
Data Structures
and Algorithms（10）

Instructor: Ming Zhang
Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao

Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook)

https://courses.edx.org/courses/PekingX/04830050x/2T2014/

Ming Zhang "Data Structures and Algorithms"

2

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Chapter 10. Search

• 10.1 Search in a list

• 10.2 Search in a set

• 10.3 Search in a hash table

• Summary

10.3 Search in a Hash Table

3

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Search in a Hash Table

• 10.3.0 Basic problems in hash tables

• 10.3.1 Collision resolution

• 10.3.2 open hashing

• 10.3.3 closed hashing

• 10.3.4 Implementation of closed hashing

• 10.3.5 Efficiency analysis of hash methods

10.3 Search in a Hash Table

4

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Implementation of Closed Hashing

Dictionary

• A special set consisting of elements which are two-tuples (key,

value)

• The keys should be different from each other (in a

dictionary)

• Major operations are insertions and searches according to keys

• bool hashInsert(const Elem&);

// insert(key, value)

• bool hashSearch(const Key&，Elem&) const;

// lookup(key)

10.3 Search in a Hash Table

5

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

ADT of Hash Dictionaries (attributes)

template <class Key，class Elem，class KEComp，class

EEComp> class hashdict

{

private:

Elem* HT; // hash table

int M; // size of hash table

int currcnt; // current count of elements

Elem EMPTY; // empty cell

int h(int x) const ; // hash function

int h(char* x)const ; // hash function for strings

int p(Key K，int i) // probing function

10.3 Search in a Hash Table

6

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

ADT of Hash Dictionaries (methods)

public:

hashdict(int sz，Elem e) { // constructor

M=sz; EMPTY=e;

currcnt=0; HT=new Elem[sz];

for (int i=0; i<M; i++) HT[i]=EMPTY;

}

~hashdict() { delete [] HT; }

bool hashSearch(const Key&，Elem&) const;

bool hashInsert(const Elem&);

Elem hashDelete(const Key& K);

int size() { return currcnt; } // count of elements

};

10.3 Search in a Hash Table

7

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Insertion Algorithm

hash function h, assume k is the given value

• If this address hasn’t been occupied in the table, insert the

record waiting for insertion into this address

• If the value of this address is equal to K, report “hash table

already have this record”

• Otherwise, you can probe the next address of probing sequence

according to how to handle collision, and keep doing this.

• Until some cell is empty (can be inserted into)

• Or find the same key (no need of insertion)

10.3 Search in a Hash Table

8

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Code of Hash Table Insertion

// insert the element e into hash table HT

template <class Key, class Elem, class KEComp, class EEComp>

bool hashdict<Key, Elem, KEComp, EEComp>::hashInsert(const Elem& e) {

int home= h(getkey(e)); // home save the base address

int i=0;

int pos = home; // Start position of the probing sequence

while (!EEComp::eq(EMPTY, HT[pos])) {

if (EEComp::eq(e, HT[pos])) return false;

i++;

pos = (home+p(getkey(e), i)) % M; // probe

}

HT[pos] = e; // insert the element e

return true;

}

10.3 Search in a Hash Table

9

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Search Algorithm

• Similar to the process of insertion

• Use the same probing sequence

• Let the hash function be h, assume the given value is K

• If the space corresponding to this address is not occupied, then search

fails

• If not, compare the value of this address with K, if they are equal, then

search succeeds

• Otherwise, probe the next address of the probing sequence according to

how to handle collision, and keep doing this.

• Find the equal key, search succeeds

• Haven’t found when arrive at the end of probing sequence, then search

fails

10.3 Search in a Hash Table

10

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

template <class Key, class Elem, class KEComp, class EEComp>

bool hashdict<Key, Elem, KEComp, EEComp>::

hashSearch(const Key& K, Elem& e) const {

int i=0, pos= home= h(K); // initial position

while (!EEComp::eq(EMPTY, HT[pos])) {

if (KEComp::eq(K, HT[pos])) { // have found

e = HT[pos];

return true;

}

i++;

pos = (home + p(K, i)) % M;

} // while

return false;

}

10.3 Search in a Hash Table

11

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Deletion

• Something to consider when delete records:

• (1) The deletion of a record mustn’t affect the search later

• (2) The storage space released could be used for the future

insertion

• Only open hashing (separated synonyms lists) methods can

actually delete records

• Closed hashing methods can only make marks (tombstones), can’t

delete records actually

• The probing sequence would break off if records are deleted.

Search algorithm “until an empty cell is found (search fails)”

• Marking tombstones increases the average search length

10.3 Search in a Hash Table

12

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Problems Caused by Deletions

10.3 Search in a Hash Table

0 1 2 3 4 5 6 7 8 9 10 11 12

 K1 K2 K1 K2 K2 K2 K2

• For example, a hash table of length M = 13, let keys be k1 and k2,

h(k1) = 2，h(k2) = 6。

• Quadratic probing

• The quadratic probing sequence of k1: 2、3、1、6、11、11、6、5、12、...

• The quadratic probing sequence of k2: 6、7、5、10、2、2、10、9、3、...

