
1

CS 188x: Artificial Intelligence

Search

Dan Klein, Pieter Abbeel

University of California, Berkeley

Today

� Agents that Plan Ahead

� Search Problems

� Uninformed Search Methods

� Depth-First Search

� Breadth-First Search

� Uniform-Cost Search

Agents that Plan Reflex Agents

� Reflex agents:

� Choose action based on current percept (and
maybe memory)

� May have memory or a model of the world’s
current state

� Do not consider the future consequences of
their actions

� Consider how the world IS

� Can a reflex agent be rational?

[demo: reflex optimal / loop]

Planning Agents

� Planning agents:

� Ask “what if”

� Decisions based on (hypothesized)
consequences of actions

� Must have a model of how the world evolves in
response to actions

� Must formulate a goal (test)

� Consider how the world WOULD BE

� Optimal vs. complete planning

� Planning vs. replanning

[demo: plan fast / slow]

Search Problems

� A search problem consists of:

� A state space

� A successor function

(with actions, costs)

� A start state and a goal test

� A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

2

Search Problems Are Models Example: Traveling in Romania

� State space:

� Cities

� Successor function:

� Roads: Go to adjacent city with

cost = distance

� Start state:

� Arad

� Goal test:

� Is state == Bucharest?

� Solution?

What’s in a State Space?

� Problem: Pathing

� States: (x,y) location

� Actions: NSEW

� Successor: update location

only

� Goal test: is (x,y)=END

� Problem: Eat-All-Dots

� States: {(x,y), dot booleans}

� Actions: NSEW

� Successor: update location

and possibly a dot boolean

� Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

State Space Sizes?

� World state:

� Agent positions: 120

� Food count: 30

� Ghost positions: 12

� Agent facing: NSEW

� How many

� World states?

120x(230)x(122)x4

� States for pathing?

120

� States for eat-all-dots?

120x(230)

Quiz: Safe Passage

� Problem: eat all dots while keeping the ghosts perma-scared

� What does the state space have to specify?

� (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs

� State space graph: A mathematical

representation of a search problem

� Nodes are (abstracted) world configurations

� Arcs represent successors (action results)

� The goal test is a set of goal nodes (maybe only one)

� In a search graph, each state occurs only once!

� We can rarely build this full graph in memory

(it’s too big), but it’s a useful idea

3

State Space Graphs

� State space graph: A mathematical

representation of a search problem

� Nodes are (abstracted) world configurations

� Arcs represent successors (action results)

� The goal test is a set of goal nodes (maybe only one)

� In a search graph, each state occurs only once!

� We can rarely build this full graph in memory

(it’s too big), but it’s a useful idea

S

G

d

b

p
q

c

e

h

a

f

r

Tiny search graph for a tiny

search problem

Search Trees

� A search tree:

� A “what if” tree of plans and their outcomes

� The start state is the root node

� Children correspond to successors

� Nodes show states, but correspond to PLANS that achieve those states

� For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

State Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

We construct both

on demand – and

we construct as

little as possible.

Each NODE in in

the search tree is

an entire PATH in

the problem graph.

Search TreeState Graph

Quiz: State Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

Search Example: Romania Searching with a Search Tree

� Search:

� Expand out potential plans (tree nodes)

� Maintain a fringe of partial plans under consideration

� Try to expand as few tree nodes as possible

4

General Tree Search

� Important ideas:
� Fringe

� Expansion

� Exploration strategy

� Main question: which fringe nodes to explore?

Example: Tree Search

S

G

d

b

p q

c

e

h

a

f

r

Depth-First Search Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp

h
fd

b
a

c

e

r

Strategy: expand a

deepest node first

Implementation:

Fringe is a LIFO stack

Search Algorithm Properties

� Complete: Guaranteed to find a solution if one exists?

� Optimal: Guaranteed to find the least cost path?

� Time complexity?

� Space complexity?

� Cartoon of search tree:

� b is the branching factor

� m is the maximum depth

� solutions at various depths

� Number of nodes in entire tree?

� 1 + b + b2 + …. bm = O(bm)

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

Depth-First Search (DFS) Properties

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

� What nodes DFS expand?

� Some left prefix of the tree.

� Could process the whole tree!

� If m is finite, takes time O(bm)

� How much space does the fringe take?

� Only has siblings on path to root, so O(bm)

� Is it complete?

� m could be infinite, so only if we prevent

cycles (more later)

� Is it optimal?

� No, it finds the “leftmost” solution,

regardless of depth or cost

5

Breadth-First Search Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a

shallowest node first

Implementation: Fringe

is a FIFO queue

Breadth-First Search (BFS) Properties

� What nodes does BFS expand?

� Processes all nodes above shallowest solution

� Let depth of shallowest solution be s

� Search takes time O(bs)

� How much space does the fringe take?

� Has roughly the last tier, so O(bs)

� Is it complete?

