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Module outline

Application: 

Time series forecasting with IOT data

Model:

Recurrence

Long-short term memory cell

Concepts:

Recurrence

LSTM

Dropout

Train-Test-Predict Workflow



Sequences (many to one)

Input feature 
(X: n x 14 data pnts)

Output
(Y: n x future prediction)

Problem: Time series prediction with IOT data 

Model

Rec = Recurrence

http://karpathy.github.io/2015/05/21/rnn-effectiveness/



Sequences (many to many + 1:1)

Problem: Tagging entities in Air Traffic Controller (ATIS) data
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/



Forecasting
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Recurrence
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Input:
For numeric: Array of numeric values coming from different sensor
For an image: Pixels in an array, Map the image pixels to a compact representation (say n values)
For word in text: Represent words as a numeric vector using embeddings (word2vec or GloVe) 

Ԧ𝑥(t) : Input (n-dimensional array) at time t
Ԧ𝑦(t) : Output (c-dimensional array) at time t

ℎ(t) : Internal State [m-dimensional array] at time t a.k.a history



Recurrence
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Recurrence
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(W, 𝑏) Same parameters 
are shared and updated 
across time steps

W Ԧ𝑥∗𝑇 + 𝑏

Ԧ𝑥∗ = ( Ԧ𝑥(t)|ℎ(t−1))

softmax

Ԧ𝑥(t)

Ԧ𝑥(t)
(n-dim)



Recurrence
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Recurrence
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Recurrence (Vanishing Gradients)
Doctor Who is a British science-fiction television programme produced by the BBC
since 1963. The programme depicts the adventures of the Doctor, a Time Lord—a 
space and time-travelling humanoid alien. He explores the universe in his 
TARDIS, a sentient time-travelling space ship. Accompanied by companions, the 
Doctor combats a variety of foes, while working to save civilizations and help people 
in need. This television series produced by the
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Long-Short Term Memory (LSTM)
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Time-series forecasting

Input feature 
(X: n x 14 data pnts)

Output
(Y: n x future prediction)

Problem: Time series prediction with IOT data 

LSTM LSTM LSTM

X(t=0) X(t=1) X(t=9)

Dense

Predict (Y*)

z = create_model(x):

m = C.layers.Recurrence(C.layers.LSTM(TIMESTEPS))(x)

m = C.sequence.last(m)

m = C.layers.Dense(1)(m)

return m



Dropout

Problem: 
Overfitting

Model works great with training data 
With new data (unseen during training): high prediction error 

Classical Approach: 
L1 / L2 regularization
Data augmentation / train with noise added
Early stopping

Dropout
Extremely effective technique to tackle overfitting in neural networks



Dropout

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf



Dropout

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf



Time-series forecasting

IOT data:
✓Output of a solar panel, measurements are recorded at every 30 min interval:

- solar.current: Current production in Watts
- solar.total: Total production for the day so far in Watt/hour

Data Summary:
✓Starting at a time in the day, two values are recorded

✓3 years of data
✓The input data is not cleansed i.e., errors (panel failed to report) is included



Data pre-processing
Goal:
✓Compose sequence such that each training instance would be:

- X = [solar.current @ t = 1 – t = 14] (t=1 – 14: corresponds to 1 day)

- Y = Predicted total production for a future day 

Pre-processing:
✓Steps:

- read raw data into a pandas dataframe,
- normalize the data, 
- group by day,
- append the columns "solar.current.max" and "solar.total.max", and
- generate the sequences for each day.

✓Data filtering:
- If X has less than 8 data points – we skip

- If X has more than 14 data points – we truncate



Time-series forecasting

Input feature 
(X: n x 14 data pnts)

Output
(Y: n x future prediction)

Problem: Time series prediction with IOT data 

LSTM LSTM LSTM

Dropout

X(t=0) X(t=1) X(t=9)

Dense

Predict (Y*)

z = create_model(x):

m = C.layers.Recurrence(C.layers.LSTM(TIMESTEPS))(x)

m = C.sequence.last(m)

m = C.layers.Dropout(0.2)(m)

m = C.layers.Dense(1)(m)

return m



Train / Validation Workflow



Train workflow
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z = create_model(x):

m = C.layers.Recurrence(C.layers.LSTM(H_DIMS))(x)

m = C.sequence.last(m)

m = C.layers.Dropout(0.2)(m)

m = C.layers.Dense(1)(m)

return m

Loss squared_error(z,Y)

Trainer(model, (loss, error), learner)

Trainer.train_minibatch({X, Y})

Error squared_error(z,Y)

Learner
sgd, adagrad etc, are solvers to estimate 

(Y)

Output feature (96 x 1)

Solar panel 

output for the day 

.

.

.

#1

#2

#3

#96

Input feature ( 96 x Ԧ𝑥(t))
t1

t1

t2 t14

t11

t1 t8

t1 t10



Data Sampler
Features (x), Labels (Y)

Test

Reporting

Test
more?

Test
Data

Model
final

Test workflow
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Test workflow
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Input feature ( 32 x Ԧ𝑥(t))

Trainer.test_minibatch({X, Y})

z = create_model(x):

m = C.layers.Recurrence(C.layers.LSTM(H_DIMS))(x)

m = C.sequence.last(m)

m = C.layers.Dropout(0.2)(m)

m = C.layers.Dense(1)(m)

return m

(Y)

Output feature (32 x 1)

Solar panel 

output for the day 

t1 t12

t1 t8

t11t1

t1 t10

Returns the squared error between the observed 
and predicted output from the solar panel



Prediction workflow

Input feature 

(new X: 1 x Ԧ𝑥(t))

Model
(w, b)

Model.eval(new X)

Predicted value of the solar panel output(predicted_label)

[y watts]

t9t1


