Paxos

Seif Haridi
Single Value Uniform Consensus

- **Validity**
 - Only proposed values may be *decided*

- **Uniform Agreement**
 - No two processes decide *different* values

- **Integrity**
 - Each process can decide a value at most *once*

- **Termination**
 - Every process *eventually* decides a value
Single Value Uniform Consensus

- (Uniform) Consensus is not solvable in the Fail-Silent model (asynchronous system model)

- Given a fixed set of deterministic processes there is no algorithm that solves consensus in the asynchronous model if one process may crash and stop

- There are some infinite executions that where processes are not able to decide on a single value

- Fischer, Lynch and Patterson FLP result
Assumptions

- Partially synchronous system
- Fail-noisy model
- Message duplication, loss, re-ordering
Importance

- Paxos is arguably the most important algorithm in distributed computing
- This presentation follows the paper “Paxos Made Simple” (Lamport, 2001)
High Level View of Paxos

• Elect a single proposer using Ω
 • Proposer imposes its proposal to everyone
 • Everyone decides

• Problem with Ω
 • Several processes might initially be proposers (contention)
High Level View of Paxos

- Elect a single proposer using Ω
 - Proposer imposes its proposal to everyone
 - Everyone decides
- Problem with Ω
 - Several processes might initially be proposers (contention)
- Solution is **Abortable Consensus**
 - Processes attempt to impose their proposals
 - Might abort if there is contention (safety) (multiple proposers)
 - Ω ensures eventually 1 proposer succeeds (liveness)
PAXOS ALGORITHM
Terminology

- **Proposers**
 - Will attempt imposing their *proposal* to set of acceptors

- **Acceptors**
 - May *accept* values issued by proposers

- **Learners**
 - Will *decide* depending on acceptors acceptances

- Each process plays all 3 roles in classic setting
Naïve Approach

- Centralized solution
 - Proposer sends value to a central acceptor
 - Acceptor decides first value it gets
- Problem
 - Acceptor is a single-point of failure
Abortable Consensus

- Decentralizes, i.e. proposers talks to set of acceptors

- Tolerate failures, i.e. acceptors might fail (needs only a majority of acceptors surviving)

- Proposers might fail to impose its proposal (aborts)
Decentralization & Fault-tolerance

- Quorum approach
 - Each proposer tries to impose its value v on the set of acceptors
 - If majority of acceptors accept v, then v is chosen
 - Learners try to decide the chosen value
Ballot (round) Array (table)

- Describes the **state of the acceptors** at various rounds
- Each raw describes one round
- Each acceptor’s state of a_i initially \bot

<table>
<thead>
<tr>
<th>Round</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 5$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n=2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n=1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n=0$</td>
<td>\bot</td>
<td>\bot</td>
<td>\bot</td>
</tr>
</tbody>
</table>
When to accept

- Ideally, there will be a single proposer
 - Should at least provide obstruction-free progress
 - Obstruction-free = if a single proposer executes without interference (contention) it makes progress

- Suggested invariant
 - P1. An acceptor **accepts** first proposal it receives
Attempt

- P1. An acceptor *accepts* first proposal it receives
- Problem
 - Impossible to later tell what was chosen
 - Forced to allow **restarting**! Let acceptors change their minds!

```
<table>
<thead>
<tr>
<th>p1</th>
<th>prop(red)</th>
<th>accept (red)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p2</td>
<td></td>
<td>accept (red)</td>
</tr>
<tr>
<td>p3</td>
<td></td>
<td>accept (red)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>p4</td>
<td></td>
<td>accept (blue)</td>
</tr>
<tr>
<td>p5</td>
<td>prop(blue)</td>
<td>accept (blue)</td>
</tr>
</tbody>
</table>
```

Red: p₁, p₂, p₃

Blue: p₄, p₅

Any value chosen?
Ballot (round) Array (table)

