇡m)n+�), m 2 Z

17



Aliasing of Sinusoids – Example

x

1

[n] = cos
�
⇡
6

n

�

−15 −10 −5 0 5 10 15
−1

0

1

n

x

2

[n] = cos
�
13⇡
6

n

�
= cos

�
(⇡
6

+ 2⇡)n
�

−15 −10 −5 0 5 10 15
−1

0

1

n
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Alias-Free Frequencies

Since

x

3

[n] = e

j(!+2⇡m)n+�) = e

j(!n+�) = x

1

[n] 8m 2 Z

the only frequencies that lead to unique (distinct) sinusoids lie in an interval of length 2⇡

Convenient to interpret the frequency ! as an angle
(then aliasing is handled automatically; more on this later)

Two intervals are typically used in the signal processing
literature (and in this course)

•
0  ! < 2⇡

• �⇡ < !  ⇡

19



Low and High Frequencies

e

j(!n+�)

Low frequencies: ! close to 0 or 2⇡ rad
Ex: cos

�
⇡
10

n

�

−15 −10 −5 0 5 10 15
−1

0

1

n

High frequencies: ! close to ⇡ or �⇡ rad
Ex: cos

�
9⇡
10

n

�

−15 −10 −5 0 5 10 15
−1

0

1

n
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Sinusoids, Part 3
Sinusoids are Weird:
Periodicity



Discrete-Time Sinusoids are Weird!

Weird property #2: PERIODICITY?

22



Periodicity of Sinusoids

Consider x
1

[n] = e

j(!n+�) with frequency ! = 2⇡k
N , k,N 2 Z (harmonic frequency)

It is easy to show that x
1

is periodic with period N , since

x

1

[n+N ] = e

j(!(n+N)+�) = e

j(!n+!N+�) = e

j(!n+�)
e

j(!N) = e

j(!n+�)
e

j( 2⇡k
N N) = x

1

[n] X

Ex: x
1

[n] = cos( 2⇡3
16

n), N = 16

−15 −10 −5 0 5 10 15
−1

0

1

n

Note: x
1

is periodic with the (smaller) period of N
k when N

k is an integer

23



Aperiodicity of Sinusoids

Consider x
2

[n] = e

j(!n+�) with frequency ! 6= 2⇡k
N , k,N 2 Z (not harmonic frequency)

Is x
2

periodic?

x

2

[n+N ] = e

j(!(n+N)+�) = e

j(!n+!N+�) = e

j(!n+�)
e

j(!N) 6= x

1

[n] NO!

Ex: x
2

[n] = cos(1.16n)

−15 −10 −5 0 5 10 15
−1

0

1

n

If its frequency ! is not harmonic, then a sinusoid oscillates but is not periodic!
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Harmonic Sinusoids

e

j(!n+�)

Semi-amazing fact: The only periodic discrete-time sinusoids are those with harmonic frequencies

! =
2⇡k

N

, k,N 2 Z

Which means that

• Most discrete-time sinusoids are not periodic!

•
The harmonic sinusoids are somehow magical (they play a starring role later in the DFT)

25



Sinusoids, Part 4
Complex Exponentials



Complex Exponential

Complex sinusoid e

j(!n+�) is of the form e

Purely Imaginary Numbers

Generalize to e

General Complex Numbers

Consider the general complex number z = |z| ej!, z 2 C

• |z| = magnitude of z

•
! = \(z), phase angle of z

•
Can visualize z 2 C as a point in the complex plane

Now we have
z

n = (|z|ej!)n = |z|n(ej!)n = |z|nej!n

• |z|n is a real exponential (a

n
with a = |z|)

•
e

j!n
is a complex sinusoid

28



Complex Exponential is a Spiral

z

n =
�
|z| ej!n

�n
= |z|n ej!n

|z|n is a real exponential envelope (an with a = |z|)

e

j!n is a complex sinusoid

z

n is a helix with expanding radius (spiral)

29



Complex Exponential is a Spiral

z

n =
�
|z| ej!n

�n
= |z|n ej!n

|z|n is a real exponential envelope (an with a = |z|)

e

j!n is a complex sinusoid

|z| < 1 |z| > 1

−15 −10 −5 0 5 10 15
−4

−2

0

2

4

Re(zn), |z | < 1

n

−15 −10 −5 0 5 10 15
−4

−2

0

2

Re(zn), |z | > 1

n

−15 −10 −5 0 5 10 15

−2

0

2

4

Im(zn), |z | < 1

n

−15 −10 −5 0 5 10 15
−4

−2

0

2

Im(zn), |z | > 1

n
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Summary

We will use our test signals a lot, especially the sinusoids

Discrete-time sinusoids alias; as a result, the only unique frequencies lie in a range of length 2⇡

