Deep Learning Explained

Module 5: Recurrence (RNN) and Long-Short Term Memory (LSTM)

Sayan D. Pathak, Ph.D., Principal ML Scientist, Microsoft Roland Fernandez, Senior Researcher, Microsoft

Module outline

Application:

Time series forecasting with IOT data

Model:

Recurrence Long-short term memory cell

Concepts:

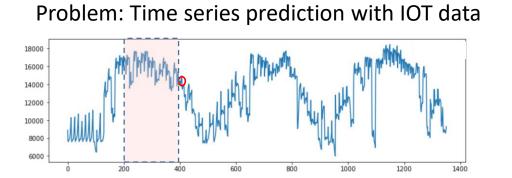
Recurrence

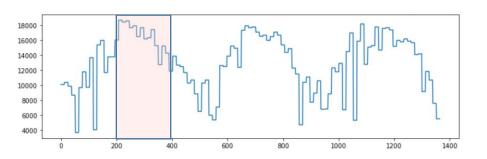
LSTM

Dropout

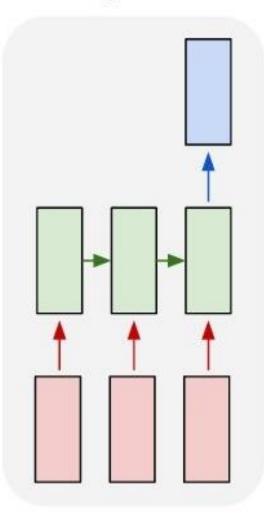
Train-Test-Predict Workflow

Sequences (many to one)





many to one



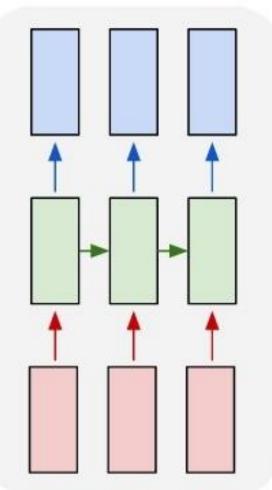
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sequences (many to many + 1:1)

Problem: Tagging entities in Air Traffic Controller (ATIS) data

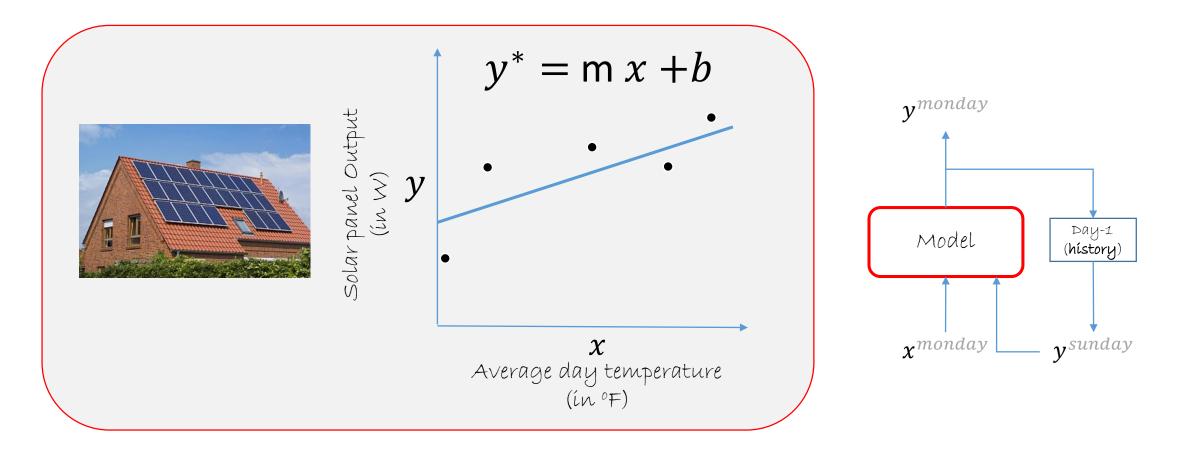
From_city To_cíty 0 0 Date 0 Rec Rec Rec Rec Rec Rec burbank show to seattle flights tomorrow