- Two proposers p_1 and p_2 that propose red and blue
- But a_3 crashes

<table>
<thead>
<tr>
<th>Round</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n=2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n=1$</td>
<td>red</td>
<td>red</td>
<td>red</td>
<td>blue</td>
<td>blue</td>
</tr>
<tr>
<td>$n=0$</td>
<td>⊥</td>
<td></td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>
Ballot (round) Array (table)

- Two proposers p1 and p2 that propose red and blue
- But a_3 crashes

<table>
<thead>
<tr>
<th>Round</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 5</td>
<td></td>
<td></td>
<td>red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 2</td>
<td></td>
<td></td>
<td></td>
<td>blue</td>
<td>blue</td>
</tr>
<tr>
<td>n = 1</td>
<td>red</td>
<td>red</td>
<td>blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 0</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>
Enabling Restarting

- Proposer can try to propose again
 - Distinguish proposals with unique sequence number
 - Often called ballot number
 - Monotonically increasing

- Implementation with n nodes
 - Process 1 uses seq: 1, n+1, 2n+1, 3n+1, ...
 - Process 2 uses seq: 2, n+2, 2n+2, 3n+2, ...
 - Process 3 uses seq: 3, n+3, 2n+3, 3n+3, ...

- Or...
 - Pair of values: (local clock or logical clock, local identifier)
 - Lexicographic order: if clock collides, choose highest pid
Problem with restart

Learners might decide red Learners might decide blue
Ballot (round) Array (table)

- p1 proposes (1, red) and p2 proposes (3, blue)
- But a₁ and a₁ crashed

<table>
<thead>
<tr>
<th>Round</th>
<th>a₁</th>
<th>a₂</th>
<th>a₃</th>
<th>a₄</th>
<th>a₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 3</td>
<td></td>
<td></td>
<td>blue</td>
<td>blue</td>
<td>blue</td>
</tr>
<tr>
<td>n=2</td>
<td>red</td>
<td>red</td>
<td>red</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>n=1</td>
<td>red</td>
<td>red</td>
<td>red</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>n=0</td>
<td>⊥</td>
<td></td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>
Ensuring Agreement

- Problem (previous slide):
 - If restarting allowed,
 - Majority may first accept red
 - Majority may later accept blue
- Solve it by enforcing:
 - P2. If proposal \((n,v)\) is chosen, every higher numbered proposal chosen has value \(v\)
Birds-eye View

- Abortable Consensus in a nutshell
 - P1. An acceptor accepts first proposal it receives
 - P2. If v is chosen, every higher proposal chosen has value v

- Handwaving
 - P1 ensures obstruction-free progress and validity
 - P2 ensures agreement
 - Integrity trivial to implement
 - Remember if chosen before, at most choose once
Attempt

- P2. If v is chosen, every higher proposal chosen has value v
 - How to implement it?
- P2a. If v is chosen, every higher proposal accepted has value v
- Lemma
 - P2a => P2
Problem

- Recall
 - P1. An acceptor accepts first proposal it receives
 - P2a. If v is chosen, every higher proposal accepted has value v
- Problem: we cannot prevent an acceptor from accepting higher value proposal

```
<table>
<thead>
<tr>
<th>Propose</th>
<th>Accept</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1</td>
<td>accept(1, red)</td>
</tr>
<tr>
<td>p_2</td>
<td>accept(1, red)</td>
</tr>
<tr>
<td>p_3</td>
<td>accept(1, red)</td>
</tr>
<tr>
<td>p_4</td>
<td>Accept(3, blue)</td>
</tr>
<tr>
<td>p_5</td>
<td>Propose(3, blue) xor Accept(3, blue)</td>
</tr>
</tbody>
</table>
```

S. Haridi, KTHx ID2203.1x
Solution

- Strengthen P2a
 - P2b. If v is chosen, every higher proposal issued has value v