Discrete-time sinusoids oscillate but are only periodic when the frequency is harmonic
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Signals are Vectors



Table of Contents

Lecture in three parts:

•
Part 1: Vector Spaces

•
Part 2: Linear Combination + Matlab Demo

•
Part 3: Strength of a Vector
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Signals are Vectors, Part 1:
Vector Space



Signals are Vectors

Signals are mathematical objects

Here we will develop tools to analyze the geometry of sets of signals

The tools come from linear algebra

By interpreting signals as vectors in a vector space, we will be able to speak about the length of
a signal (its “strength,” more below), angles between signals (their similarity), and more

We will also be able to use matrices to better understand how signal processing systems work

Caveat: This is not a course on linear algebra!

4



Vector Space

A linear vector space V is a collection of vectors such that if x, y 2 V and ↵ is a
scalar then

↵x 2 V and x+ y 2 VD
E
F
IN
IT
IO

N

In words:

•
A rescaled vector stays in the vector space

•
The sum of two vectors stays in the vector space

We will be interested in scalars (basically, numbers) ↵ that either live in R or C

Classical vector spaces that you know and love

• RN
, the set of all vectors of length N with real-valued entries

• CN
, the set of all vectors of length N with complex-valued entries

•
Special case that we will use all the time to draw pictures and build intuition: R2

5



The Vector Space R2

(1)

Vectors in R2: x =


x[0]

x[1]

�
, y =


y[0]

y[1]

�
, x[0], x[1], y[0], y[1] 2 R

•
Note: We will enumerate the entries of a vector starting from 0 rather than 1
(this is the convention in signal processing and programming languages like ”C”, but not in Matlab)

•
Note: We will not use the traditional boldface or underline notation for vectors

Scalars: ↵ 2 R

Scaling: ↵x = ↵


x[0]

x[1]

�
=


↵x[0]

↵x[1]

�

6



The Vector Space R2

(2)

Vectors in R2: x =


x[0]

x[1]

�
, y =


y[0]

y[1]

�
, x[0], x[1], y[0], y[1] 2 R

Scalars: ↵ 2 R

Summing: x+ y =


x[0]

x[1]

�
+


y[0]

y[1]

�
=


x[0] + y[0]

x[1] + y[1]

�

7



The Vector Space RN

Vectors in RN : x =

2

6664

x[0]

x[1]

...
x[N � 1]

3

7775
, x[n] 2 R

0 5 10 15 20 25 30
−1

0

1

x[n ]

n

This is exactly the same as a real-valued discrete time signal; that is, signals are vectors

•
Scaling ↵x amplifies/attenuates a signal by the factor ↵

•
Summing x+ y creates a new signal that mixes x and y

RN is harder to visualize than R2 and R3, but the intuition gained from R2 and R3 generally
holds true with no surprises (at least in this course)
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The Vector Space RN

– Scaling

Signal x[n]

0 5 10 15 20 25 30
−1

0

1

x[n ]

n

Scaled signal 3x[n]

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3

3 x[n ]

n
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The Vector Space RN

– Summing

Signal x[n]

0 5 10 15 20 25 30
−1

0

1

2

x[n ]

n

Signal y[n]

0 5 10 15 20 25 30
−1

0

1

2

y [n ]

n

Sum x[n] + y[n]

0 5 10 15 20 25 30
−1

0

1

2

x[n ] + y [n ]

n
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The Vector Space CN

(1)

CN is the same as RN with a few minor modifications

Vectors in CN : x =

2

6664

x[0]

x[1]

...
x[N � 1]

3

7775
, x[n] 2 C

Each entry x[n] is a complex number that can be represented as

x[n] = Re{x[n]}+ j Im{x[n]} = |x[n]| ej\x[n]

Scalars ↵ 2 C

11



The Vector Space CN

(2)

Rectangular form

x =

2

6664

Re{x[0]}+ j Im{x[0]}
Re{x[1]}+ j Im{x[1]}

...
Re{x[N � 1]}+ j Im{x[N � 1]}

3

7775
= Re

8
>>><

>>>:

2

6664

x[0]

x[1]

...
x[N � 1]

3

7775

9
>>>=

>>>;
+ j Im

8
>>><

>>>:

2

6664

x[0]

x[1]

...
x[N � 1]

3

7775

9
>>>=

>>>;

Polar form

x =

2

6664

|x[0]| ej\x[0]

|x[1]| ej\x[1]

...
|x[N � 1]| ej\x[N�1]

3

7775

12



Signals are Vectors, Part 2:
Linear Combination +
Matlab Demo



Linear Combination

Given a collection of M vectors x0, x1, . . . xM�1 2 CN and M scalars
↵0,↵1, . . . ,↵M�1 2 C, the linear combination of the vectors is given by

y = ↵0x0 + ↵1x1 + · · ·+ ↵

M�1xM�1 =

M�1X

m=0

↵

m

x

m

D
E
F
IN
IT
IO

N

Clearly the result of the linear combination is a vector y 2 CN
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Linear Combination Example

A recording studio uses a mixing board (or desk)
to create a linear combination of the signals from
the di↵erent instruments that make up a song

Say x0 = drums, x1 = bass, x2 = guitar, . . . ,
x22 = saxophone, x23 = singer

Linear combination (output of mixing board)

y = ↵0x0+↵1x1+· · ·+↵

M�1xM�1 =

M�1X

m=0

↵

m

x

m

Changing the ↵

m

’s results in a di↵erent “mix” y

that emphasizes/deemphasizes certain
instruments

15



Linear Combination = Matrix Multiplication

Step 1: Stack the vectors x
m

2 CN as column vectors into an N ⇥M matrix

X =

⇥
x0|x1| · · · |xM�1

⇤

Step 2: Stack the scalars ↵
m

into an M ⇥ 1 column vector

a =

2

6664

↵0

↵1
...

↵

M�1

3

7775

Step 3: We can now write a linear combination as the matrix/vector product

y = ↵0x0 +↵1x1 + · · ·+↵

M�1xM�1 =

M�1X

m=0

↵

m

x

m

=

⇥
x0|x1| · · · |xM�1

⇤

2

6664

↵0

↵1
...

↵

M�1

3

7775
= Xa

16



Linear Combination = Matrix Multiplication (The Gory Details)

M vectors in CN : x

m

=

2

6664

x

m

[0]

x

m

[1]

...
x

m

[N � 1]

3

7775
, m = 0, 1, . . . ,M � 1

N ⇥M matrix: X =

2

6664

x0[0] x1[0] · · · x

M�1[0]

x0[1] x1[1] · · · x

M�1[1]

...
...

...
x0[N � 1] x1[N � 1] · · · x

M�1[N � 1]

3

7775

Note: The row-n, column-m element of the matrix [X]

n,m

= x

m

[n]

M scalars ↵
m

, m = 0, 1, . . . ,M � 1: a =

2

6664

↵0

↵1
...

↵

M�1

3

7775

Linear combination y = Xa

17



Linear Combination = Matrix Multiplication (Summary)

Linear combination y = Xa

The row-n, column-m element of the N ⇥M matrix [X]

n,m

= x

m

[n]

y =

2

664

...
y[n]

...

3

775 =

2

664

...
· · · x

m

[n] · · ·
...

3

775

2

664

...
↵

m

...

3

775 = Xa

Sum-based formula for y[n]

y[n] =

M�1X

m=0

↵

m

x

m

[n]
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Signals are Vectors, Part 3:
Strength of a Vector



Strength of a Vector

How to quantify the “strength” of a vector?

How to say that one signal is “stronger” than another?

Signal x

0 5 10 15 20 25 30
−1

0

1

x[n ]

n

Signal y

0 5 10 15 20 25 30
−1

0

1

y [n ]

n
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Strength of a Vector: 2-Norm

The Euclidean length, or 2-norm, of a vector x 2 CN is given by

kxk2 =

vuut
N�1X

n=0

|x[n]|2

The energy of x is given by (kxk2)2 = kxk22

D
E
F
IN
IT
IO

N

The norm takes as input a vector in CN and produces a real number that is � 0

When it is clear from context, we will suppress the subscript “2” in kxk2 and just write kxk

22



2-Norm Example

Ex: x =

2

4
1

2

3

3

5

`2 norm

kxk2 =

vuut
N�1X

n=0

|x[n]|2 =

p
1

2
+ 2

2
+ 3

2
=

p
14
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Strength of a Vector: p-Norm