� s must be finite if a solution exists, so yes!

� Is it optimal?

� Only if costs are all 1 (more on costs later)

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Quiz: DFS vs BFS

� When will BFS outperform DFS?

� When will DFS outperform BFS?

[demo: dfs/bfs]

Iterative Deepening

…
b

� Idea: get DFS’s space advantage with BFS’s

time / shallow-solution advantages

� Run a DFS with depth limit 1. If no solution…

� Run a DFS with depth limit 2. If no solution…

� Run a DFS with depth limit 3. …..

� Isn’t that wastefully redundant?

� Generally most work happens in the lowest

level searched, so not so bad!

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

6

Uniform Cost Search Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost
contours

2

…

Uniform Cost Search (UCS) Properties

� What nodes does UFS expand?

� Processes all nodes with cost less than cheapest solution!

� If that solution costs C* and arcs cost at least ε , then the

“effective depth” is roughly C*/ε
� Takes time O(bC*/ε) (exponential in effective depth)

� How much space does the fringe take?

� Has roughly the last tier, so O(bC*/ε)

� Is it complete?

� Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

� Is it optimal?

� Yes! (Proof next lecture via A*)

b

C*/ε “tiers”
c ≤ 3

c ≤ 2

c ≤ 1

Uniform Cost Issues

� Remember: UCS explores increasing cost
contours

� The good: UCS is complete and optimal!

� The bad:
� Explores options in every “direction”

� No information about goal location

� We’ll fix that soon!

Start Goal

…

c ≤ 3
c ≤ 2

c ≤ 1

[demo: search demo empty]

The One Queue: Priority Queues

� All these search algorithms are the same except for fringe strategies

� Conceptually, all fringes are priority queues (i.e. collections of nodes with

attached priorities)

� Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual

priority queue with stacks and queues

� Can even code one implementation that takes a variable queuing object

Search and Models

� Search operates over

models of the world

� The agent doesn’t

actually try all the plans

out in the real world!

� Planning is all “in

simulation”

� Your search is only as

good as your models…

7

Search Gone Wrong? CS 188x: Artificial Intelligence

Informed Search

Dan Klein, Pieter Abbeel

University of California, Berkeley

Today

� Informed Search

� Heuristics

� Greedy Search

� A* Search

� Graph Search

Recap: Search

� Search problem:

� States (configurations of the world)

� Actions and costs

� Successor function (world dynamics)

� Start state and goal test

� Search tree:

� Nodes: represent plans for reaching states

� Plans have costs (sum of action costs)

� Search algorithm:

� Systematically builds a search tree

� Chooses an ordering of the fringe (unexplored nodes)

� Optimal: finds least-cost plans

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

8

Example: Pancake Problem

3

2

4

3

3

2

2

2

4

State space graph with costs as weights

3
4

3

4

2

General Tree Search

Action: flip top two
Cost: 2

Action: flip all four
Cost: 4

Path to reach goal:
Flip four, flip three

Total cost: 7

The One Queue

� All these search algorithms are the

same except for fringe strategies

� Conceptually, all fringes are priority

queues (i.e. collections of nodes with

attached priorities)

� Practically, for DFS and BFS, you can

avoid the log(n) overhead from an

actual priority queue, by using stacks

and queues

� Can even code one implementation

that takes a variable queuing object

Uninformed Search

Uniform Cost Search

� Strategy: expand lowest path cost

� The good: UCS is complete and optimal!

� The bad:
� Explores options in every “direction”

� No information about goal location
Start Goal

…

c ≤ 3

c ≤ 2

c ≤ 1

[demo: contours UCS]

Informed Search

9

Search Heuristics

� A heuristic is:
� A function that estimates how close a state is to a goal

� Designed for a particular search problem

� Examples: Manhattan distance, Euclidean distance for

pathing

10

5

11.2

Example: Heuristic Function

h(x)

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

4

3

0

2

3

3

3

4

4

3

4

4

4

h(x)

Greedy Search

Example: Heuristic Function

h(x)

Greedy Search

� Expand the node that seems closest…

� What can go wrong?

10

Greedy Search

� Strategy: expand a node that you think is
closest to a goal state
� Heuristic: estimate of distance to nearest goal for

each state

� A common case:
� Best-first takes you straight to the (wrong) goal

� Worst-case: like a badly-guided DFS

…
b

…
b

[demo: contours greedy]

A* Search

Combining UCS and Greedy

� Uniform-cost orders by path cost, or backward cost g(n)

� Greedy orders by goal proximity, or forward cost h(n)

� A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6
h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

When should A* terminate?

� Should we stop when we enqueue a goal?

� No: only stop when we dequeue a goal

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0h = 3

Is A* Optimal?

� What went wrong?

� Actual bad goal cost < estimated good goal cost

� We need estimates to be less than actual costs!

