CS 188x: Artificial Intelligence

Search

DanKlein, Pieter Abbeel

University of California, Berkeley

Today

= Agents that Plan Ahead
= Search Problems

= Uninformed Search Methods
= Depth-First Search
= Breadth-First Search
= Uniform-Cost Search

Agents that Plan

Reflex Agents

= Reflex agents:
= Choose action based on current percept (and

maybe memory)

May have memory or a model of the world’s

current state

Do not consider the future consequences of

their actions

Consider how the world IS

= Can a reflex agent be rational?

[demo: reflex optimal / loop |

Planning Agents

Search Problems

Planning agents:
= Ask “what if”
= Decisions based on (hypothesized)
consequences of actions

= Must have a model of how the world evolves in
response to actions

Must formulate a goal (test)
Consider how the world WOULD BE

= Optimal vs. complete planning

= Planning vs. replanning

[demo: plan fast / slow]

= Asearch problem consists of:

e EEIEEERE

= Asuccessor function N 10
(with actions, costs) —
—

10

= Astart state and a goal test

= Asolution is a sequence of actions (a plan) which
transforms the start state to a goal state

Search Problems Are Models

Example: Traveling in Romania

State space:
Neamt = Cities
[

Qs Successor function:

Fagaras \ * Roads: Go to adjacent city with
—a Bvasii cost = distance

e Vican\,
3 \ . Start state:
g | P\ v Arad

i ‘me:m: \

N\ T
B " Goal test:
Dobrota

o = Isstate == Bucharest?

dciurgiu harle

Solution?

What's in a State Space?

State Space Sizes?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

Problem: Pathing

= States: (x,y) location

® Actions: NSEW

= Successor: update location

Problem: Eat-All-Dots
States: {(x,y), dot booleans}
Actions: NSEW

Successor: update location

World state:

= Agent positions: 120
= Food count: 30

= Ghost positions: 12
= Agent facing: NSEW

How many

= World states?
120x(230)x(122)x4

= States for pathing?

120
only and possibly a dot boolean = States for eat-all-dots?
= Goal test: is (x,y)=END = Goal test: dots all false 120x(2%9)
Quiz: Safe Passage State Space Graphs
1 I 1
= State space graph: A mathematical n e n e '
representation of a search problem I
= Nodes are (abstracted) world configurations
= Arcs represent successors (action results) \ /
= The goal test is a set of goal nodes (maybe only one) /' H E \ /
= |nasearch graph, each state occurs only once! E u
~H-E
= We can rarely build this full graph in memory \
= Problem: eat all dots while keeping the ghosts perma-scared (it’s too big), but it’s a useful idea 7 l /
= What does the state space have to specify? B — . — '
= (agent position, dot booleans, power pellet booleans, remaining scared time)] |]

State Space Graphs

Search Trees

= State space graph: A mathematical
representation of a search problem
= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
= The goal test is a set of goal nodes (maybe only one)

= |na search graph, each state occurs only once!

= We can rarely build this full graph in memory Tiny search graph for a tiny
(it’s too big), but it’s a useful idea search problem

- _ This is now / start

E”, 1.0

) Iy
- n _ Possible futures
I I

Asearch tree:

A “what if” tree of plans and their outcomes
The start state is the root node
Children correspond to successors

Nodes show states, but correspond to PLANS that achieve those states
For most problems, we can never actually build the whole tree

State Graphs vs. Search Trees

Quiz: State Graphs vs. Search Trees

Each NODE in in
the search tree is
an entire PATH in

the problem graph.

State Graph Search Tree

We construct both
on demand - and
we construct as
little as possible.

Consider this 4-state graph:

|| o O

How big is its search tree (from S)?

Important: Lots of repeated structure in the search tree!

Search Example: Romania

Searching with a Search Tree

= Search:

= Expand out potential plans (tree nodes)
= Maintain a fringe of partial plans under consideration
= Try to expand as few tree nodes as possible

General Tree Search

Example: Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the in
loop do

state of problem

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
clse expand the node and add the resulting nodes to the search tree
end

® Importantideas:
= Fringe
= Expansion
= Exploration strategy

= Main question: which fringe nodes to explore?

