Quantum Mechanics & Quantum Computation

Umesh V. Vazirani University of California, Berkeley

Lecture 11: Quantum Search

Needle in a haystack

Searching for a needle in a haystack

Goal: Search for the marked entry.

Classically: try random entries. O(N/2) expected time.

Quantum??

"Digital haystack"

"Digital haystack"

NP-Complete Problems:

Satisfiability:

Finding a solution to an NP-complete problem can be viewed as a search problem.

$$f(\mathbf{x}_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor \neg x_5 \lor x_6) \land \cdots$$

Is there a configuration of x_1, x_2, \cdots that satisfy the above formula?

There are 2^n possible configurations.

"Digital haystack"

"Digital haystack"

Quantum??

Grover's Algorithm: Quantum algorithm for unstructured search that takes $O(\sqrt{N})$ time.

$$N = 2^{n}$$

Size n . $\sqrt{N} = 2^{n/2}$
SAT

"Digital haystack"

Problem. Given $f:\{0, 1, ..., N-1\} \rightarrow \{0, 1\}$, find x: f(x) = 1.

Hardest case: There is exactly one x: f(x) = 1.

Quantum Mechanics & Quantum Computation

Umesh V. Vazirani University of California, Berkeley

Lecture 11: Quantum Search

Grover's Algorithm

"Digital haystack"

Problem. Given $f:\{0, 1, ..., N-1\} \rightarrow \{0, 1\}$, find x: f(x) = 1.

Hardest case: There is exactly one x: f(x) = 1.

N-I

Inversion About Mean

$$\sum_{x} \alpha_{x} | x \rangle$$

$$M = \sum_{x=0}^{N-1} \alpha_{x}$$

$$\alpha_{x} \longrightarrow (2 \text{ ou} - \alpha_{x}) = \text{ou} + (\text{ou} - \alpha_{x})$$

$$\sum_{x} \alpha_{x} | x \rangle \longrightarrow \sum_{x} (2 \text{ ou} - \alpha_{x}) | x \rangle$$

$$N-1$$

Problem. Given $f : \{0, ..., N - 1\} \rightarrow \{0, 1\}$ such that f(x) = 1 for exactly one x, find x.

Problem. Given $f : \{0, ..., N - 1\} \rightarrow \{0, 1\}$ such that f(x) = 1 for exactly one x, find x.

Problem. Given $f : \{0, ..., N - 1\} \rightarrow \{0, 1\}$ such that f(x) = 1, for exactly one x, find x.

Problem. Given $f : \{0, ..., N-1\} \rightarrow \{0, 1\}$ such that f(x) = 1 for exactly one x, find x.

What is the amplitude of the rest when the needle has $\frac{1}{\sqrt{2}}$? $\sqrt{2N}$

At this point how much improvement are we making per step?

We will reach
$$\frac{1}{\sqrt{2}}$$
 in $O(\sqrt{N})$ steps.
#Steps $\leq \frac{1}{\sqrt{2}} = \frac{\sqrt{N}}{2}$.

Quantum Mechanics & Quantum Computation

Umesh V. Vazirani University of California, Berkeley

Lecture 11: Quantum Search

Implementing Grover's Algorithm

Phase Inversion

Problem. Given $f : \{0, ..., N - 1\} \rightarrow \{0, 1\}$ such that f(x) = 1 for exactly one x, find x.

Phase Inversion

Inversion About Mean

$$\sum_{x} \alpha_{x} | x \rangle$$

$$M = \sum_{x=0}^{N-1} \alpha_{x}$$

$$\alpha_{x} \longrightarrow (2 \text{ ou} - \alpha_{x}) = \text{ou} + (\text{ou} - \alpha_{x})$$

$$\sum_{x} \alpha_{x} | x \rangle \longrightarrow \sum_{x} (2 \text{ ou} - \alpha_{x}) | x \rangle$$

$$N-1$$

Inversion About Mean

Inversion about the mean is the same as doing reflection about $|u\rangle = \frac{1}{\sqrt{N}} \sum_{x} |x\rangle$