- If obeyed, solves problem

```
Not allowed anymore.
p_1 propose(1, red) accept(1, red) red chosen
       accept(1, red)
       accept(1, red)

p_2

p_3

p_4 accept(5, blue)

p_5 propose(5, blue) accept(5, blue)
```
Ballot (round) Array (table)

- p1 proposes (1, red) and p2 proposes (3, blue)
- But a₂ and a₃ crashed before p2 proposes (3, blue)

<table>
<thead>
<tr>
<th>Round</th>
<th>a₁</th>
<th>a₂</th>
<th>a₃</th>
<th>a₄</th>
<th>a₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 3</td>
<td></td>
<td></td>
<td>red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=2</td>
<td>red</td>
<td>red</td>
<td>red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=1</td>
<td>red</td>
<td>red</td>
<td>red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=0</td>
<td>⊥</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ballot (round) Array (table)

- p1 proposes (1, red) and p2 proposes (3, blue)
- At round 3 p2 has to issue (1, red)

<table>
<thead>
<tr>
<th>Round</th>
<th>a₁</th>
<th>a₂</th>
<th>a₃</th>
<th>a₄</th>
<th>a₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 3</td>
<td></td>
<td></td>
<td>red</td>
<td>red</td>
<td>red</td>
</tr>
<tr>
<td>n=2</td>
<td>red</td>
<td>red</td>
<td>red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=1</td>
<td>red</td>
<td>red</td>
<td>red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
P2 Preserved

• P2. If v is chosen, every higher proposal chosen has value v
• P2a. If v is chosen, every higher proposal accepted has value v
• P2b. If v is chosen, every higher proposal issued has value v

• Lemma
 • P2b => P2a

• Recall P2a => P2.
 • Thus P2b => P2
Main Lemma

- P2c. If any proposal \((n,v)\) is issued, there is a majority set \(S\) of acceptors such that either
 - (a) no one in \(S\) has accepted any proposal numbered less than \(n\)
 - (b) \(v\) is the value of the highest proposal among all proposals less than \(n\) accepted by acceptors in \(S\)

- Lemma: P2c => P2b
Main lemma

- (a) no one in S has *accepted* any proposal number > 3
- p2 issues (3, blue) at round 3

<table>
<thead>
<tr>
<th>Round</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 3$</td>
<td>red</td>
<td>red</td>
<td>blue</td>
<td>blue</td>
<td>blue</td>
</tr>
<tr>
<td>$n = 2$</td>
<td>red</td>
<td>red</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>$n = 1$</td>
<td>red</td>
<td>red</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>$n = 0$</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>
Main lemma

- (b) v is the value of the highest proposal among all proposals less than n accepted by acceptors in S
- red is chosen at round 3, no proposer at round 4
- Proposer at round 5 will always get red querying any majority

<table>
<thead>
<tr>
<th>Round</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 3$</td>
<td>red</td>
<td>red</td>
<td>red</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$n=2$</td>
<td>red</td>
<td>red</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$n=1$</td>
<td>red</td>
<td>red</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>$n=0$</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>

31
Main lemma

- (b) v is the value of the highest proposal among all proposals less than n accepted by acceptors in S
- red is chosen at round 3, no proposer at round 4
- Proposer at round 5 will always get red querying any majority

<table>
<thead>
<tr>
<th>Round</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 5$</td>
<td></td>
<td>red</td>
<td>red</td>
<td>red</td>
<td></td>
</tr>
<tr>
<td>$n = 4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 3$</td>
<td>red</td>
<td>red</td>
<td>red</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$n = 2$</td>
<td>red</td>
<td>red</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$n = 1$</td>
<td>red</td>
<td>red</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>$n = 0$</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>
How to implement P2c

- A proposer at round n needs a query phase to get the value of highest round number + a promise that the state of S does not change until round n

<table>
<thead>
<tr>
<th>Round</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 3$</td>
<td>red</td>
<td>red</td>
<td>red</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$n = 2$</td>
<td>red</td>
<td>red</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$n = 1$</td>
<td>red</td>
<td>red</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>$n = 0$</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>
How to implement P2c