The Euclidean length is not the only measure of “strength” of a vector in CN

The p-norm of a vector x 2 CN is given by

kxk
p

=

 
N�1X

n=0

|x[n]|p
!1/p

D
E
F
IN
IT
IO

N

The 1-norm of a vector x 2 CN is given by

kxk1 =

N�1X

n=0

|x[n]|D
E
F
IN
IT
IO

N
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Strength of a Vector: 1-Norm

The 1-norm of a vector x 2 CN is given by

kxk1 = max

n

|x[n]|

D
E
F
IN
IT
IO

N

kxk1 is simply the largest entry in the vector x (in absolute value)

0 5 10 15 20 25 30
−1

0

1

2

x[n ] + y [n ]

n

While kxk22 measures the energy in a signal, kxk1 measures the peak value (of the magnitude);
both are very useful in applications

Interesting mathematical fact: kxk1 = lim

p!1 kxk
p
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Physical Significance of Norms (1)

Two norms have special physical significance

• kxk22: energy in x

• kxk1: peak value in x

A loudspeaker is a transducer that converts electrical signals
into acoustic signals

Conventional loudspeakers consist of a paper cone (4) that is
joined to a coil of wire (2) that is wound around a permanent
magnet (1)

If the energy kxk22 is too large, then the coil of wire will melt
from excessive heating

If the peak value kxk1 is too large, then the large back and
forth excursion of the coil of wire will tear it o↵ of the paper cone

26



Physical Significance of Norms (2)

Consider a robotic car that we wish to guide down a roadway

How to measure the amount of deviation from the center of
the driving lane?

Let x be a vector of measurements of the car’s GPS position
and let y be a vector containing the GPS positions of the center
of the driving lane

Clearly we would like to make the error signal y � x “small”;
but how to measure smallness?

Minimizing ky � xk22, energy in the error signal, will tolerate a few large deviations from the lane
center (not very safe)

Minimizing ky � xk1, the maximum of the error signal, will not tolerate any large deviations
from the lane center (much safer)
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Normalizing a Vector

A vector x is normalized (in the 2-norm) if kxk2 = 1

D
E
F
IN
IT
IO

N

Normalizing a vector is easy; just scale it by 1
kxk2

Ex: x =

2

4
1

2

3

3

5, ||x||2 =

qP
N�1
n=0 |x[n]|2 =

p
1

2
+ 2

2
+ 3

2
=

p
14

x

0
=

1p
14
x =

1p
14

2

4
1

2

3

3

5
=

2

4
1/

p
14

2/

p
14

3/

p
14

3

5, ||x0||2 = 1
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Summary

Linear algebra provides power tools to study signals and systems

Signals are vectors that live in a vector space

In this lecture, we studied the vector spaces RN and CN

We can combine several signals to form one new signal via a linear combination

Linear combination is basically a matrix/vector multiplication

Norms measure the “strength” of a signal; we introduced the 2- 1-, and 1-norms
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Inner Product



Table of Contents

Lecture in three parts:

• Part 1: Inner Product Definition

• Part 2: Harmonic Sinusoids are Orthogonal + Matlab Demo

• Part 3: Matrix Multiplication and Inner Product
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Inner Product, Part 1:
Definition



The Geometry of Signals

Up to this point, we have developed the viewpoint of “signals as vectors” in a vector space

We have focused on quantities related to individual vectors, ex: norm (strength)

Now we turn to quantities related to pairs of vectors, inner product

A powerful and ubiquitous signal processing tool

4



Aside: Transpose of a Vector

Recall that the transpose operation T converts a column vector to a row vector (and vice versa)

2

6664

x[0]

x[1]

...
x[N � 1]

3

7775

T

=

⇥
x[0] x[1] · · · x[N � 1]

⇤

In addition to transposition, the conjugate transpose (aka Hermitian transpose) operation H

takes the complex conjugate

2

6664

x[0]

x[1]

...
x[N � 1]

3

7775

H

=

⇥
x[0]

⇤
x[1]

⇤ · · · x[N � 1]

⇤⇤

5



Inner Product

The inner product (or dot product) between two vectors x, y 2 CN is given by

hx, yi = y

H
x =

N�1X

n=0

x[n] y[n]

⇤

D
E
F
IN
IT
IO

N

The inner product takes two signals (vectors in CN ) and produces a single (complex) number

