SPORTS SCHEDULING
An Introduction to Integer Optimization

15.071x – The Analytics Edge
The Impact of Sports Schedules

- Sports is a $300 billion dollar industry
 - Twice as big as the automobile industry
 - Seven times as big as the movie industry

- TV networks are key to revenue for sports teams
 - $513 million per year for English Premier League soccer
 - $766 million per year for NBA
 - $3 billion per year for NFL

- They pay to have a good schedule of sports games
Sports Schedules

- Good schedules are important for other reasons too
 - Extensive traveling causes player fatigue
 - Ticket sales are better on the weekends
 - Better to play division teams near the end of season

- All competitive sports require schedules
 - Which pairs of teams play each other and when?
The Traditional Way

- Until recently, schedules mostly constructed by hand
 - Time consuming: with 10 teams, there are over 1 trillion possible schedules (every team plays every other team)
 - Many constraints: television networks, teams, cities, . . .

- For Major League Baseball, a husband and wife team constructed the schedules for 24 years (1981-2005)
 - Used a giant wall of magnets to schedule 2430 games

- Very difficult to add new constraints
Some Interesting Constraints

- In 2008, the owners and TV networks were not the only ones who cared about the schedule

- President Barack Obama and Senator John McCain complained about the schedule
 - National conventions conflicted with game scheduling

- Then, the Pope complained about the schedule!
 - The Pope visited New York on April 20, 2008
 - Mass in Yankee stadium (the traditional location)

- Each of these constraints required a new schedule
An Analytics Approach

• In 1996, “The Sports Scheduling Group” was started
 • Doug Bureman, George Nemhauser, Michael Trick, and Kelly Easton

• They generate schedules using a computer
 • Have been scheduling college sports since 1999
 • Major League Baseball since 2005

• They use optimization
 • Can easily adapt when new constraints are added
Scheduling a Tournament

- Four teams
 - Atlanta (A), Boston (B), Chicago (C), and Detroit (D)
- Two divisions
 - Atlanta and Boston
 - Chicago and Detroit
- During four weeks
 - Each team plays the other team in its division twice
 - Each team plays teams in other divisions once
- The team with the most wins from each division will play in the championship
- Teams prefer to play divisional games later
An Optimization Approach

• Objective
 • Maximize team preferences (divisional games later)

• Decisions
 • Which teams should play each other each week

• Constraints
 • Play other team in division twice
 • Play teams in other divisions once
 • Play exactly one team each week
Decision Variables

• We need to decide which teams will play each other each week
 • Define variables x_{ijk}
 • If team i plays team j in week k, $x_{ijk} = 1$
 • Otherwise, $x_{ijk} = 0$

• This is called a binary decision variable
 • Only takes values 0 or 1
Integer Optimization

- Decision variables can only take integer values
- Binary variables can be either 0 or 1
 - Where to build a new warehouse
 - Whether or not to invest in a stock
 - Assigning nurses to shifts
- Integer variables can be 0, 1, 2, 3, 4, 5, . . .
 - The number of new machines to purchase
 - The number of workers to assign for a shift
 - The number of items to stock
The Formulation

- **Objective**
 - Maximize team preferences (divisional games later)

- **Decisions**
 - Which teams should play each other each week

- **Constraints**
 - Play other team in division twice
 - Play teams in other divisions once
 - Play exactly one team each week
The Formulation

- **Objective**
 - Maximize team preferences (divisional games later)

- **Decisions**
 - Binary variables x_{ijk}

- **Constraints**
 - Play other team in division twice
 - Play teams in other divisions once
 - Play exactly one team each week
The Formulation

- **Objective**
 - Maximize team preferences (divisional games later)

- **Decisions**
 - Binary variables x_{ijk}

- **Constraints**
 - $x_{AB1} + x_{AB2} + x_{AB3} + x_{AB4} = 2$
 - Play teams in other divisions once
 - Play exactly one team each week

Similar constraint for teams C and D
The Formulation

- **Objective**
 - Maximize team preferences (divisional games later)

- **Decisions**
 - Binary variables x_{ijk}

- **Constraints**
 - $x_{AB1} + x_{AB2} + x_{AB3} + x_{AB4} = 2$
 - $x_{AC1} + x_{AC2} + x_{AC3} + x_{AC4} = 1$
 - Play exactly one team each week

Similar constraint for teams C and D
Similar constraints for teams A and D, B and C, and B and D
The Formulation

- **Objective**
 - Maximize team preferences (divisional games later)

- **Decisions**
 - Binary variables x_{ijk}

- **Constraints**
 - $x_{AB1} + x_{AB2} + x_{AB3} + x_{AB4} = 2$
 - $x_{AC1} + x_{AC2} + x_{AC3} + x_{AC4} = 1$
 - $x_{AB1} + x_{AC1} + x_{AD1} = 1$

 Similar constraint for teams C and D

 Similar constraints for teams A and D, B and C, and B and D

 Similar constraints for every team and week
The Formulation

- **Objective**
 - Maximize \(x_{AB1} + 2x_{AB2} + 4x_{AB3} + 8x_{AB4} + x_{CD1} + 2x_{CD2} + 4x_{CD3} + 8x_{CD4} \)

- **Decisions**
 - Binary variables \(x_{ijk} \)

- **Constraints**
 - \(x_{AB1} + x_{AB2} + x_{AB3} + x_{AB4} = 2 \)
 - \(x_{AC1} + x_{AC2} + x_{AC3} + x_{AC4} = 1 \)
 - \(x_{AB1} + x_{AC1} + x_{AD1} = 1 \)
 - Similar constraint for teams C and D
 - Similar constraints for teams A and D, B and C, and B and D
 - Similar constraints for every team and week
Adding Logical Constraints

- Binary variables allow us to model logical constraints
- A and B can’t play in weeks 3 and 4
 \[x_{AB3} + x_{AB4} \leq 1 \]
- If A and B play in week 4, they must also play in week 2
 \[x_{AB2} \geq x_{AB4} \]
- C and D must play in week 1 or week 2 (or both)
 \[x_{CD1} + x_{CD2} \geq 1 \]
We were able to solve our sports scheduling problem with 4 teams (24 variables, 22 basic constraints)

The problem size increases rapidly
- With 10 teams, 585 variables and 175 basic constraints

For Major League Baseball
- 100,000 variables
- 200,000 constraints
 - This would be impossible in LibreOffice

So how are integer models solved in practice?
Solving Integer Optimization Problems

1. Reformulate the problem
 - The sports scheduling problem is solved by changing the formulation
 - Variables are sequences of games
 - Split into three problems that can each be solved separately

2. Heuristics
 - Find good, but not necessarily optimal, decisions
Solving Integer Optimization Problems

- General purpose solvers
 - CPLEX, Gurobi, GLPK, Cbc
- In the past 20 years, the speed of integer optimization solvers has increased by a factor of 250,000
 - Doesn’t include increasing speed of computers
- Assuming a modest machine speed-up of 1000x, a problem that can be solved in 1 second today took 7 years to solve 20 years ago!
Solving the Sports Scheduling Problem

- When the Sports Scheduling Group started, integer optimization software was not useful
- Now, they can use powerful solvers to generate schedules
- Takes months to make the MLB schedule
 - Enormous list of constraints
 - Need to define priorities on constraints
 - Takes several iterations to get a good schedule
The Analytics Edge

- Optimization allows for the addition of new constraints or structure changes
 - Can easily generate a new schedule based on an updated requirement or request

- Now, all professional sports and most college sports schedules are constructed using optimization