- A proposer issues prop(n, v)
- Guarantee?
 - v is the value of the highest proposal among all proposals less than n accepted by acceptors in S
- Need a prepare(n) phase Before issuing prop(n, v)
 - Extract a promise from a majority of acceptors not to accept a proposal less than n
 - Acceptor sends back its highest numbered accepted value
Abortable Consensus

Proposer
- Pick unique sequence n, send \textit{prepare}(n) to all acceptors

3) Proposer upon majority S of promises:
 - Pick value v of highest proposal number in S, or if none available pick v freely
 - Issue \textit{accept}(n,v) to all acceptors

5) Proposer upon majority S of responses:
 - If got majority of acks decide(v) and broadcast decide(v); Otherwise abort

Acceptors
- Upon \textit{prepare}(n):
 - Promise not accepting proposals numbered less than n
 - Send highest numbered proposal accepted with number less than n (\textit{promise})

2) Upon \textit{prepare}(n):

5) Upon \textit{accept}(n,v):
 - If not responded to prepare $m>n$, accept proposal (\textit{ack}); otherwise reject (\textit{nack})

\textbf{Abortable consensus satisfies:}

P2c. If (n,v) is \textit{issued}, there is a majority of acceptors S such that:
 a) no one in S has accepted any proposal numbered “$<$“ n, OR
 b) v is value of highest proposal among all proposals “$<$“ n accepted by acceptors in S
Paxos Correctness
• P2b. If \(v \) is chosen, every higher proposal issued has value \(v \)

• P2c. If any prop \((n,v)\) is issued, there is a set \(S \) of a majority of acceptors s.t. either
 • (a) no one in \(S \) has accepted any proposal numbered less than \(n \)
 • (b) \(v \) is the value of the highest proposal among all proposals less than \(n \) accepted by acceptors in \(S \)

• Lemma: P2c => P2b
 • Proof map:
 • Prove lemma by assuming P2c, prove P2b follows
 • Prove P2b follows by assuming \(v \) is chosen, prove every higher proposal issued has value \(v \)

• Thus: if P2c is true, and prop \((n,v)\) chosen
 • Show by induction every higher proposal issued has value \(v \)
• P2b. If \(v \) is chosen, every higher proposal issued has value \(v \).

• P2c. If any prop \((n,v)\) is issued, there is a set \(S \) of a majority of acceptors s.t. either:
 • (a) no one in \(S \) has accepted any proposal numbered less than \(n \).
 • (b) \(v \) is the value of the highest proposal among all proposals less than \(n \) accepted by acceptors in \(S \).

Thus: P2c is true, and prop \((n,v)\) chosen.

Show by induction on (on prop number) every higher proposal issued has value \(v \).

Need to show by induction that all proposals \((m,u)\), where \(m \geq n \), have value \(u = v \).
• P2b. If v is chosen, every higher proposal issued has value v

• P2c. If any prop (n,v) is issued, there is a set S of a majority of acceptors s.t. either
 • (a) no one in S has accepted any proposal numbered less than n
 • (b) v is the value of the highest proposal among all proposals less than n accepted by acceptors in S

• Thus: P2c is true, and prop (n,v) chosen

 • Show by induction that all proposals (m,u), where $m \geq n$, have value $u=v$

 • Induction base
 • Inspect proposal (n,u).
 • Since (n,v) chosen & proposals are unique, $u=v

<table>
<thead>
<tr>
<th>Round</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>v</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>w</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>0</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>
- Induction step
 - Assume proposals n, n+1, n+2, ..., m have value v (ind.hypothesis)
 - Show proposal (m+1,u) has u=v
 - P2c implies proposal (m+1,u) has a majority S that either
 - a) no one in S has accepted any proposal numbered less than m+1
 - b) u is the value of the highest proposal among all proposals less than m+1 accepted by acceptors in S
 - a) cannot be, as (n,v) accepted by a majority overlapping with S
 - b) must be true
 - Hence, u is the value of the highest proposal among all proposals less than m+1 accepted by acceptors in S
 - By the induction hypothesis, all proposals n, ..., m have value v. Majority of prop m+1 intersects with majority of prop n, thus u=v
Induction step