Angle between two vectors x, y 2 RN

cos ✓x,y =

hx, yi
kxk2 kyk2

Angle between two vectors x, y 2 CN

cos ✓x,y =

Re{hx, yi}
kxk2 kyk2

6



Inner Product Example 1

Consider two vectors in R2: x =


1

2

�
, y =


3

2

�

kxk22 = 1

2
+ 2

2
= 5, kyk22 = 3

2
+ 2

2
= 13

✓x,y = arccos

⇣
1⇥3 + 2⇥2p

5
p
13

⌘
= arccos

⇣
7p
65

⌘
⇡ 0.519 rad ⇡ 29.7

�
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Inner Product Example 2

Signal x

0 5 10 15 20 25 30
−1

0

1

x[n ]

n

Signal y

0 5 10 15 20 25 30
−1

0

1

y [n ]

n

Inner product computed using Matlab: hx, yi = y

T
x = 5.995

Angle computed using Matlab: ✓x,y = 64.9

�

8



2-Norm from Inner Product

Question: What’s the inner product of a signal with itself?

hx, xi =
N�1X

n=0

x[n]x[n]

⇤
=

N�1X

n=0

|x[n]|2 = kxk22

Answer: The 2-norm!

Mathematical aside: This property makes the 2-norm very special;
no other p-norm can be computed via the inner product like this
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Orthogonal Vectors

Two vectors x, y 2 CN are orthogonal if

hx, yi = 0D
E
F
IN
IT
IO

N

hx, yi = 0 ) ✓x,y = ⇡ rad = 90

�

Ex: Two sets of orthogonal signals

0 5 10 15 20
0

0.5

1

n

0 5 10 15 20 25
0

0.5

1

n

0 5 10 15 20
0

0.5

1

n

0 5 10 15 20 25
−1

0

1

n
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Inner Product, Part 2:
Harmonic Sinusoids
are Orthogonal



Harmonic Sinusoids are Orthogonal

dk[n] = e

j 2⇡k
N n

, n, k,N 2 Z, 0  n  N � 1, 0  k  N � 1

Claim: hdk|dli = 0, k 6= l (a key result for the DFT)

Verify by direct calculation

hdk|dli =

N�1X

n=0

dk[n] d
⇤
l [n] =

N�1X

n=0

e

j 2⇡k
N n

(e

j 2⇡l
N n

)

⇤
=

N�1X

n=0

e

j 2⇡k
N n

e

�j 2⇡l
N n

=

N�1X

n=0

e

j 2⇡
N (k�l)n

let r = k � l 2 Z, r 6= 0

=

N�1X

n=0

e

j 2⇡
N rn

=

N�1X

n=0

a

n
with a = e

j 2⇡
N r

, then use

N�1X

n=0

a

n
=

1� a

N

1� a

=

1� e

j 2⇡rN
N

1� e

j 2⇡r
N

= 0 X

12



Normalizing Harmonic Sinusoids

dk[n] = e

j 2⇡k
N n

, n, k,N 2 Z, 0  n  N � 1, 0  k  N � 1

Claim: kdkk2 =

p
N

Verify by direct calculation

kdkk22 =

N�1X

n=0

|dk[n]|2 =

N�1X

n=0

|ej 2⇡k
N n|2 =

N�1X

n=0

1 = N X

Normalized harmonic sinusoids

e
dk[n] =

1p
N

j 2⇡k
N n

, n, k,N 2 Z, 0  n  N � 1, 0  k  N � 1

14



Inner Product, Part 3:
Matrix Multiplication
and Inner Product



Recall: Matrix Multiplication as a Linear Combination of Columns

Consider the matrix multiplication y = Xa

The row-n, column-m element of the N ⇥M matrix [X]n,m = xm[n]

We can compute y as a linear combination of the columns of X weighted by the elements in a

y =

2

664

...
y[n]

...

3

775 =

2

664

...
...

...
x0[n] x1[n] · · · xM�1[n]

...
...

...

3

775

2

6664

↵0

↵1
...

↵M�1

3

7775
= Xa

Sum-based formula for y[n]

y[n] =

M�1X

m=0

↵m xm[n], =

M�1X

m=0

↵m (column m of X), 0  n  N � 1
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Matrix Multiplication as a Sequence of Inner Products of Rows

Consider the matrix multiplication y = Xa

The row-n, column-m element of the N ⇥M matrix [X]n,m = xm[n]

We can compute each element y[n] in y as the inner product of the n-th row of X with the
vector a (true for RN ; need to take a ⇤ into account in CN )

y =

2

664

...
y[n]

...