Depth-First Search

Depth-First Search

Strategy: expand a
deepest node first
Implementation:
Fringe s a LIFO stack

Search Algorithm Properties

Depth-First Search (DFS) Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?

Time complexity?
Space complexity?

Cartoon of search tree:
= bis the branching factor
* mis the maximum depth
= solutions at various depths

m tiers

Number of nodes in entire tree?
= 1+b+b2+..b"=0(b™)

1 node
b nodes
b2 nodes

b™ nodes

What nodes DFS expand?
= Some left prefix of the tree.
= Could process the whole tree!
= If mis finite, takes time O(b™)

;)
How much space does the fringe take? mters <

= Only has siblings on path to root, so O(bm)

Is it complete?

= m could be infinite, so only if we prevent
cycles (more later)

Is it optimal?
* No, it finds the “leftmost” solution,
regardless of depth or cost

1 node
b nodes
b? nodes

b™ nodes

Breadth-First Search

Breadth-First Search

Strategy: expand a
shallowest node first
Implementation: Fringe
is a FIFO queue

S
@ ® ®
Search ® i WD @
Tiers | | o,]
@ d P g
~ | i ~
Bt HaEie
1 PN '
q c G a
I
a

Breadth-First Search (BFS) Properties

Quiz: DFS vs BFS

= What nodes does BFS expand? ~
* Processesall nodes above shallowest solution
= Let depth of shallowest solution be s
. stiers <
= Search takes time O(b®)
= How much space does the fringe take? ~

* Has roughly the last tier, so O(b®)

= |sit complete?
= smust be finite if a solution exists, so yes!

= |sit optimal?
= Onlyif costs are all 1 (more on costs later)

1 node
b nodes
b? nodes

bs nodes

b™ nodes

= When will BFS outperform DFS?

= When will DFS outperform BFS?

[demo: dfs/bfs]

Iterative Deepening

Cost-Sensitive Search

= |dea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
= Run a DFS with depth limit 1. If no solution...
= Run a DFS with depth limit 2. If no solution...
= Run a DFS with depth limit 3.

= |sn’t that wastefully redundant?

= Generally most work happens in the lowest
level searched, so not so bad!

BFS finds the shortest path in terms of number of actions.

It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

Uniform Cost Search

Uniform Cost Search

Strategy: expand a
cheapest node first:
Fringe is a priority queue
(priority: cumulative cost)

Cost /
r:on(ours<

Uniform Cost Search (UCS) Properties

Uniform Cost Issues

= What nodes does UFS expand?
= Processes all nodes with cost less than cheapest solution! J
C*/e “tiers”

= If that solution costs C* and arcs cost at least &, then the
“effective depth” is roughly C*/&
= Takes time O(bS"/4) (exponential in effective depth) 1

= How much space does the fringe take?
= Has roughly the last tier, so O(b€"/¢)

= |sit complete?
= Assuming best solution has a finite cost and minimum arc cost
is positive, yes!
= |sit optimal?
* Yes! (Proof next lecture via A*)

= Remember: UCS explores increasing cost
contours

= The good: UCS is complete and optimal!

= The bad:
= Explores options in every “direction”
= No information about goal location

= We'llfix that soon!

[demo: search demo empty]

The One Queue: Priority Queues

Search and Models

= All these search algorithms are the same except for fringe strategies
= Conceptually, all fringes are priority queues (i.e. collections of nodes with
attached priorities)
= Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual
priority queue with stacks and queues

= Can even code one implementation that takes a variable queuing object

= Search operates over
models of the world
= The agent doesn’t
actually try all the plans
out in the real world!

Itt Dh\g
& mode\...

= Planningis all “in
simulation”

= Your search is only as
good as your models...

Search Gone Wrong?

