
Deep Learning Explained
Module 5: Recurrence (RNN) and Long-Short Term Memory (LSTM)

Sayan D. Pathak, Ph.D., Principal ML Scientist, Microsoft

Roland Fernandez, Senior Researcher, Microsoft

Module outline

Application:

Time series forecasting with IOT data

Model:

Recurrence

Long-short term memory cell

Concepts:

Recurrence

LSTM

Dropout

Train-Test-Predict Workflow

Sequences (many to one)

Input feature
(X: n x 14 data pnts)

Output
(Y: n x future prediction)

Problem: Time series prediction with IOT data

Model

Rec = Recurrence

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sequences (many to many + 1:1)

Problem: Tagging entities in Air Traffic Controller (ATIS) data

Rec

show

o

Rec

burbank

From_city

Rec

to

o

Rec

seattle

To_city

Rec

flights

o

Rec

tomorrow

Date

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Forecasting

𝑦∗ = m 𝑥 +𝑏

𝑥

𝑦

S
ol

a
r

pa
n

el
 O

u
tp

u
t

(i
n

 W
)

Average day temperature
(in oF)

Model

𝑥𝑚𝑜𝑛𝑑𝑎𝑦

𝑦𝑚𝑜𝑛𝑑𝑎𝑦

Day-1
(history)

𝑦𝑠𝑢𝑛𝑑𝑎𝑦

Recurrence

Ԧ𝑦(t=2)

Ԧ𝑥(t=1)

Model

Ԧ𝑥(t=2)

Ԧ𝑦(t=3)

Modelℎ(t=1) ℎ(t=2) Model

Ԧ𝑥(t=3)

Ԧ𝑦(t=4)

Model

Ԧ𝑥(t=9)

Ԧ𝑦(t=10)

Input:
For numeric: Array of numeric values coming from different sensor
For an image: Pixels in an array, Map the image pixels to a compact representation (say n values)
For word in text: Represent words as a numeric vector using embeddings (word2vec or GloVe)

Ԧ𝑥(t) : Input (n-dimensional array) at time t
Ԧ𝑦(t) : Output (c-dimensional array) at time t

ℎ(t) : Internal State [m-dimensional array] at time t a.k.a history

Recurrence

Model (ℎ)

Ԧ𝑥(t)

Ԧ𝑦(t)

Model

Ԧ𝑥(t=1)

Ԧ𝑦(t=2)

ℎ(t=1) Model

Ԧ𝑥(t=2)

Ԧ𝑦(t=3)

ℎ(t=2) Model

Ԧ𝑥(t=3)

Ԧ𝑦(t=4)

Recurrence

ℎ(t)

D
i = n + m
O= m
a = tanh

Internal State ℎ(t-1)
(m-dim)

D
i = m
O= c
a = none

Ԧ𝑦(t)

ℎ(t-1) Model

Ԧ𝑦(t)

(W, 𝑏) Same parameters
are shared and updated
across time steps

W Ԧ𝑥∗𝑇 + 𝑏

Ԧ𝑥∗ = (Ԧ𝑥(t)|ℎ(t−1))

softmax

Ԧ𝑥(t)

Ԧ𝑥(t)
(n-dim)

Recurrence

ℎ(t)

D
i = n + m
O= m
a = tanh

Internal State ℎ(t-1)
(m-dim)

D
i = m
O= c
a = none

Ԧ𝑦(t)

ℎ(t-1) Model

Ԧ𝑦(t)

(W, 𝑏) Same parameters
are shared and updated
across time steps

W Ԧ𝑥∗𝑇 + 𝑏

Ԧ𝑥∗ = (Ԧ𝑥(t)|ℎ(t−1))

softmax

Ԧ𝑥(t)

Ԧ𝑥(t)
(n-dim)

Recurrence

ℎ(t)

D
i = n + m
O= m
a = tanh

Internal State ℎ(t-1)
(m-dim)

D
i = m
O= c
a = none

Ԧ𝑦(t)

ℎ(t-1) Model

Ԧ𝑦(t)

(W, 𝑏) Same parameters
are shared and updated
across time steps

W Ԧ𝑥∗𝑇 + 𝑏

Ԧ𝑥∗ = (Ԧ𝑥(t)|ℎ(t−1))

softmax

Ԧ𝑥(t)

Ԧ𝑥(t)
(n-dim)

Recurrence (Vanishing Gradients)
Doctor Who is a British science-fiction television programme produced by the BBC
since 1963. The programme depicts the adventures of the Doctor, a Time Lord—a
space and time-travelling humanoid alien. He explores the universe in his
TARDIS, a sentient time-travelling space ship. Accompanied by companions, the
Doctor combats a variety of foes, while working to save civilizations and help people
in need. This television series produced by the

Model

is

Who

Model

a

is

BBC

ModelModel

by

produced

Model

the

by the

Model

Who

DoctorԦ𝑥(t)

Ԧ𝑦(t)

0

75 blocks

A single set of (W, 𝑏)
has

limited memory

D
i = n
O= m

ℎ = W Ԧ𝑥𝑇 + 𝑏

history

…

Long-Short Term Memory (LSTM)

ℎ(t-1)