many to many

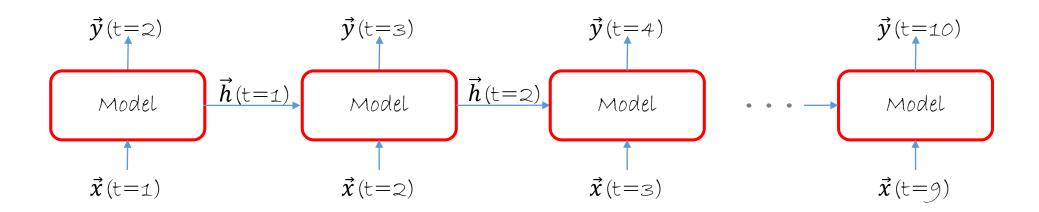


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Forecasting



Recurrence

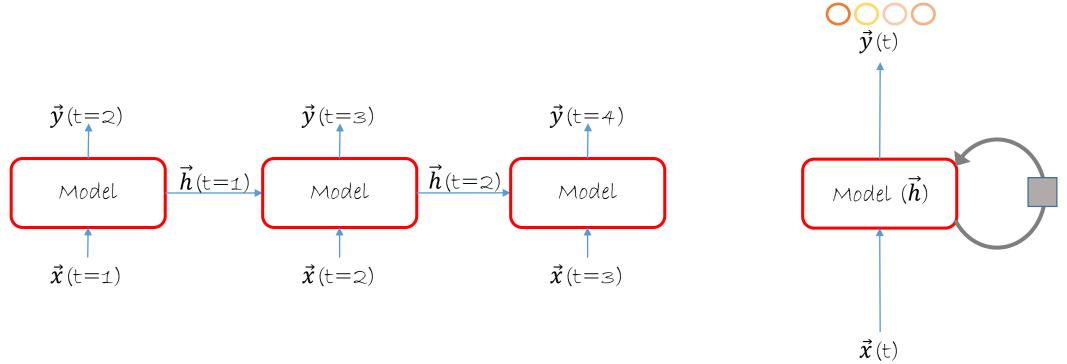


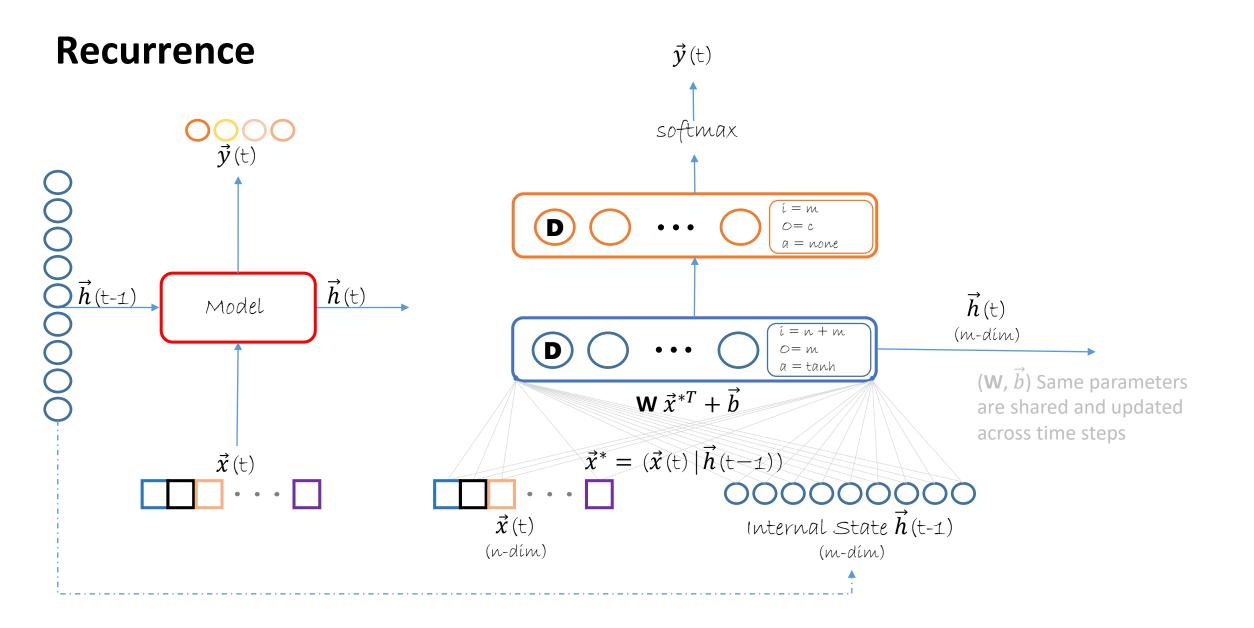
- \vec{x} (t) : Input (n-dímensíonal array) at time t
- $ec{y}(t) \ ec{h}(t)$: Output (c-dimensional array) at time t
- : Internal State [m-dímensíonal array] at tíme t a.k.a hístory

