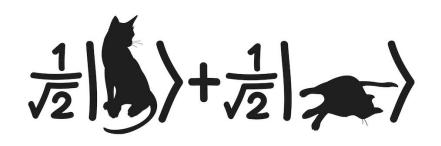
Quantum Mechanics & Quantum Computation

Umesh V. Vazirani University of California, Berkeley

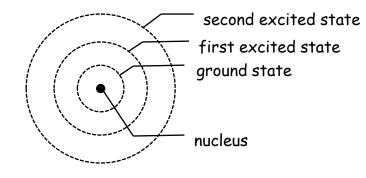


Lecture 2: Qubits & Uncertainty Principle

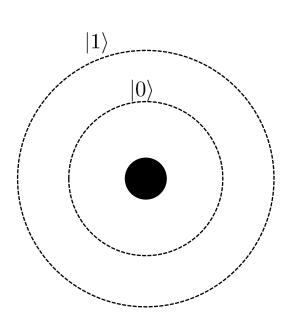
Qubits

Using an electron to represent a bit:

Energy of an electron in an atom



Using an electron to represent a bit:



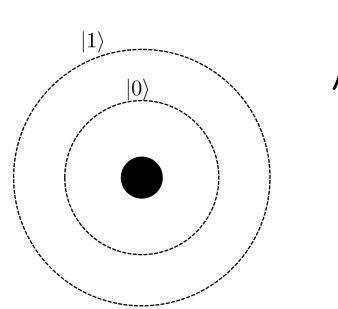
ground state
$$\iff 0$$

excited state $\iff 1$
Ground with prob $\frac{1}{3}$
Excited with prob $\frac{2}{3}$

Qubit (quantum bit):



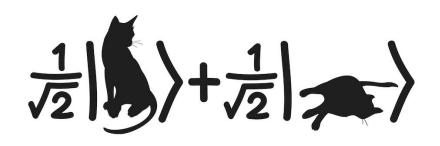
Qubit (quantum bit):



$$\alpha |0\rangle + \beta |1\rangle$$
, $|\alpha|^{2} + |\beta|^{2} = 1$.
Measurement:
ground state $|0\rangle$ wp $|\alpha|^{2}$
 $|1\rangle$ wp $|\beta|^{2}$

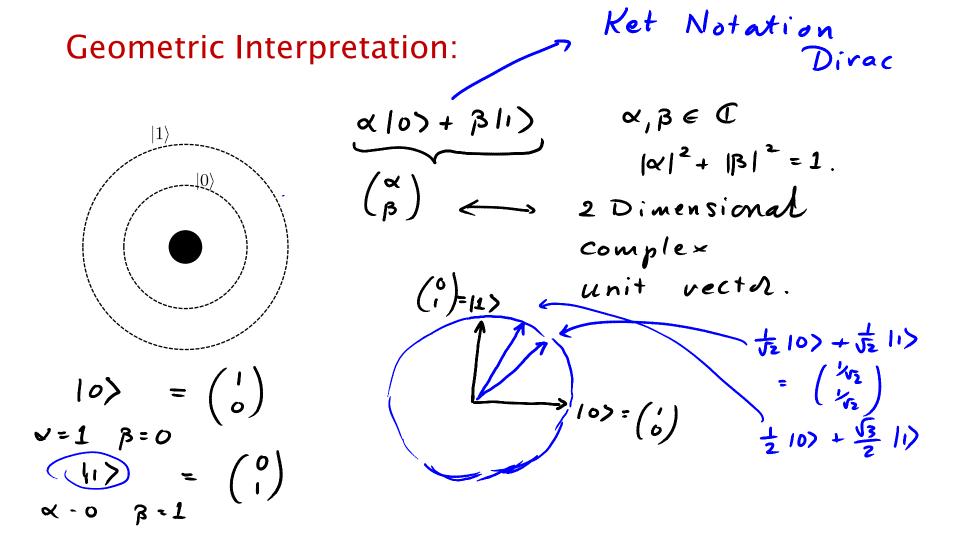
Quantum Mechanics & Quantum Computation

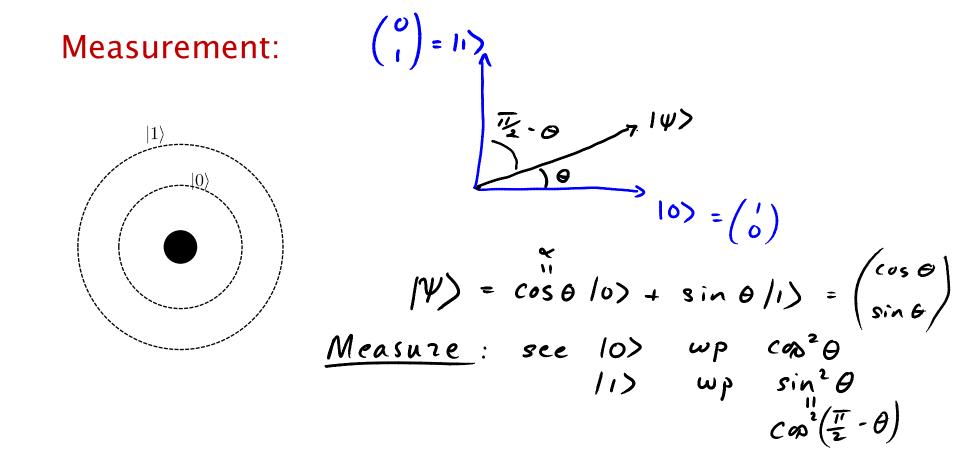
Umesh V. Vazirani University of California, Berkeley