Ԧ𝑦(t)

Ԧ𝐶(t-1)

(m)

𝑋

f

×

u

×

+
Ԧ𝐶(t)

×

ℎ(t)

Dense /softmax

f
i = n +m
O= m
Act = sigmoid

Ԧ𝑓 = sigmoid(Wf 𝑋
𝑇 + 𝑏𝑓)

Forget gate

u
i = n +m
O= m
Act = sigmoid

𝑢 = sigmoid(Wu 𝑋
𝑇 + 𝑏𝑢)

Update gate

i
i = n +m
O= m
Act = tanh

𝑋∗ = tanh(Wi 𝑋
𝑇 + 𝑏𝑖)

Input

r
i = n +m
O= m
Act = sigmoid

Ԧ𝑟 = sigmoid(Wr 𝑋
𝑇 + 𝑏𝑟)

Result gate

New cell memory

Ԧ𝐶(t) = Ԧ𝐶(t-1) x + xf ui

New history

ℎ(t) = tanh(Ԧ𝐶(t)) x r

i r

tanhtanh

Ԧ𝑥(t)

(n)

Time-series forecasting

Input feature
(X: n x 14 data pnts)

Output
(Y: n x future prediction)

Problem: Time series prediction with IOT data

LSTM LSTM LSTM

X(t=0) X(t=1) X(t=9)

Dense

Predict (Y*)

z = create_model(x):

m = C.layers.Recurrence(C.layers.LSTM(TIMESTEPS))(x)

m = C.sequence.last(m)

m = C.layers.Dense(1)(m)

return m

Dropout

Problem:
Overfitting

Model works great with training data
With new data (unseen during training): high prediction error

Classical Approach:
L1 / L2 regularization
Data augmentation / train with noise added
Early stopping

Dropout
Extremely effective technique to tackle overfitting in neural networks

Dropout

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Dropout

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Time-series forecasting

IOT data:
✓Output of a solar panel, measurements are recorded at every 30 min interval:

- solar.current: Current production in Watts
- solar.total: Total production for the day so far in Watt/hour

Data Summary:
✓Starting at a time in the day, two values are recorded

✓3 years of data
✓The input data is not cleansed i.e., errors (panel failed to report) is included

Data pre-processing
Goal:
✓Compose sequence such that each training instance would be:

- X = [solar.current @ t = 1 – t = 14] (t=1 – 14: corresponds to 1 day)

- Y = Predicted total production for a future day

Pre-processing:
✓Steps:

- read raw data into a pandas dataframe,
- normalize the data,
- group by day,
- append the columns "solar.current.max" and "solar.total.max", and
- generate the sequences for each day.

✓Data filtering:
- If X has less than 8 data points – we skip

- If X has more than 14 data points – we truncate

Time-series forecasting

Input feature
(X: n x 14 data pnts)

Output
(Y: n x future prediction)

Problem: Time series prediction with IOT data

LSTM LSTM LSTM

Dropout

X(t=0) X(t=1) X(t=9)

Dense

Predict (Y*)

z = create_model(x):

m = C.layers.Recurrence(C.layers.LSTM(TIMESTEPS))(x)

m = C.sequence.last(m)

m = C.layers.Dropout(0.2)(m)

m = C.layers.Dense(1)(m)

return m

Train / Validation Workflow

Train workflow

Solar
Train

9
6

 s
a
m

pl
es

(m
in

i-
ba

tc
h

)
z = create_model(x):

m = C.layers.Recurrence(C.layers.LSTM(H_DIMS))(x)

m = C.sequence.last(m)

m = C.layers.Dropout(0.2)(m)

m = C.layers.Dense(1)(m)

return m

Loss squared_error(z,Y)

Trainer(model, (loss, error), learner)

Trainer.train_minibatch({X, Y})

Error squared_error(z,Y)

Learner
sgd, adagrad etc, are solvers to estimate

(Y)

Output feature (96 x 1)

Solar panel

output for the day

.

.

.

#1

#2

#3

#96

Input feature (96 x Ԧ𝑥(t))
t1

t1

t2 t14

t11

t1 t8

t1 t10

Data Sampler
Features (x), Labels (Y)

Test

Reporting

Test
more?

Test
Data

Model
final

Test workflow

trained
params

Y

Test workflow

Solar
Test

3
2

 s
a
m

pl
es

(m
in

i-
ba

tc
h

)

.

.

.

#1

#2

#3

#32

Input feature (32 x Ԧ𝑥(t))

Trainer.test_minibatch({X, Y})

z = create_model(x):

m = C.layers.Recurrence(C.layers.LSTM(H_DIMS))(x)

m = C.sequence.last(m)

m = C.layers.Dropout(0.2)(m)

m = C.layers.Dense(1)(m)

return m

(Y)

Output feature (32 x 1)

Solar panel

output for the day

t1 t12

t1 t8

t11t1

t1 t10

Returns the squared error between the observed
and predicted output from the solar panel

Prediction workflow

Input feature

(new X: 1 x Ԧ𝑥(t))

Model
(w, b)

Model.eval(new X)

Predicted value of the solar panel output(predicted_label)

[y watts]

t9t1