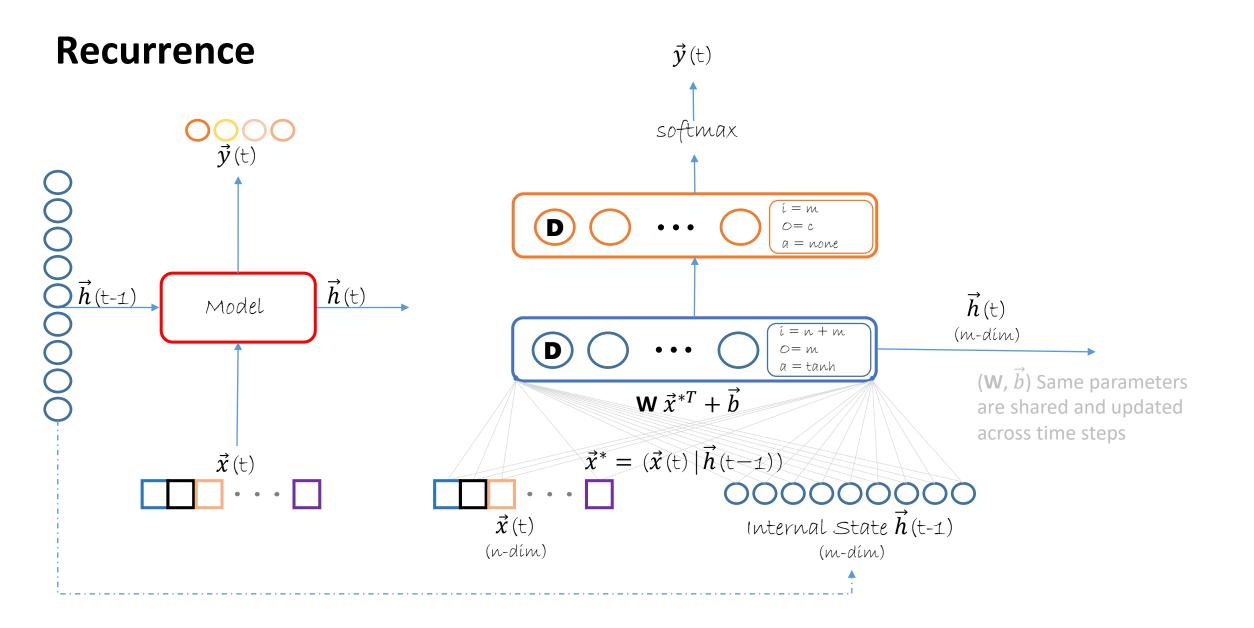
Input:

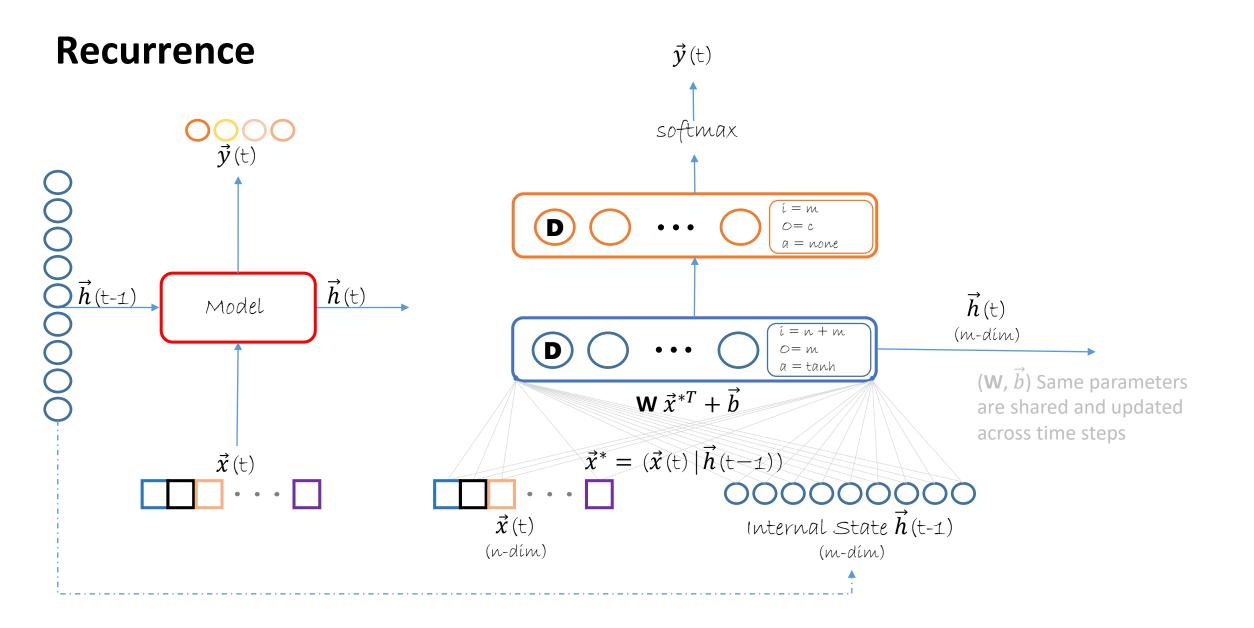
For numeric: For an image: For word in text: Array of numeric values coming from different sensor Píxels in an array, Map the image pixels to a compact representation (say n values) Represent words as a numeric vector using embeddings (word2vec or Glove)