- Assume proposals $n, n+1, n+2, \ldots, m$ have value v (ind.hypothesis)
 - Show proposal $(m+1,u)$ has $u=v$
- u is the value of the highest proposal among all proposals less than $m+1$ accepted by acceptors in S
- By the induction hypothesis, all proposals n, \ldots, m have value v. Majority of prop $m+1$ intersects with majority of prop n, thus $u=v$

<table>
<thead>
<tr>
<th>Round</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>2</td>
<td>v</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>w</td>
<td>\perp</td>
<td>\perp</td>
</tr>
<tr>
<td>0</td>
<td>\perp</td>
<td>\perp</td>
<td>\perp</td>
</tr>
</tbody>
</table>
Agreement Satisfied

- This algorithm satisfies P2c
 - accept(n,v) only **issued** if a majority S responded to prepare(n), s.t. for each p_i in S:
 a) either: p_i hadn’t accepted any prop less than n, or
 b) v is value of highest proposal less than n accepted by p_i

- By their promise, a) and b) will not change

- prepare(n) often called **read(n)**
- accept(n,v) often called **write(n,v)**
Agreement

- P2c. If \((n,v)\) is issued, there is a majority of acceptors \(S\) s.t.
 - a) no one in \(S\) has accepted any proposal numbered less than \(n\), or
 - b) \(v\) is the value of the highest proposal among all proposals less than \(n\) accepted by acceptors in \(S\).

- P2. If \((n,v)\) is chosen, every higher proposal chosen has value \(v\).

- We proved that if P2c is satisfied, then P2 is satisfied
 - P2c \(\Rightarrow\) P2

- Thus the algorithm satisfies agreement (safety)
Obstruction Freedom and Validity

• P1. An acceptor accepts first “proposal” it receives

• P1 is satisfied because we accept
 • if prepare(n) & accept(n,v) received first

• Thus the algorithm satisfies obstruction-free progress (liveness)
Getting Familiar with Paxos
Abortable Consensus

Proposer

1) Pick unique sequence n, send prepare(n) to all acceptors

3) Proposer upon majority S of promises:
 - Pick value v of highest proposal number in S, or if none available pick v freely
 - Issue accept(n,v) to all acceptors

5) Proposer upon majority S of responses:
 - If got majority of acks decide(v) and broadcast decide(v);
 - Otherwise abort

Acceptors

2) Upon prepare(n):
 - Promise not accepting proposals numbered less than n
 - Send highest numbered proposal accepted with number less than n (promise)

4) Upon accept(n,v):
 - If not responded to prepare m>n, accept proposal (ack); otherwise reject (nack)
Message loss and failures

- Many sources of *abort*
 - Contention (multiple proposals competing)
 - Message loss (e.g. not getting an ack)
 - Process failure (e.g. proposer dies)

- So Proposers try Abortable Consensus again…
 - Prepare(5), Accept(5,v), prepare(15), …
 - Eventually the Paxos should terminate (FLP85?)
FLP ghost

 proposers a and b forever racing...
 • Eventual leader election (Ω) ensures liveness
 • Eventually only one proposer => termination
Familiarizing with Paxos (1/4)

- Different processes accept different values, same process accepts different values
- Assume 4 proposers \{a,b,c,d\}, 7 acceptors \{p_1,...,p_7\}

```
p_1
  a.prep(1):ok  a.acpt(1,red):ok

p_2
  a.prep(1):ok

p_3
  a.prep(1):ok

p_4
  a.prep(1):ok

p_5

p_6

p_7
```

