
https://courses.edx.org/courses/PekingX/04830050x/2T2014/

Ming Zhang“ Data Structures and Algorithms “

Data Structures
and Algorithms（5）

Instructor: Ming Zhang

Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao

Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook)

https://courses.edx.org/courses/PekingX/04830050x/2T2014/

2

• Concepts of Binary Trees

• Abstract Data Types

• Depth-First Search

• Breadth-First Search

• Storage Structures of Binary Trees

• Binary Search Tree

• Heap and Priority Queue

• Huffman Tree and its Application

H
G

E

A

B C

D

F

I

Chapter 5 Binary Trees

Chapter 5

Binary Trees

Ming Zhang “Data Structures and Algorithms”

3

5.3 Storage Structure of Binary Trees

Linked Storage Structure of Binary Trees
Each node of a Binary Tree is stored in memory

randomly, and the logical relationships among the

nodes are linked by pointers.

• Binary Linked List

• Left and right pointers, point to its left child and its

right child respectively

• Trinomial Linked List

• Left and right pointers, point to its left child and its

right child respectively

• Add a parent pointer
left info parent right

left info right

Chapter 5

Binary Trees

Ming Zhang “Data Structures and Algorithms”

4

5.3 Storage Structure of Binary Trees

Binary Linked List

A

B

C

E F

D

G H I

(a) (b)

t

A

B C

D E F

G H I

Chapter 5

Binary Trees

Ming Zhang “Data Structures and Algorithms”

5

5.3 Storage Structure of Binary Trees

“Trinomial Linked List”
 Pointer parent points to its parent, the ability of "upward"

A

B

C

E F

D

G H I

(a) (b)

t

A

B C

D E F

G H I

Ming Zhang “Data Structures and Algorithms”

Chapter 5

Binary Trees

6

5.3 Storage Structure of Binary Trees

Add Two Private Data Members into Class BinaryTreeNode

private:

BinaryTreeNode<T> *left; // The pointer pointing to the left subtree

BinaryTreeNode<T> *right; // The pointer pointing to the right subtree

template <class T> class BinaryTreeNode {

friend class BinaryTree<T>; // Declare the class of Binary Trees as a friend class

private:

T info; // Data domain of nodes in a binary tree

public:

BinaryTreeNode(); // Default constructor function

BinaryTreeNode(const T& ele); // Construction with given data

BinaryTreeNode(const T& ele, BinaryTreeNode<T> *l,

BinaryTreeNode<T> *r); // Construction of nodes in a subtree

…. }

Chapter 5

Binary Trees

Ming Zhang “Data Structures and Algorithms”

7

5.3 Storage Structure of Binary Trees

A Recursive Structure to Find out the Father Node

—— Be Careful of its Return

template<class T>

BinaryTreeNode<T>* BinaryTree<T>::

Parent(BinaryTreeNode<T> *rt, BinaryTreeNode<T> *current) {

BinaryTreeNode<T> *tmp,

if (rt == NULL) return(NULL);

if (current == rt ->leftchild() || current == rt->rightchild())

return rt; // If the child is current, then return parent

if ((tmp =Parent(rt- >leftchild(), current) != NULL)

return tmp;

if ((tmp =Parent(rt- > rightchild(), current) != NULL)

return tmp;

return NULL;

}

Ming Zhang “Data Structures and Algorithms”

Chapter 5

Binary Trees

8

5.3 Storage Structure of Binary Trees

Questions

 What structure does the algorithm use?

 Which order of traversal does the algorithm belong to?

 Could we use non-recursive methods?

 Could we use BFS？

 How to find out brother nodes starting from this algorithm?

