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Search in a Hash Table
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Implementation of Closed Hashing

Dictionary

• A special set consisting of elements which are two-tuples (key, 

value)

• The keys should be different from each other (in a

dictionary)

• Major operations are insertions and searches according to keys

• bool hashInsert(const Elem&); 

// insert(key, value)

• bool hashSearch(const Key&，Elem&) const;

// lookup(key)

10.3 Search in a Hash Table
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ADT of Hash Dictionaries (attributes)

template <class Key，class Elem，class KEComp，class

EEComp> class hashdict

{

private:

Elem* HT;                 // hash table

int M;                        // size of hash table

int currcnt;            // current count of elements

Elem EMPTY;            // empty cell

int h(int x) const ;     // hash function

int h(char* x)const ;  // hash function for strings

int p(Key K，int i)    // probing function

10.3 Search in a Hash Table
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ADT of Hash Dictionaries (methods)

public:

hashdict(int sz，Elem e) { // constructor

M=sz;  EMPTY=e;

currcnt=0;  HT=new Elem[sz];

for (int i=0; i<M; i++) HT[i]=EMPTY;

}

~hashdict() { delete [] HT; }

bool hashSearch(const Key&，Elem&) const;

bool hashInsert(const Elem&);

Elem hashDelete(const Key& K);

int size() { return currcnt; } // count of elements

};

10.3 Search in a Hash Table
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Insertion Algorithm

hash function h, assume k is the given value

• If this address hasn’t been occupied in the table, insert the 

record waiting for insertion into this address

• If the value of this address is equal to K, report “hash table 

already have this record”

• Otherwise, you can probe the next address of probing sequence 

according to how to handle collision, and keep doing this.

• Until some cell is empty (can be inserted into)

• Or find the same key (no need of insertion)

10.3 Search in a Hash Table
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Code of Hash Table Insertion

// insert the element e into hash table HT

template <class Key, class Elem, class KEComp, class EEComp>

bool hashdict<Key, Elem, KEComp, EEComp>::hashInsert(const Elem& e) {

int home= h(getkey(e)); // home save the base address

int i=0;

int pos = home;       // Start position of the probing sequence

while (!EEComp::eq(EMPTY, HT[pos])) {

if (EEComp::eq(e, HT[pos])) return false;

i++;

pos = (home+p(getkey(e), i)) % M; // probe

}

HT[pos] = e;                     // insert the element e

return true;

}

10.3 Search in a Hash Table
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Search Algorithm

• Similar to the process of insertion

• Use the same probing sequence

• Let the hash function be h, assume the given value is K

• If the space corresponding to this address is not occupied, then search 

fails

• If not, compare the value of this address with K, if they are equal, then 

search succeeds

• Otherwise, probe the next address of the probing sequence according to 

how to handle collision, and keep doing this.

• Find the equal key, search succeeds

• Haven’t found when arrive at the end of probing sequence, then search 

fails

10.3 Search in a Hash Table
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template <class Key, class Elem, class KEComp, class EEComp>

bool hashdict<Key, Elem, KEComp, EEComp>::

hashSearch(const Key& K, Elem& e) const {

int i=0, pos= home= h(K); // initial position

while (!EEComp::eq(EMPTY, HT[pos])) {

if (KEComp::eq(K, HT[pos])) {  // have found

e = HT[pos];

return true;

}

i++;

pos = (home + p(K, i)) % M;

} // while

return false;

}

10.3 Search in a Hash Table
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Deletion

• Something to consider when delete records:

• (1)  The deletion of a record mustn’t affect the search later

• (2)  The storage space released could be used for the future 

insertion

• Only open hashing (separated synonyms lists) methods can 

actually delete records

• Closed hashing methods can only make marks (tombstones), can’t  

delete records actually

• The probing sequence would break off if records are deleted. 

Search algorithm “until an empty cell is found (search fails)”

• Marking tombstones increases the average search length

10.3 Search in a Hash Table
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Problems Caused by Deletions

10.3 Search in a Hash Table

0 1 2 3 4 5 6 7 8 9 10 11 12 

 K1 K2 K1  K2 K2 K2   K2   

• For example, a hash table of length M = 13, let keys be k1 and k2,

h(k1) = 2，h(k2) = 6。

• Quadratic probing

• The quadratic probing sequence of k1: 2、3、1、6、11、11、6、5、12、...

• The quadratic probing sequence of k2: 6、7、5、10、2、2、10、9、3、...   

• Delete the record at the position 6,  put the element in the last 

position 2 of k2 sequence instead,  set position 2 to empty

• search k1, but fails (may be put at position 3 or 1 in fact) 
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Tombstones

• Set a special mark bit to record the cell status 

of the hash table 

• Be occupied

• Empty

• Has been deleted

• The mark to record the status of has been 

deleted is called tombstone

• Which means it was occupied by some record ever

• But it isn’t occupied now

10.3 Search in a Hash Table
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Deletion Algorithms with Tombstones

template <class Key, class Elem, class KEComp, class EEComp>Elem 

hashdict<Key,Elem,KEComp,EEComp>::hashDelete(const Key& K)

{   int i=0,  pos = home= h(K);       // initial position

while (!EEComp::eq(EMPTY, HT[pos]))  {

if (KEComp::eq(K, HT[pos])){

temp = HT[pos];

HT[pos] = TOMB;   // set up tombstones

return temp;    // return the target

}

i++;

pos = (home + p(K, i)) % M;

}

return EMPTY;

}

10.3 Search in a Hash Table
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Insertion Operation with Tombstones

• If a cell marked as a tombstone is met 

at the time of insertion, can we insert

the new record into this cell?