3

775 =

2

664

...
...

...
x0[n] x1[n] · · · xM�1[n]

...
...

...

3

775

2

6664

↵0

↵1
...

↵M�1

3

7775
= Xa

Can write y[n]

y[n] =

M�1X

m=0

↵m xm[n] = hrow n of X, ai, 0  n  N � 1

17



Summary

Inner product measures the similarity between two signals

hx, yi = y

H
x =

N�1X

n=0

x[n] y[n]

⇤

Angle between two signals

cos ✓x,y =

Re{hx, yi}
kxk2 kyk2

18



Cauchy Schwarz Inequality



Comparing Signals

Inner product and angle between vectors enable us to compare signals

hx, yi = y

H
x =

N�1X

n=0

x[n] y[n]

⇤

cos ✓x,y =

Re{hx, yi}
kxk2 kyk2

The Cauchy Schwarz Inequality quantifies the comparison

A powerful and ubiquitous signal processing tool

Note: Our development will emphasize intuition over rigor

2



Cauchy-Schwarz Inequality (1)

Focus on real-valued signals in RN (the extension to CN is easy)

Recall that cos ✓x,y =

hx,yi
kxk2 kyk2

Now, use the fact that 0  | cos ✓|  1 to write

0 
����

hx, yi
kxk2 kyk2

����  1

Rewrite as the Cauchy-Schwarz Inequality (CSI)

0  |hx, yi|  kxk2 kyk2

Interpretation: The inner product hx, yi measures the similarity of x to y

3



Cauchy-Schwarz Inequality (2)

0  |hx, yi|  kxk2 kyk2

Interpretation: The inner product hx, yi measures the similarity of x to y

Two extreme cases:

•
Lower bound: hx, yi = 0 or ✓

x,y

= 90�: x and y are most di↵erent when they are orthogonal

•
Upper bound: hx, yi = kxk2kyk2 or ✓

x,y

= 0�: x and y are most similar when they are collinear

(aka linearly dependent, y = ↵x)

It is hard to understate the importance and ubiquity of the CSI!

4



Cauchy-Schwarz Inequality Applications

How does a digital communication system decide whether the signal corresponding to a “0” was
transmitted or the signal corresponding to a “1”? (Hint: CSI)

How does a radar or sonar system find targets in the signal it receives after transmitting a pulse?
(Hint: CSI)

How does many computer vision systems find faces in images? (Hint: CSI)

5



Summary

Inner product measures the similarity between two signals

hx, yi = y

H
x =

N�1X

n=0

x[n] y[n]

⇤

Cauchy-Schwarz Inequality (CSI)

0 
����

hx, yi
kxk2 kyk2

����  1

•
Similar signals – close to upper bound (1)

•
Di↵erent signals – close to lower bound (0)

7



Infinite-Length Vectors



From Finite to Infinite-Length Vectors

Up to this point, we have developed some useful tools for dealing with finite-length vectors
(signals) that live in RN or CN : Norms, Inner product, Linear combination

It turns out that these tools can be generalized to infinite-length vectors (signals) by letting
N ! 1 (infinite-dimensional vector space, aka Hilbert Space)

x[n], 1 < n < 1, x =

2

66666666664

...
x[�2]

x[�1]

x[0]

x[1]

x[2]

...

3

77777777775

n

x[n]
......

�1 0 1 2 3 4 5 6 7

Obviously such a signal cannot be loaded into Matlab; however this viewpoint is still useful in
many situations

We will spell out the generalizations with emphasis on what changes from the finite-length case

2



2-Norm of an Infinite-Length Vector

The 2-norm of an infinite-length vector x is given by

kxk2 =

vuut
1X

n=�1
|x[n]|2

The energy of x is given by (kxk2)2 = kxk22

D
E
F
IN
IT
IO

N

When it is clear from context, we will suppress the subscript “2” in kxk2 and just write kxk

What changes from the finite-length case: Not every infinite-length vector has a finite 2-norm

3



`

2

Norm of an Infinite-Length Vector – Example

Signal: x[n] = 1, 1 < n < 1
−15 −10 −5 0 5 10 15
0

0.5

1

n

2-norm:

kxk22 =

1X

n=�1
|x[n]|2 =

1X

n=�1
1 = 1

Infinite energy!