Recurrence

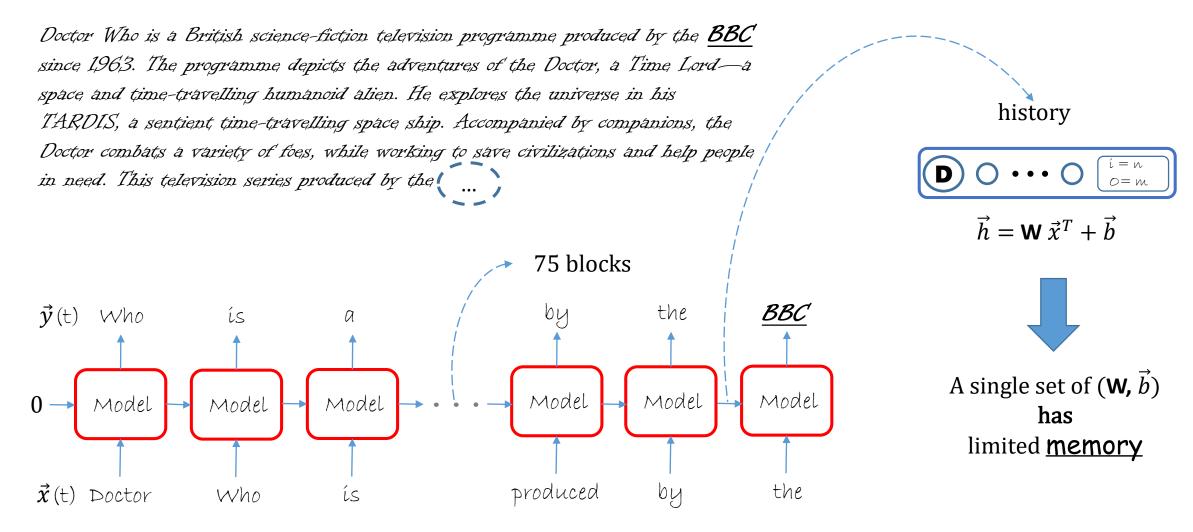


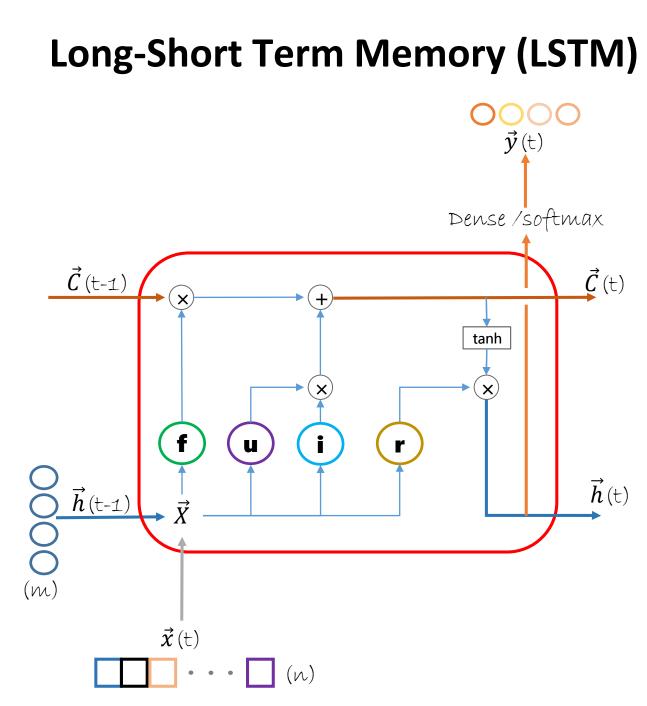


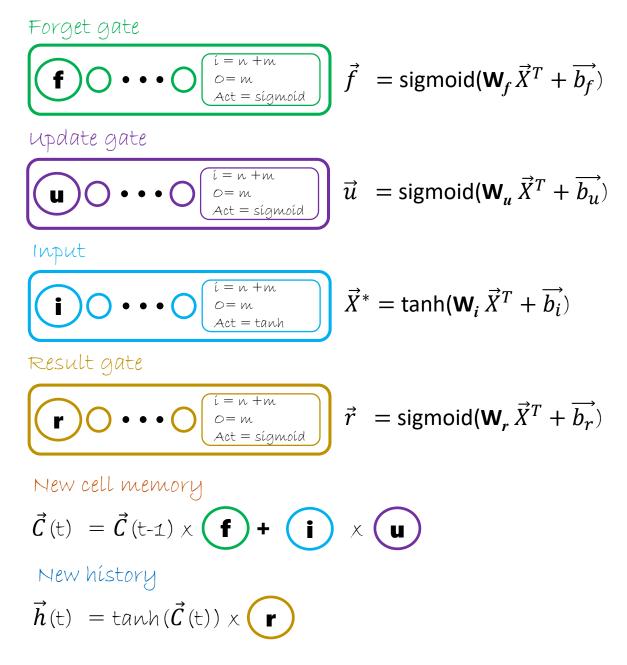




Recurrence (Vanishing Gradients)

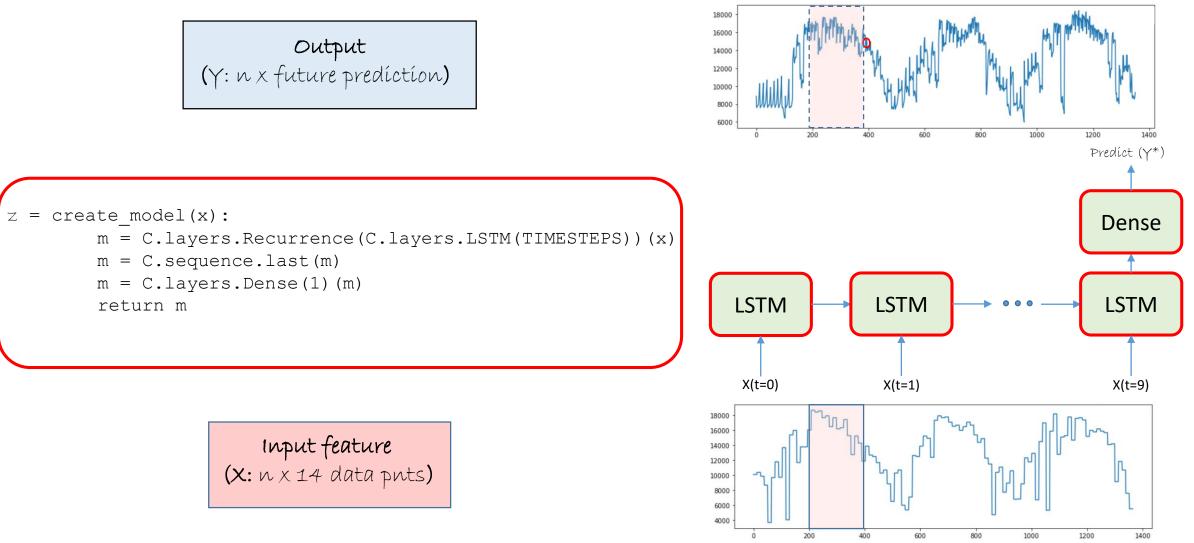






Time-series forecasting

Problem: Time series prediction with IOT data



Dropout

Problem:

Overfitting Model works great with training data With new data (unseen during training): high prediction error

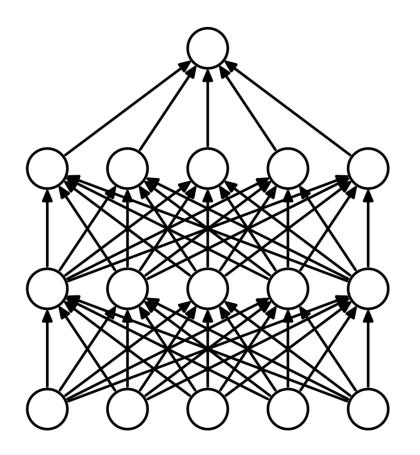
Classical Approach:

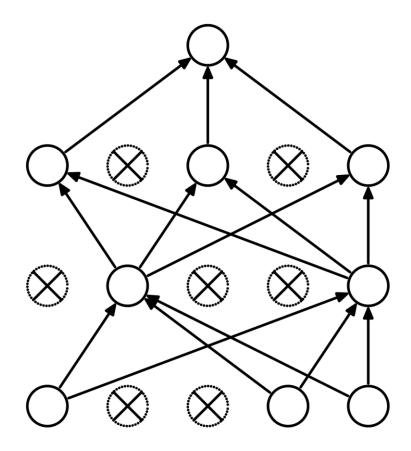
L1 / L2 regularízatíon Data augmentatíon / traín with noise added Early stopping

Dropout

Extremely effective technique to tackle overfitting in neural networks

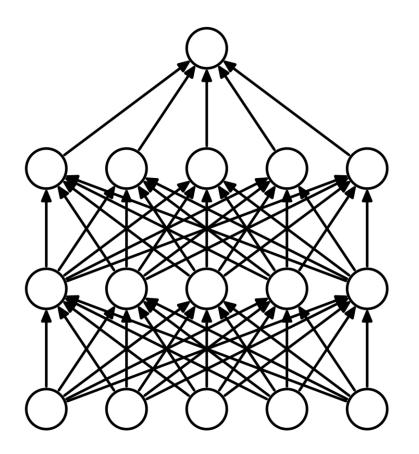
Dropout

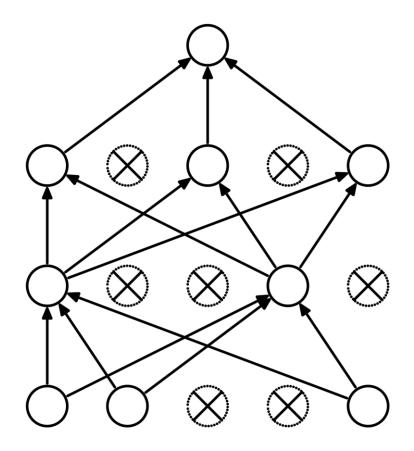




http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Dropout





http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Time-series forecasting

IOT data:

✓ Output of a solar panel, measurements are recorded at every 30 min interval:

- solar.current: Current production in Watts
- solar.total: Total production for the day so far in Watt/hour

Data Summary:

✓ Starting at a time in the day, two values are recorded

time,solar.current,solar.total
7am,6.3,1.7
7:30am,44.3,11.4

✓ 3 years of data
 ✓ The input data is not cleansed i.e., errors (panel failed to report) is included

Data pre-processing

Goal:

- ✓ Compose sequence such that each training instance would be:
 - X = [solar.current @t = 1 t = 14] (t=1 14: corresponds to 1 day)
 - $\gamma = Predicted$ total production for a future day

Pre-processing:

- ✓ Steps:
 - read raw data into a pandas dataframe,
 - normalíze the data,
 - group by day,
 - append the columns "solar.current.max" and "solar.total.max", and
 - generate the sequences for each day.