• In order to avoid inserting two same keys

• The process of search should carry on along

the probing sequence, until find a real

empty cell

10.3 Search in a Hash Table
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An Improved Version of Insertion 

Operation with Tombstones

template <class Key, class Elem, class KEComp, class EEComp> 

bool hashdict<Key, Elem, KEComp, EEComp>::hashInsert(const

Elem &e)  {

int insplace, i = 0, pos = home = h(getkey(e));

bool tomb_pos = false;

while (!EEComp::eq(EMPTY, HT[pos])) {

if (EEComp::eq(e, HT[pos])) return false;

if (EEComp::eq(TOMB, HT[pos]) &&  !tomb_pos)

{insplace = pos;  tomb_pos = true;} // The first

pos = (home + p(getkey(e), ++ i)) % M;

}

if (!tomb_pos) insplace=pos; // no tombstone

HT[insplace] = e;    return true;

}

10.3 Search in a Hash Table
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Efficiency Analysis of Hash Methods

• Evaluation standard: the number of record visits needed for 

insertion, deletion, search

• Insertion and deletion operation of hash tables are both based 

on search

• Deletion: must find the record at first

• Insertion: must find until t the tail of the probing sequences, 

which means need a failed search for the record

• For the situation without consideration about deletion, it 

is  the tail cell.

• For the situation with consideration about deletion, also

need to arrive at the tail to confirm whether there are

repetitive records

10.3 Search in a Hash Table
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Important Factors Affecting Performance of Search

• Expected cost of hash methods is related to the load 

factor

• α= N/M 

• When α is small, the hash table is pretty empty, it’s easy for 

records to be inserted into empty base addresses.

• When α is big, inserting records may need collision resolution

strategies to find other appropriate cells

• With the increase of α, more and more records may be

put further away from their base addresses

10.3 Search in a Hash Table
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Analysis of Hash Table Algorithms 

(1)
• The probability of base addresses being occupied is α

• The probability of the i-th collision occurring is

• If N and M are both very large, then it can be expressed

approximately as

( N/M )
i

• The expected value of the number of probing is 1, plus occurring 

probability of each the i-th (i  1) collision, which is cost of inserting, :

10.3 Search in a Hash Table
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Analysis of Hash Table Algorithms 

(2)

10.3 Search in a Hash Table

• A cost of successful search (or deletion) is the same as

the cost of insertion

• With the increase of the  number of records of hash

tables, α also get larger and larger

• We can get the average cost of insertion (the average of the

cost of all the insertion) by computing the integral from 0 to

current value of α

0

1 1 1 1
ln

1 1

a
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No. Collision

resolution

strategy

Successful

search

（deletion）

Failed search

(insertion)

1 Open

hashing

2 Double

hashing

3 Linear

probing

Hash Table Algorithms Analysis (table)

10.3 Search in a Hash Table
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Hash Table Algorithms Analysis 

(diagram)
• ASLs of using different way to resolve 

collision in hash tables

10.3 Search in a Hash Table
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1. Open hashing deletion

1’open hashing deletion
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2’double insertion
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3. Linear insertion
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Conclusion of Hash Table Algorithms Analysis

• Normally the cost of hash methods is close to the time of visiting 

a record. It is very effective , greatly better than binary search 

which need log n times of record visit

• Not depend on n, only depend on the load factor α=n/M

• With the increase of α, expected cost would increase too

• When α  0.5, The excepted cost of most operations is less 

than 2 (someone say 1.5)

• The practical experience indicates that the critical value of the 

load factor α is 0.5 (close to half full)

• When the load factor is bigger than this critical value, the 

performance would degrade rapidly

10.3 Search in a Hash Table



24

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Conclusion of Hash Table Algorithms Analysis (2)

• If the insertion or deletion of hash tables is complicated, then 

efficiency degrades

• A mass of insertion operation would make the load factor increases.

• Which also increase the length of synonyms linked chains, and also 

increase ASL

• A mass of deletion would increase the number of tombstones.

• Which increase the average length from records  to their base 

addresses

• In the practical application, for hash tables with frequent insertion 

or deletion, we can  perform rehashing for hash tables regularly

• Insert all the records to another new table

• Clear tombstones

• Put the record visited most frequently on its base address

10.3 Search in a Hash Table
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Thinking

• Can we mark the status of empty cell 

and  having been deleted as  a special 

value, to distinguish them from 

“occupied” status?

• Survey implementation of dictionary 

other than hash tables.

10.3 Search in a Hash Table
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