Week 4 – part : Type I and Type II Neuron Models

4.1 From Hodgkin-Huxley to 2D

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Week 4 – Reducing detail:

Two-dimensional neuron models

Wulfram Gerstner

EPFL, Lausanne, Switzerland

- 4.2 Phase Plane Analysis
- 4.3 Analysis of a 2D Neuron Model

4.4 Type I and II Neuron Models

- where is the firing threshold?
- separation of time scales
- 4.5. Nonlinear Integrate-and-fire
 - from two to one dimension

Week 4 – part 5: Nonlinear Integrate-and-Fire Model

4.1 From Hodgkin-Huxley to 2D

4.2 Phase Plane Analysis

4.3 Analysis of a 2D Neuron Model

4.4 Type I and II Neuron Models

- where is the firing threshold?
- separation of time scales
- 4.5. Nonlinear Integrate-and-fire
 - from two to one dimension

Neuronal Dynamics – 4.4. Type I and II Neuron Models

FitzHugh Nagumo Model – limit cycle

stimulus

$$\tau \frac{du}{dt} = F(u, w) + I(t)$$
$$\tau_w \frac{dw}{dt} = G(u, w)$$

-unstable fixed point
-closed boundary
with arrows pointing inside
Iimit cycle

Neuronal Dynamics – 4.4. Hopf bifurcation

FitzHugh-Nagumo: type II Model – Hopf bifurcation

Neuronal Dynamics – 4.4. Type I and II Neuron Models

Saddle-node bifurcation

stimulus $\tau \frac{du}{dt} = F(u, w) + I(t)$ $\tau_{w} \frac{dw}{dt} = G(u, w)$

flow arrows

Neuronal Dynamics – 4.4. Type I and II Neuron Models

