Week 5 – part 3b :Poisson Model

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Week 5 – Variability and Noise: The question of the neural code

Wulfram Gerstner EPFL, Lausanne, Switzerland

5.1 Variability of spike trains

- experiments

√ 5.2 Sources of Variability?

- Is variability equal to noise?

5.3 Three definitions of Rate code

- Poisson Model

5.4 Stochastic spike arrival

- Membrane potential fluctuations

5.5. Stochastic spike firing

- subthreshold and superthreshold

Week 5 – part 3b :Poisson Model

- **√** 5.1 Variability of spike trains
 - experiments
- **√** 5.2 Sources of Variability?
 - Is variability equal to noise?
 - 5.3 Three definitions of Rate code
 - Poisson Model
 - 5.4 Stochastic spike arrival
 - Membrane potential fluctuations
 - 5.5. Stochastic spike firing
 - subthreshold and superthreshold

$$PSTH(t) = \frac{n(t; t + \Delta t)}{K \Delta t}$$

$$A(t) = \frac{n(t; t + \Delta t)}{N\Delta t}$$
population
activity

Pure rate code = stochastic spiking → Poisson model

Neuronal Dynamics – 5.3b. Poisson Model

Homogeneous Poisson model: constant rate

Math detour:
Poisson model

Probability of finding a spike $P_F = \rho_0 \Delta t$

Pure rate code = stochastic spiking → Poisson model

Neuronal Dynamics – 5.3b. Poisson Model

Probability of firing:

$$P_F = \rho_0 \, \Delta t$$

Take $\Delta t \rightarrow 0$

Neuronal Dynamics – 5.3b. Interval distribution

Probability of firing:

$$P_F = \rho_0 \, \Delta t$$

(i) Continuous time

prob to 'survive'

Probability of firing $P_F = \rho(t) \Delta t$

Survivor function
$$S(t | \hat{t}) = \exp(-\int_{\hat{t}}^{t} \rho(t') dt')$$

Interval distribution

$$PSTH(t) = \frac{n(t; t + \Delta t)}{K \Delta t}$$

$$A(t) = \frac{n(t; t + \Delta t)}{N\Delta t}$$
population
activity

inhomogeneous Poisson model consistent with rate coding

Probability of firing

$$P_{F} = \rho(t) \Delta t$$

Survivor function

$$S(t | \hat{t}) = \exp(-\int_{\hat{t}}^{t} \rho(t') dt')$$

Interval distribution

$$P(t | \hat{t}) = \rho(t) \exp(-\int_{\hat{t}} \rho(t') dt')$$

Neuronal Dynamics – Quiz 5.3.

A Homogeneous Poisson Process:

A spike train is generated by a homogeneous Poisson process with rate 25Hz with time steps of 0.1ms.

- [] The most likely interspike interval is 25ms.
- [] The most likely interspike interval is 40 ms.
- [] The most likely interspike interval is 0.1ms
- [] We can't say.

B Inhomogeneous Poisson Process:

A spike train is generated by an inhomogeneous Poisson process with a rate that oscillates periodically (sine wave) between 0 and 50Hz (mean 25Hz). A first spike has been fired at a time when the rate was at its maximum. Time steps are 0.1ms.

- [] The most likely interspike interval is 25ms.
- [] The most likely interspike interval is 40 ms.
- [] The most likely interspike interval is 0.1ms.
- [] We can't say.