4



p- and 1-Norms of an Infinite-Length Vector

The p-norm of an infinite-length vector x is given by

kxk
p

=

 1X

n=�1
|x[n]|p

!1/p

D
E
F
IN
IT
IO

N

The 1-norm of an infinite-length vector x is given by

kxk1 =

1X

n=�1
|x[n]|

D
E
F
IN
IT
IO

N

What changes from the finite-length case: Not every infinite-length vector has a finite p-norm

5



1- and 2-Norms of an Infinite-Length Vector – Example

Signal: x[n] =

(
0 n  0

1
n

n � 1

−5 0 5 10 15 20 25
0

0.5

1

n

1-norm

kxk1 =

1X

n=�1
|x[n]| =

1X

n=1

1

n

= 1

2-norm

kxk22 =

1X

n=�1
|x[n]|2 =

1X

n=1

����
1

n

����
2

=

1X

n=1

1

n

2
=

⇡

2

6

⇡ 1.64 < 1

6



1-Norm of an Infinite-Length Vector

The 1-norm of an infinite-length vector x is given by

kxk1 = sup

n

|x[n]|

D
E
F
IN
IT
IO

N

What changes from the finite-length case: “sup” is a generalization of max to infinite-length
signals that lies beyond the scope of this course

In both of the above examples, kxk1 = 1

−5 0 5 10 15 20 25
0

0.5

1

n

7



Inner Product of Infinite-Length Signals

The inner product between two infinite-length vectors x, y is given by

hx, yi =
1X

n=�1
x[n] y[n]

⇤

D
E
F
IN
IT
IO

N

The inner product takes two signals and produces a single (complex) number

Angle between two real-valued signals

cos ✓

x,y

=

hx, yi
kxk2 kyk2

Angle between two complex-valued signals

cos ✓

x,y

=

Re{hx, yi}
kxk2 kyk2

8



Linear Combination of Infinite-Length Vectors

The concept of a linear combination extends to infinite-length vectors

What changes from the finite-length case: We will be especially interested in linear combinations
of infinitely many infinite-length vectors

y =

1X

m=�1
↵

m

x

m

9



Linear Combination = Infinite Matrix Multiplication

Step 1: Stack the vectors x
m

as column vectors into a “matrix” with infinitely many rows and
columns

X =

⇥
· · · |x�1|x0|x1| · · ·

⇤

Step 2: Stack the scalars ↵
m

into an infinitely tall column vector a =

2

6666664

...
↵�1

↵0

↵1
...

3

7777775

Step 3: We can now write a linear combination as the matrix/vector product

y =

1X

m=�1
↵

m

x

m

=

⇥
· · · |x�1|x0|x1| · · ·

⇤

2

6666664

...
↵�1

↵0

↵1
...

3

7777775
= Xa

10



Linear Combination = Infinite Matrix Multiplication (The Gory Details)

Vectors: x

m

=

2

6666664

...
x

m

[�1]

x

m

[0]

x

m

[1]

...

3

7777775
, �1 < m < 1, and Scalars: a =

2

6666664

...
↵�1

↵0

↵1
...

3

7777775

Infinite matrix: X =

2

6666664

...
...

...
· · · x�1[�1] x0[�1] x1[�1] · · ·
· · · x�1[0] x0[0] x1[0] · · ·
· · · x�1[1] x0[1] x1[1] · · ·

...
...

...

3

7777775

Note: The row-n, column-m element of the matrix [X]

n,m

= x

m

[n]

Linear combination = Xa

11



Linear Combination = Infinite Matrix Multiplication (Summary)

Linear combination y = Xa

The row-n, column-m element of the infinitely large matrix [X]

n,m

= x

m

[n]

y =

2

664

...
y[n]

...

3

775 =

2

664

...
· · · x

m

[n] · · ·
...

3

775

2

664

...
↵

m

...

3

775 = Xa

Sum-based formula for y[n]

y[n] =

1X

m=�1
↵

m

x

m

[n]

12



Summary

Linear algebra concepts like norm, inner product, and linear combination work just as well with
infinite-length signals as with finite-length signals

Only a few changes from the finite-length case

•
Not every infinite-length vector has a finite 1-, 2-, or 1-norm

•
Linear combinations can involve infinitely many vectors

13
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