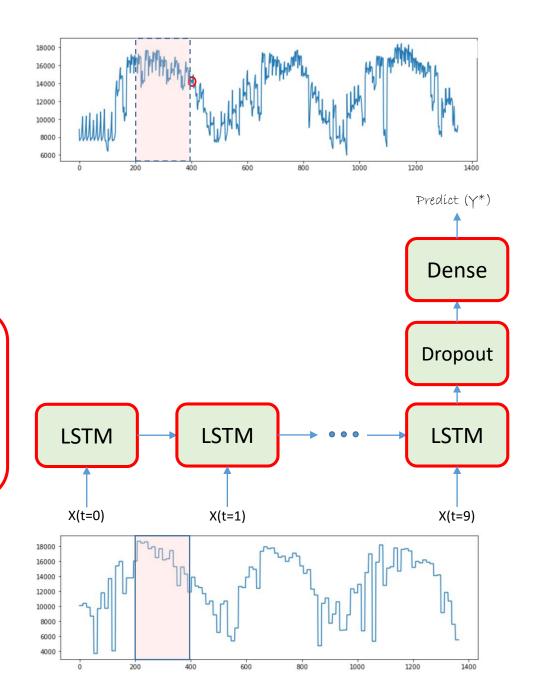
✓ Data filtering:

- If X has less than 8 data points we skip
- If X has more than 14 data points we truncate

Time-series forecasting

Problem: Time series prediction with IOT data

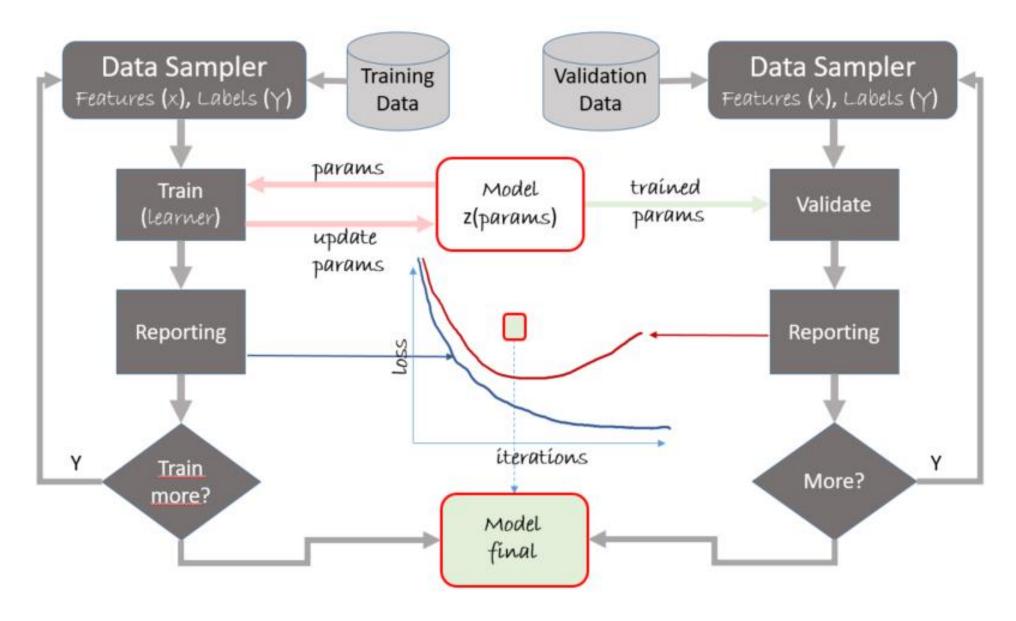
Ομτρμτ (Υ: n x future prediction)