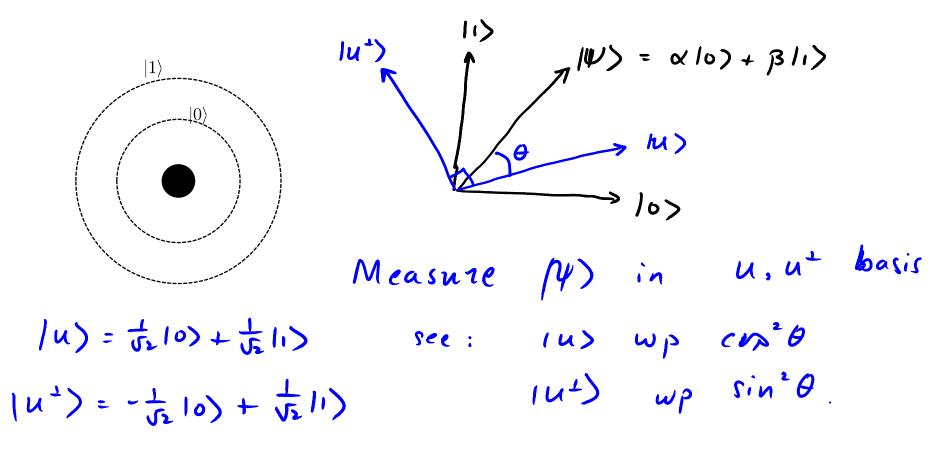
Lecture 2: Qubits & Uncertainty Principle

Geometric Representation



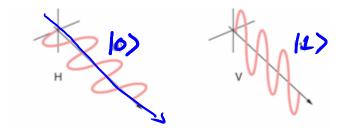


Measurement in arbitrary basis:



Another Example of Qubits

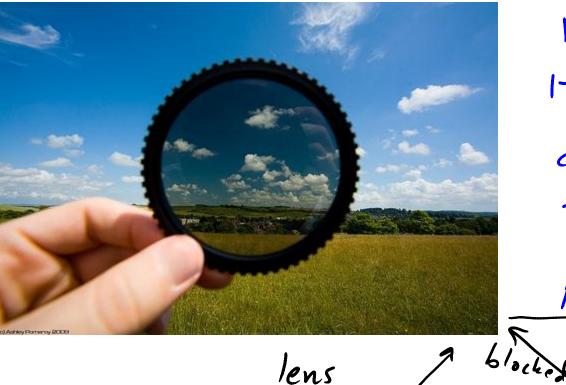
Photon polarization



Horizontally and vertically orientated electric field oscillations.

 $\frac{1}{\sqrt{2}} = 10 + \frac{1}{\sqrt{2}} = 11$ $1 + \frac{1}{\sqrt{2}} = 11$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$

Measuring Polarization



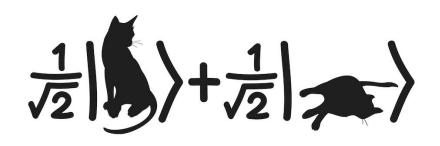
11) goes through. I->> gets blocked $cop(1) + sin() \rightarrow$ transmitted wp cos²0 New state = 11) Blocked wp sin20. A transmitted

Measuring Polarization

back front $\cos \theta | 1 \rangle + \sin \theta | \rightarrow \rangle$ transmitted up cos 0 blocked wp 1. Middle Middle > transmitted wp 2 $\pm 1\uparrow>+\pm 1\rightarrow>$ (4) front -> transmitted up 1/2

Quantum Mechanics & Quantum Computation

Umesh V. Vazirani University of California, Berkeley



Lecture 2: Qubits & Uncertainty Principle

Uncertainty Principle

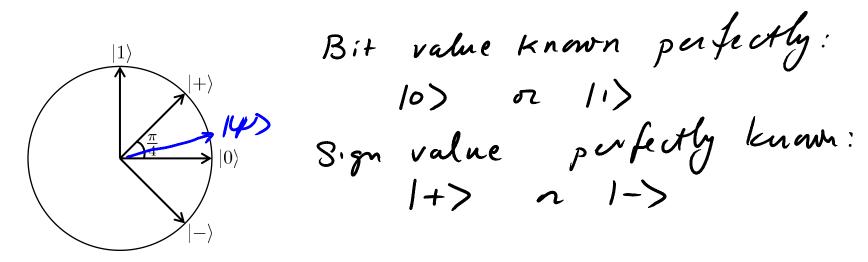
Uncertainty principle

One can never know with perfect accuracy both of those two important factors which determine the movement of one of the smallest particles – its position and its velocity. - Werner Heisenberg

Uncertainty principle

One can never know with perfect accuracy both of those two important factors which determine the movement of one of the smallest particles – its position and its velocity. - Werner Heisenberg

• Can we know both bit and sign of a qubit simultaneously?



• To quantify this, can define **spread** of a quantum state.

 $|\psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle = \beta_0|+\rangle + \beta_1|-\rangle$

- The spread in standard basis := $S(|\psi\rangle) = |\alpha_0| + |\alpha_1|$.
- The spread in sign basis $:= \hat{S}(|\psi\rangle) = |\beta_0| + |\beta_1|$.

$$S(|0\rangle) = 1 + 0 = 1$$
 $\hat{S}(|0\rangle) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2}$

4

$$S(|+\rangle) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2}$$
 $\hat{S}(|+\rangle) = 1 + 0 = 1$

• Uncertainty principle for bit and sign:

$$S(|\psi\rangle)\hat{S}(|\psi\rangle) \ge \sqrt{2} \text{ for any } |\psi\rangle.$$

