Week 4 – part 2: Phase Plane Analysis

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Week 4 – Reducing detail:

Two-dimensional neuron models

Wulfram Gerstner EPFL, Lausanne, Switzerland

4.1 From Hodgkin-Huxley to 2D

- Overview: From 4 to 2 dimensions
- MathDetour 1: Separation of time scales
- MathDetour 2: Exploiting similarities

4.2 Phase Plane Analysis

- Role of nullcline

4.3 Analysis of a 2D Neuron Model

- MathDetour 3: Stability of fixed points

4.4 Type I and II Neuron Models

- where is the firing threshold?
- separation of time scales

4.5. Nonlinear Integrate-and-fire

- from two to one dimension

Week 4 – part 2: Phase Plane Analysis

4.1 From Hodgkin-Huxley to 2D

- Overview: From 4 to 2 dimensions
- MathDetour 1: Separation of time scales
- MathDetour 2: Exploiting similarities

4.2 Phase Plane Analysis

- Role of nullcline

4.3 Analysis of a 2D Neuron Model

- MathDetour 3: Stability of fixed points

4.4 Type I and II Neuron Models

- where is the firing threshold?
- separation of time scales

4.5. Nonlinear Integrate-and-fire

- from two to one dimension

Neuronal Dynamics – 4.2. Phase Plane Analysis

2-dimensional equation stimulus

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w)$$

Enables graphical analysis!

- -Discussion of threshold
- -Type I and II

Neuronal Dynamics – 4.1. Reduction of Hodgkin-Huxley model

$$C\frac{du}{dt} = -g_{Na} m_0(u)^3 (1 - w)(u - E_{Na}) - g_K(\frac{w}{a})^4 (u - E_K) - g_l(u - E_l) + I(t)$$

$$\frac{dw}{dt} = -\frac{w - w_0(u)}{\tau_w(u)}$$

stimulus
$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w)$$

Neuronal Dynamics – 4.2. Nullclines of reduced HH model

stimulus

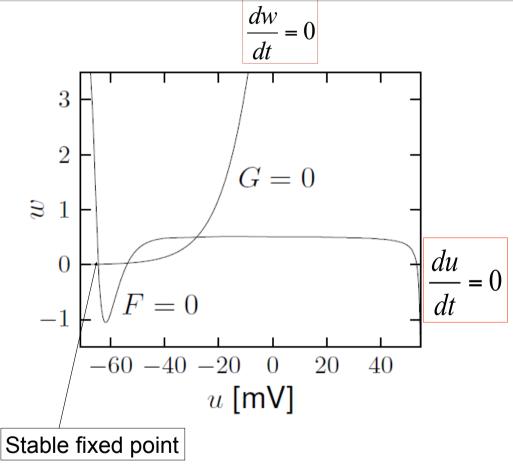
$$\tau \frac{du}{dt} = F(u, w) + I(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w)$$

u-nullcline

w-nullcline



Neuronal Dynamics – 4.2. FitzHugh-Nagumo Model

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$
$$= u - \frac{1}{3}u^3 + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w) = b_0 + b_1 u - w$$

u-nullcline

w-nullcline

Neuronal Dynamics – 4.2. flow arrows

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$
$$= u - \frac{1}{3}u^3 + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w) = b_0 + b_1 u - w$$

u-nullcline

w-nullcline

Neuronal Dynamics – 4.2. flow arrows

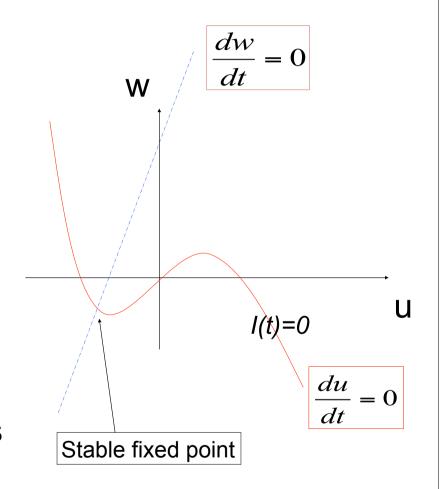
$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$
 Stimulus I=0

$$\tau_{w} \frac{dw}{dt} = G(u, w)$$

Consider change in small time step

Flow on nullcline

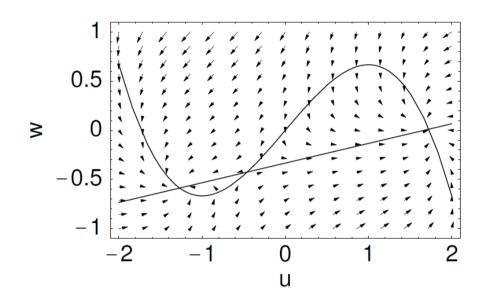
Flow in reginons between nullclines



Neuronal Dynamics – 4.2. FitzHugh-Nagumo Model

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$
$$= u - \frac{1}{3}u^3 + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w) = b_0 + b_1 u - w$$



Neuronal Dynamics – 4.2. Phase Plane Analysis

2-dimensional equation stimulus

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w)$$

Enables graphical analysis! Important role of

- nullclines
- flow arrows

Neuronal Dynamics – Quiz 4.4.

A. u-Nullclines

- [] On the u-nullcline, arrows are always vertical
- [] On the u-nullcline, arrows point always vertically upward
- [] On the u-nullcline, arrows are always horizontal
- [] On the u-nullcline, arrows point always to the left
- [] On the u-nullcline, arrows point always to the right

B. w-Nullclines

- [] On the w-nullcline, arrows are always vertical
- [] On the w-nullcline, arrows point always vertically upward
- [] On the w-nullcline, arrows are always horizontal
- [] On the w-nullcline, arrows point always to the left
- [] On the w-nullcline, arrows point always to the right
- [] On the w-nullcline, arrows can point in an arbitrary direction