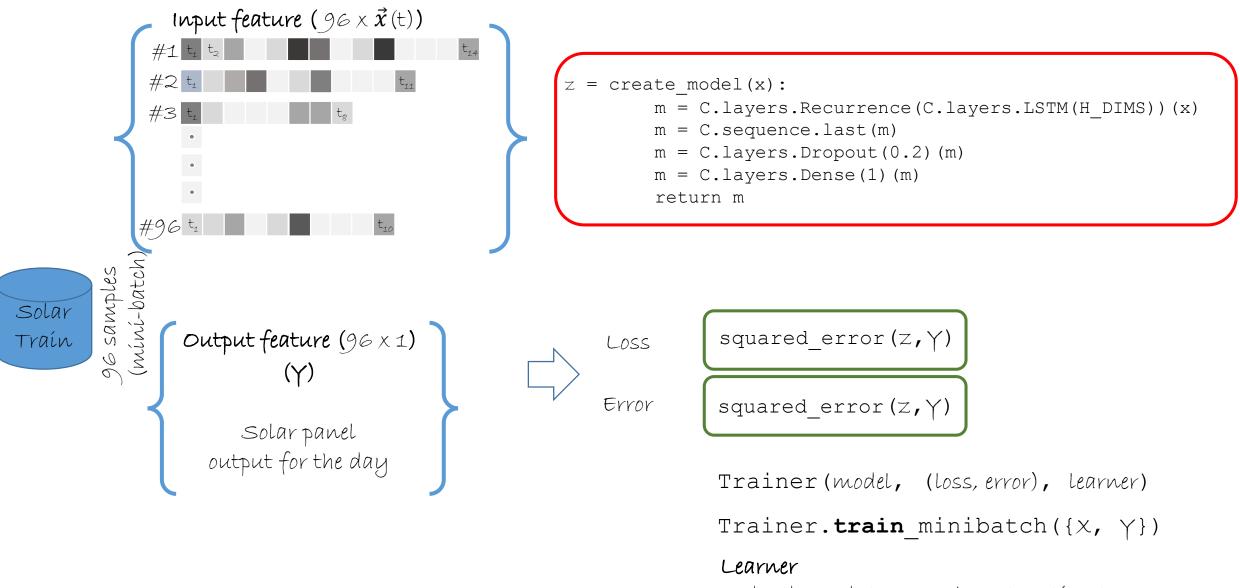
```
z = create_model(x):
    m = C.layers.Recurrence(C.layers.LSTM(TIMESTEPS))(x)
    m = C.sequence.last(m)
    m = C.layers.Dropout(0.2)(m)
    m = C.layers.Dense(1)(m)
    return m
```

Input feature (X: n x 14 data pnts)

Train / Validation Workflow



Train workflow

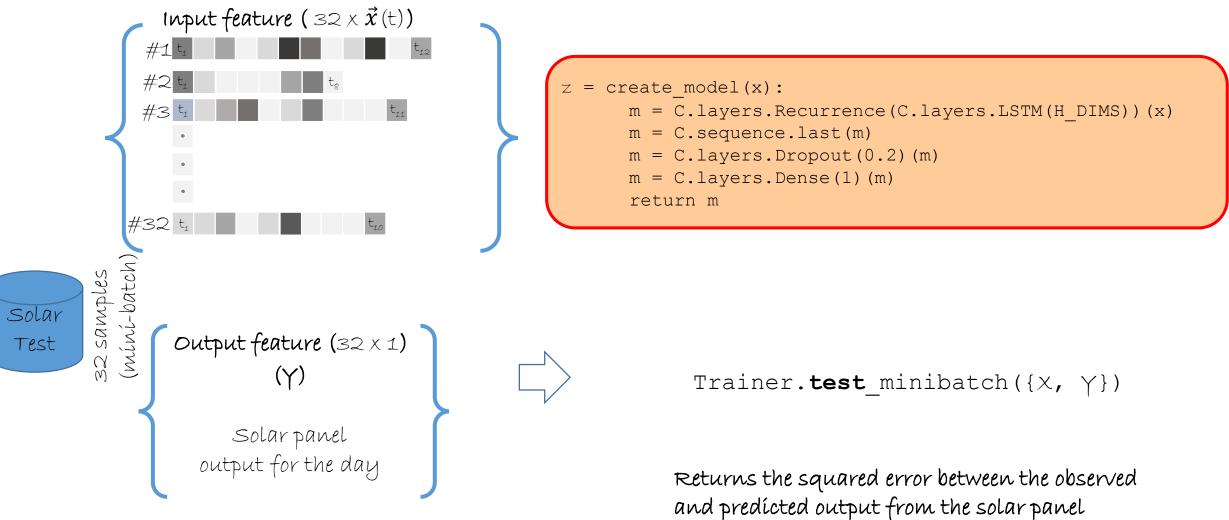


sgd, adagrad etc, are solvers to estimate

Test workflow



Test workflow



Prediction workflow

Predicted value of the solar panel output (predicted_label)