Chapter 5

Binary Trees

Ming Zhang “Data Structures and Algorithms”

9

5.3 Storage Structure of Binary Trees

A Non-Recursive Structure to Find out the Father Node

BinaryTreeNode<T>* BinaryTree<T>::Parent(BinaryTreeNode<T> *current) {

using std::stack; // Use the stack in STL

stack<BinaryTreeNode<T>* > aStack;

BinaryTreeNode<T> *pointer = root;

aStack.push(NULL); // The lookout at the bottom of the stack

while (pointer) { // Or !aStack.empty()

if (current == pointer->leftchild() || current == pointer->rightchild())

return pointer; // if the child of pointer is current, then return parent

if (pointer->rightchild() != NULL) // Push the non-empty right subtree into the stack

aStack.push(pointer->rightchild());

if (pointer->leftchild() != NULL)

pointer = pointer->leftchild(); // Go down along the left side

else { // After visiting the left subtree, it is turn to visit the right subtree

pointer=aStack.top(); aStack.pop(); // Get the element on the top of the stack and pop it

} } }

Chapter 5

Binary Trees

Ming Zhang “Data Structures and Algorithms”

10

5.3 Storage Structure of Binary Trees

• Storage density  (≤1) means the efficiency of the

structure of data storage

• Overhead of the structure  = 1- 

Analysis of the Space Cost

Chapter 5

Binary Trees

Ming Zhang “Data Structures and Algorithms”

(storage density) =

Storage size of data itself

Storage size of the whole structure

11

5.3 Storage Structure of Binary Trees

According to the property of full binary tree:

Half of the pointers are null

 Each node stores two pointers and

one data domain

 Total space (2p + d)n

 Cost of the structure：2pn

 If p = d, then the cost of the structure is 2p/ (2p + d) = 2/3

Analysis of the Space Cost

(a) (b)

t

A

B C

D E F

G H I

Chapter 5

Binary Trees

Ming Zhang “Data Structures and Algorithms”

12

5.3 Storage Structure of Binary Trees

Analysis of the Space Cost

• C++ has two methods to implement different branch and leaf nodes:

• Use union type to define

• Use the subclass in C++ to implement branch nodes and leaf nodes

respectively,

and use virtual function isLeaf to distinguish branch nodes and leaf nodes

• Save memory resource at the early stage

• Use a idle bit (one bit) of the pointer of a node to mark the type of the node

• Use the pointer pointing to a leaf or the pointer domain in a leaf to store the

value of this leaf node

Chapter 5

Binary Trees

Ming Zhang “Data Structures and Algorithms”

13

5.3 Storage Structure of Binary Trees

Sequential Storage Structure of Complete Binary Tree

 Sequential method to store a binary tree

 Store nodes into a piece of continuous space

according to a particular order

 Make the position of nodes in the sequence able to

reflect corresponding information of the structure

 The storage structure is linear

 It is still a structure of a binary tree

on its logical structure

0

1 2

3 4 5 6

7 8

40 3 5 6 7 821

Chapter 5

Binary Trees

Ming Zhang “Data Structures and Algorithms”

14

5.3 Storage Structure of Binary Trees

Index Formula of Complete Binary Tree

• We could know the indexes

of a node’s parent, children

and brothers according to its index

• When 2i+1<n, the left child of node i is node 2i+1,

otherwise node i doesn’t have a left child

• When 2i+2<n, the right child of node i is node 2i+2,

otherwise node i doesn’t have a right child

0

1 2

3 4 5 6

7 8

Chapter 5

Binary Trees

Ming Zhang “Data Structures and Algorithms”

15

5.3 Storage Structure of Binary

Trees

Index Formula of Complete Binary Tree

• When 0<i<n, the parent of node i is

node (i-1)/2

• When i is even and 0<i<n, the left brother of node i is node i-1,

otherwise node i doesn’t have a left brother

• When i is odd and i+1<n, the right brother of node i is node i+1,

otherwise node i doesn’t have a right brother

0

1 2

3 4 5 6

7 8

Chapter 5

Binary Trees

Ming Zhang “Data Structures and Algorithms”

16

5.3 Storage Structure of Binary Trees

Questions

• What changes should we make to the algorithm

of binary tree if we use the storage structure of

trinomial linked list? We should pay more

attention to maintain the father pointer when

inserting and deleting nodes.

• What is the index formula of complete trinomial

tree？

Chapter 5

Binary Tree

Ming Zhang “Data Structures and Algorithms”

Ming Zhang“ Data Structures and Algorithms
“

Data Structures

and Algorithms

Thanks!

the National Elaborate Course (Only available for IPs in China)

http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/

Ming Zhang, Tengjiao Wang and Haiyan Zhao

Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)