A

GS

1 3

h = 6

h = 0

5

h = 7

Idea: Admissibility

Inadmissible (pessimistic) heuristics break

optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down

bad plans but never outweigh true costs

11

Admissible Heuristics

� A heuristic h is admissible (optimistic) if:

where is the true cost to a nearest goal

� Examples:

� Coming up with admissible heuristics is most of what’s involved

in using A* in practice.

4
15

Optimality of A* Tree Search

Assume:

� A is an optimal goal node

� B is a suboptimal goal node

� h is admissible

Claim:

� A will exit the fringe before B

…

Optimality of A* Tree Search: Blocking

Proof:

� Imagine B is on the fringe

� Some ancestor n of A is on the

fringe, too (maybe A!)

� Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

Definition of f-cost

Admissibility of h

…

h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:

� Imagine B is on the fringe

� Some ancestor n of A is on the

fringe, too (maybe A!)

� Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

B is suboptimal

h = 0 at a goal

…

Optimality of A* Tree Search: Blocking

Proof:

� Imagine B is on the fringe

� Some ancestor n of A is on the

fringe, too (maybe A!)

� Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

3. n expands before B

� All ancestors of A expand before B

� A expands before B

� A* search is optimal

…

Properties of A*

…
b

…
b

Uniform-Cost A*

12

UCS vs A* Contours

� Uniform-cost expands equally in all

“directions”

� A* expands mainly toward the goal,

but does hedge its bets to ensure

optimality

Start Goal

Start Goal

[demo: contours UCS / A*]

A* Applications

� Pathing / routing problems

� Video games

� Resource planning problems

� Robot motion planning

� Language analysis

� Machine translation

� Speech recognition

� …

[demo: plan tiny UCS / A*]

Creating Heuristics Creating Admissible Heuristics

� Most of the work in solving hard search problems optimally is in coming up

with admissible heuristics

� Often, admissible heuristics are solutions to relaxed problems, where new

actions are available

� Inadmissible heuristics are often useful too

15
366

Example: 8 Puzzle

� What are the states?

� How many states?

� What are the actions?

� How many successors from the start state?

� What should the costs be?

Start State Goal StateActions

8 Puzzle I

� Heuristic: Number of tiles misplaced

� Why is it admissible?

� h(start) =

� This is a relaxed-problem heuristic

8

Average nodes expanded

when the optimal path has…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore

13

8 Puzzle II

� What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

� Total Manhattan distance

� Why is it admissible?

� h(start) = 3 + 1 + 2 + … = 18

Average nodes expanded

when the optimal path has…

…4 steps …8 steps …12 steps

TILES 13 39 227

MANHATTAN 12 25 73

Start State Goal State

8 Puzzle III

� How about using the actual cost as a heuristic?

� Would it be admissible?

� Would we save on nodes expanded?

� What’s wrong with it?

� With A*: a trade-off between quality of estimate and work per node

� As heuristics get closer to the true cost, you will expand fewer nodes but usually

do more work per node to compute the heuristic itself

Trivial Heuristics, Dominance

� Dominance: ha ≥ hc if

� Heuristics form a semi-lattice:

� Max of admissible heuristics is admissible

� Trivial heuristics

� Bottom of lattice is the zero heuristic (what

does this give us?)

� Top of lattice is the exact heuristic

Graph Search

� Failure to detect repeated states can cause exponentially more work.

Search TreeState Graph

Tree Search: Extra Work! Graph Search

� In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

14

Graph Search

� Idea: never expand a state twice

� How to implement:

� Tree search + set of expanded states (“closed set”)

� Expand the search tree node-by-node, but…

� Before expanding a node, check to make sure its state has never been

expanded before

� If not new, skip it, if new add to closed set

� Important: store the closed set as a set, not a list

� Can graph search wreck completeness? Why/why not?

� How about optimality?

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

Consistency of Heuristics

� Main idea: estimated heuristic costs ≤ actual costs

� Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

� Consistency: heuristic cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

� Consequences of consistency:

� The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

� A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=2

Optimality of A* Graph Search

� Sketch: consider what A* does with a

consistent heuristic:

� Fact 1: In tree search, A* expands nodes in

increasing total f value (f-contours)

� Fact 2: For every state s, nodes that reach

s optimally are expanded before nodes

that reach s suboptimally

� Result: A* graph search is optimal

…

f ≤ 3

f ≤ 2

f ≤ 1

Optimality

� Tree search:
� A* is optimal if heuristic is admissible

� UCS is a special case (h = 0)

� Graph search:
� A* optimal if heuristic is consistent

� UCS optimal (h = 0 is consistent)

� Consistency implies admissibility

� In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems

A*: Summary

� A* uses both backward costs and (estimates of) forward costs

� A* is optimal with admissible / consistent heuristics

� Heuristic design is key: often use relaxed problems