S. Haridi, KTHx ID2203.1x
Familiarizing with Paxos (2/4)

- Different nodes accept different values, same node accepts different values
- Assume 4 proposers \{a,b,c,d\}, 7 acceptors \{p_1,...,p_7\}

\[
\begin{align*}
p_1 & : \text{a.prep(1):ok a.acpt(1,\text{red}):ok} \\
p_2 & : \text{a.prep(1):ok b.prep(2):ok b.acpt(2,\text{blue}):ok} \\
p_3 & : \text{a.prep(1):ok b.prep(2):ok} \\
p_4 & : \text{a.prep(1):ok b.prep(2):ok} \\
p_5 & : \text{b.prep(2):ok} \\
p_6 \phantom{\text{b.prep(2):ok}} \\
p_7 \phantom{\text{b.prep(2):ok}}
\end{align*}
\]
Familiarizing with Paxos (3/4)

- Different nodes accept different values, same node accepts different values
- Assume 4 proposers \{a,b,c,d\}, 7 acceptors \{p_1,...,p_7\}

<table>
<thead>
<tr>
<th>Proposer</th>
<th>Acceptors</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>p_1, p_2, p_3, p_4, p_5, p_6, p_7</td>
</tr>
<tr>
<td>b</td>
<td>p_2, p_4, p_5, p_6, p_7</td>
</tr>
<tr>
<td>c</td>
<td>p_3, p_5, p_6, p_7</td>
</tr>
</tbody>
</table>

```

<table>
<thead>
<tr>
<th></th>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
<th>p_4</th>
<th>p_5</th>
<th>p_6</th>
<th>p_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>acpt(1, red):ok</td>
<td>acpt(2, blue):ok</td>
<td>acpt(3, green):ok</td>
<td>acpt(4, green):ok</td>
<td>acpt(5, red):ok</td>
<td>acpt(6, blue):ok</td>
<td>acpt(7, green):ok</td>
</tr>
<tr>
<td>c</td>
<td>prep(3):ok</td>
<td>prep(3):ok</td>
<td>prep(3):ok</td>
<td>prep(3):ok</td>
<td>prep(3):ok</td>
<td>prep(3):ok</td>
<td>prep(3):ok</td>
</tr>
</tbody>
</table>
```

S. Haridi, KTHx ID2203.1x
Familiarizing with Paxos (4/4)

- Different nodes accept different values, same node accepts different values
- Assume 4 proposers \{a, b, c, d\}, 7 acceptors \{p_1, ..., p_7\}

```
p_1
a.prep(1):ok    a.acpt(1, red):ok
p_2
a.prep(1):ok    b.prep(2):ok    b.acpt(2, blue):ok
p_3
a.prep(1):ok    b.prep(2):ok    c.prep(3):ok    c.acpt(3, green):ok
p_4
a.prep(1):ok    b.prep(2):ok    c.prep(3):ok    d.prep(4):ok
p_5
b.prep(2):ok    c.prep(3):ok    d.prep(4):ok
p_6
p_7
```
Optimizations
Paxos (AC) in a nutshell

- Necessary
 - Reject accept(n,v) if answered prepare(m) : m>n
 - i.e. prepare extracts promise to reject lower accept
Possible scenario #1

- Caveat
 - Proposers \{a,b,c\}, acceptors \{p_1,p_2,p_3\}

<table>
<thead>
<tr>
<th></th>
<th>a.prep(80):ok</th>
<th>b.prep(10):ok</th>
<th>b.accept(10,\text{red}):fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- accept(10) will be rejected, why answer prepare(10)?
- No point answering prepare(n) if accept(n,v) will be rejected
Summary of Optimizations

• Necessary
 • Reject accept(n,v) if answered prepare(m) : m>n
 • i.e. prepare extracts promise to reject lower accept

• Optimizations
 • a) Reject prepare(n) if answered prepare(m) : m>n
 • i.e. prepare extracts promise to reject lower prepare
Possible scenario #2