CS 188x: Artificial Intelligence

Informed Search

DanKlein, Pieter Abbeel
University of California, Berkeley

Today

Recap: Search

= Informed Search
= Heuristics
= Greedy Search
= A* Search

= Graph Search

= Search problem:
= States (configurations of the world)
= Actions and costs
= Successor function (world dynamics)
= Start state and goal test

= Searchtree:
= Nodes: represent plans for reaching states
= Plans have costs (sum of action costs)

= Search algorithm:
= Systematically builds a search tree
= Chooses an ordering of the fringe (unexplored nodes)
= Optimal: finds least-cost plans

Example: Pancake Problem

Example: Pancake Problem

Cost: Number of pancakes flipped

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES
Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*T
Department of Electrical Engineering, University of California, Berkeley, CA 94720, US.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation & of the integers from 1 to n, let () be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(c")
for all o in (the symmetric group) S, We show that f(n) < (5n+5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—1=g(n)=2n-+3.

Example: Pancake Problem

General Tree Search

State space graph with costs as weights

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

{ Path to reach goal:
Flip four, fiip three

Z| Total cost: 7

end

Action: flip top two
Cost: 2

The One Queue

Uninformed Search

= All these search algorithms are the
same except for fringe strategies
= Conceptually, all fringes are priority
queues (i.e. collections of nodes with
attached priorities)
= Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues
= Can even code one implementation
that takes a variable queuing object

Uniform Cost Search

Informed Search

= Strategy: expand lowest path cost

= The good: UCS is complete and optimal!

= The bad:
= Explores options in every “direction” *Goal
= No information about goal location

demo: contours UCS]

NOPE/

Search Heuristics

Example: Heuristic Function

= A

heuristic is:

Afunction that estimates how close a state is to a goal
Designed for a particular search problem

Examples: Manhattan distance, Euclidean distance for
pathing

Example: Heuristic Function

Greedy Search

Heuristic: the number of the largest pancake that is still out of place

Example: Heuristic Function

= What can go wrong?

Greedy Search A* Search

= Strategy: expand a node that you think is
closest to a goal state

= Heuristic: estimate of distance to nearest goal for
each state

= Acommon case:
= Best-first takes you straight to the (wrong) goal

= Worst-case: like a badly-guided DFS

[demo: contours greedy]

Combining UCS and Greedy When should A* terminate?

= Uniform-cost orders by path cost, or backward cost g(n)

= ?
= Greedy orders by goal proximity, or forward cost h(n) Should we stop when we énqueuea goal :

8 h=z
e) h=1 2 2
1
3 2~ @hzs h:O@
O &)
h=2 h=0 2 3

= No: only stop when we dequeue a goal
= A*Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

Is A* Optimal? Idea: Admissibility

= What went wrong? Inadmissible (pessimistic) heuristics break Admissible (optimistic) heuristics slow down
= Actual bad goal cost < estimated good goal cost optimality by trapping good plans on the fringe bad plans but never outweigh true costs

= We need estimates to be less than actual costs!

Admissible Heuristics

Optimality of A* Tree Search

= A heuristic his admissible (optimistic) if:
0 < h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

o -
4 —

= Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

Assume:
= Ais an optimal goal node ﬁ}RR
= Bis a suboptimal goal node y

= hisadmissible // \
A
Claim: \

= A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Optimality of A* Tree Search: Blocking

Proof:

= |magine B is on the fringe

= Some ancestor n of Ais on the
fringe, too (maybe A!)

= Claim: n will be expanded before B

1. f(n)is less or equal to f(A)

f(n) = g(n) + h(n) Definition of f-cost
f(n) < g(A) Admissibility of h
g(A) = f(A) h=0atagoal

Proof:
= |magine B is on the fringe
= Some ancestor n of Ais on the
fringe, too (maybe A!)
= Claim: n will be expanded before B
1. f(n)is less or equal to f(A)
2. f(A)is less than f(B)

9(A) < g(B)
f(A) < f(B)

B is suboptimal
h=0atagoal

Optimality of A* Tree Search: Blocking

Properties of A*

Proof:

Imagine B is on the fringe

Some ancestor n of Ais on the
fringe, too (maybe A!)
Claim: n will be expanded before B

1. f(n)is less or equal to f(A)
2. f(A)is less than f(B)

3. nexpands before B
All ancestors of A expand before B
A expands before B

A* search is optimal

Uniform-Cost A*

11

UCS vs A* Contours

A* Applications

= Uniform-cost expands equally in all
“directions”

SL@ Goal

= A* expands mainly toward the goal,
but does hedge its bets to ensure
optimality

StartQGoal

[demo: contours UCS / A*]

Pathing / routing problems
Video games

Resource planning problems
Robot motion planning
Language analysis

Machine translation

Speech recognition

[demo: plan tiny UCS / A*]

Creating Heuristics

Creating Admissible Heuristics

vou GoT

HEURISTIC
UPGRADE!

Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

366

Inadmissible heuristics are often useful too

Example: 8 Puzzle

8 Puzzle |

7 2 %
5 6
83 1

L)
F.
~J
)

Start State Goal State

What are the states?
How many states?
What are the actions?
How many successors from the start state?
What should the costs be?

Heuristic: Number of tiles misplaced

72 % 12

Why is it admissible?

h(start)=8 5 L 3 /5
8 31| (678

Start State Goal State

This is a relaxed-problem heuristic

Average nodes expanded
when the optimal path has...

.4 steps | ...8 steps |...12 steps
ucs 112 6,300 3.6 x 106
TILES |13 39 227

Statistics from Andrew Maore|

12

8 Puzzle Il

8 Puzzle NI

= What if we had an easier 8-puzzle where 7 2 + 1 z

any tile could slide any direction at any
time, ignoring other tiles? 5 6 3 q' s
8 31| (678

Start State Goal State

= Total Manhattan distance

= Why is it admissible?

Average nodes expanded

= h(start)= 3+1+2+..=18 when the optimal path has...

.4 steps |...8 steps |...12 steps
TILES 13 39 227
MANHATTAN |12 25 73

= How about using the actual cost as a heuristic?
= Would it be admissible?

= Would we save on nodes expanded? (
= What's wrong with it? i i (

= With A*: a trade-off between quality of estimate and work per node

= As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself

Trivial Heuristics, Dominance

Graph Search

= Dominance: h, > h_if exact
Vn : hq(n) > he(n) |
= Heuristics form a semi-lattice: maz(ha’ hb)
= Max of admissible heuristics is admissible
h h
h(n) = maz(ha(n), hy(n)) l“ b
= Trivial heuristics he

= Bottom of lattice is the zero heuristic (what \
does this give us?) zero
= Top of lattice is the exact heuristic

Tree Search: Extra Work!

Graph Search

= Failure to detect repeated states can cause exponentially more work.

State Graph Search Tree
[

= |n BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

s
a e p
N T e, S !
b ¢ Q hoor q
| C) A
a a)h r D f
PN C) PN
poq f 9 ¢ ¢
| P !
q c G a
;
a

13

Graph Search

A* Graph Search Gone Wrong?

Idea: never expand a state twice

How to implement:

Tree search + set of expanded states (“closed set”)

Expand the search tree node-by-node, but...

Before expanding a node, check to make sure its state has never been
expanded before

If not new, skip it, if new add to closed set

Important: store the closed set as a set, not a list

Can graph search wreck completeness? Why/why not?

How about optimality?

Search tree

State space graph

S (0+2)

A+4) B (1+1)

C (2+1) C (3+1)

G (5+0) G (6+0)

Consistency of Heuristics

Optimality of A* Graph Search

= Mainidea: estimated heuristic costs < actual costs
= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from A to G
= Consistency: heuristic cost < actual cost for each arc

h(A) = h(C) < cost(A to C)

= Consequences of consistency:
= The fvalue along a path never decreases
h(A) < cost(A to C) + h(C)

= A*graph search is optimal

= Sketch: consider what A* does with a
consistent heuristic:

= Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

= Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

= Result: A* graph search is optimal

Optimality

A*: Summary

Tree search:
= A*is optimal if heuristic is admissible
® UCSis a special case (h = 0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h =0 is consistent)

Consistency implies admissibility
In general, most natural admissible heuristics —

tend to be consistent, especially if from
relaxed problems

= A* uses both backward costs and (estimates of) forward costs
= A*js optimal with admissible / consistent heuristics

= Heuristic design is key: often use relaxed problems

14