- **Caveat**

<table>
<thead>
<tr>
<th></th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
<th>p6</th>
<th>p7</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>prep(80):ok</td>
<td>prep(80):ok</td>
<td>prep(80):ok</td>
<td>prep(80):ok</td>
<td>prep(80):ok</td>
<td>prep(80):ok</td>
<td>prep(80):ok</td>
</tr>
<tr>
<td>b</td>
<td>prep(90):ok</td>
<td>prep(90):ok</td>
<td>prep(90):ok</td>
<td>acpt(90,red):ok</td>
<td>acpt(80,blue):fail</td>
<td>acpt(90,red):ok</td>
<td>acpt(80,blue):ok</td>
</tr>
</tbody>
</table>

- accept(80,blue) can anyway not get majority, as P2b guarantees every higher proposal issued would have same value!

S. Haridi, KTHx ID2203.1x
Summary of Optimizations (2)

- Necessary
 - Reject accept(n,v) if answered prepare(m) : m>n
 - i.e. prepare extracts promise to reject lower accept

- Optimizations
 - a) Reject prepare(n) if answered prepare(m) : m>n
 - i.e. prepare extracts promise to reject lower prepare
 - b) Reject accept(n,v) if answered accept(m,u) : m>n
 - i.e. accept extracts promise to reject lower accept
 - c) Reject prepare(n) if answered accept(m,u) : m>n
 - i.e. accept extracts promise to reject lower prepare
Possible scenario #3

- Caveat

\[
\begin{align*}
p1 & \quad \text{prep}(1) \quad \text{ok} \quad \text{acpt}(1, \text{red}) \quad \text{ok} \\
p2 & \quad \text{ok} \quad \text{ok} \\
p3 & \quad \text{ok} \\
p4 & \quad \text{ok} \\
p5 & \quad \text{ok} \\
\end{align*}
\]

Opt: ignore old responses
Summary of Optimizations (3)

- **Necessary**
 - Reject accept(n,v) if answered prepare(m) : m>n
 - i.e. prepare extracts promise to reject lower accept

- **Optimizations**
 - a) Reject prepare(n) if answered prepare(m) : m>n
 - i.e. prepare extracts promise to reject lower prepare
 - b) Reject accept(n,v) if answered accept(m,u) : m>n
 - i.e. accept extracts promise to reject lower accept
 - c) Reject prepare(n) if answered accept(m,u) : m>n
 - i.e. accept extracts promise to reject lower prepare
 - d) Ignore old messages to proposals that got majority
State to Remember

- Each acceptor remembers
 - **Highest proposal** \((n,v)\) accepted
 - Needed when proposers ask prepare\((m)\)
 - Lower prepares anyway ignored (optimization a & c)

 - **Highest prepare** it has promised
 - It has promised to ignore accept\((m)\) with lower number

- Can be saved to stable storage (recovery)
One more optimizations - 1

- Paxos requires 2 round-trips (with no contention)
 - Prepare(n) : prepare phase (read phase)
 - Accept(n, v): accept phase (write phase)

- P2. If v is chosen, every higher proposal chosen has value v

- Optimization 1
- Proposer skips the accept phase if a majority of acceptors return the same value v
Performance

- Paxos requires 4 messages delays (2 round-trips)
 - Prepare(n) needs 2 delays (Broadcast & Get Majority)
 - Accept(n, v) needs 2 delays (Broadcast & Get Majority)

- In many cases only accept phase is run
 - Paxos only needs **2 delays** to terminate
 - (Believed to be) optimal
Two more optimizations - 2

- Paxos requires 2 round-trips (with no contention)
 - Prepare(n) : prepare phase (read phase)
 - Accept(n, v): accept phase (write phase)

- We often need to run many consensus instances
 - Note that proposer needs not know value in prepare(n)
 - Initialize acceptors as if they accepted a prepare(1) of an initial leader l_1 among possible proposers
 - Initially l_1 runs only accept phase until suspected
 - Subsequent leaders can run prepare for many instances in advance (with higher ballot number)