• Delete the record at the position 6, put the element in the last

position 2 of k2 sequence instead, set position 2 to empty

• search k1, but fails (may be put at position 3 or 1 in fact)

13

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Tombstones

• Set a special mark bit to record the cell status

of the hash table

• Be occupied

• Empty

• Has been deleted

• The mark to record the status of has been

deleted is called tombstone

• Which means it was occupied by some record ever

• But it isn’t occupied now

10.3 Search in a Hash Table

14

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Deletion Algorithms with Tombstones

template <class Key, class Elem, class KEComp, class EEComp>Elem

hashdict<Key,Elem,KEComp,EEComp>::hashDelete(const Key& K)

{ int i=0, pos = home= h(K); // initial position

while (!EEComp::eq(EMPTY, HT[pos])) {

if (KEComp::eq(K, HT[pos])){

temp = HT[pos];

HT[pos] = TOMB; // set up tombstones

return temp; // return the target

}

i++;

pos = (home + p(K, i)) % M;

}

return EMPTY;

}

10.3 Search in a Hash Table

15

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Insertion Operation with Tombstones

• If a cell marked as a tombstone is met

at the time of insertion, can we insert

the new record into this cell?

• In order to avoid inserting two same keys

• The process of search should carry on along

the probing sequence, until find a real

empty cell

10.3 Search in a Hash Table

16

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

An Improved Version of Insertion

Operation with Tombstones

template <class Key, class Elem, class KEComp, class EEComp>

bool hashdict<Key, Elem, KEComp, EEComp>::hashInsert(const

Elem &e) {

int insplace, i = 0, pos = home = h(getkey(e));

bool tomb_pos = false;

while (!EEComp::eq(EMPTY, HT[pos])) {

if (EEComp::eq(e, HT[pos])) return false;

if (EEComp::eq(TOMB, HT[pos]) && !tomb_pos)

{insplace = pos; tomb_pos = true;} // The first

pos = (home + p(getkey(e), ++ i)) % M;

}

if (!tomb_pos) insplace=pos; // no tombstone

HT[insplace] = e; return true;

}

10.3 Search in a Hash Table

17

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Efficiency Analysis of Hash Methods

• Evaluation standard: the number of record visits needed for

insertion, deletion, search

• Insertion and deletion operation of hash tables are both based

on search

• Deletion: must find the record at first

• Insertion: must find until t the tail of the probing sequences,

which means need a failed search for the record

• For the situation without consideration about deletion, it

is the tail cell.

• For the situation with consideration about deletion, also

need to arrive at the tail to confirm whether there are

repetitive records

10.3 Search in a Hash Table

18

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Important Factors Affecting Performance of Search

• Expected cost of hash methods is related to the load

factor

• α= N/M

• When α is small, the hash table is pretty empty, it’s easy for

records to be inserted into empty base addresses.

• When α is big, inserting records may need collision resolution

strategies to find other appropriate cells

• With the increase of α, more and more records may be

put further away from their base addresses

10.3 Search in a Hash Table

19

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Analysis of Hash Table Algorithms

(1)
• The probability of base addresses being occupied is α

• The probability of the i-th collision occurring is

• If N and M are both very large, then it can be expressed

approximately as

(N/M)
i

• The expected value of the number of probing is 1, plus occurring

probability of each the i-th (i 1) collision, which is cost of inserting, :

10.3 Search in a Hash Table

(1) (1)

(1) (1)

N N N i

M M M i

1

1 (/) 1/(1)i

i

N M a

20

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Analysis of Hash Table Algorithms

(2)

10.3 Search in a Hash Table

• A cost of successful search (or deletion) is the same as

the cost of insertion

• With the increase of the number of records of hash

tables, α also get larger and larger

• We can get the average cost of insertion (the average of the

cost of all the insertion) by computing the integral from 0 to

current value of α

0

1 1 1 1
ln

1 1

a

dx
a x a a

21

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

No. Collision

resolution

strategy

Successful

search

（deletion）

Failed search

(insertion)

1 Open

hashing

2 Double

hashing

3 Linear

probing

Hash Table Algorithms Analysis (table)

10.3 Search in a Hash Table

1
2

 e

1 1
ln

1

1

1

1 1
1

2 1

2

1 1
1

2 (1)

22

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Hash Table Algorithms Analysis

(diagram)
• ASLs of using different way to resolve

collision in hash tables

10.3 Search in a Hash Table

No. Collision

resolution

strategy

Successful

search

（deletion）

Failed search

(insertion)

1 Open

hashing

2 Double

hashing

3 Linear

probing

1
2

 e

1 1
ln

1
1

1
1 1

1
2 1

2

1 1
1

2 (1)

1. Open hashing deletion

1’open hashing deletion

2. Double deletion

2’double insertion

3’linear deletion

3. Linear insertion

23

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Conclusion of Hash Table Algorithms Analysis

• Normally the cost of hash methods is close to the time of visiting

a record. It is very effective , greatly better than binary search

which need log n times of record visit

• Not depend on n, only depend on the load factor α=n/M

• With the increase of α, expected cost would increase too

• When α 0.5, The excepted cost of most operations is less

than 2 (someone say 1.5)

• The practical experience indicates that the critical value of the

load factor α is 0.5 (close to half full)

• When the load factor is bigger than this critical value, the

performance would degrade rapidly

10.3 Search in a Hash Table

24

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Conclusion of Hash Table Algorithms Analysis (2)

• If the insertion or deletion of hash tables is complicated, then

efficiency degrades

• A mass of insertion operation would make the load factor increases.

• Which also increase the length of synonyms linked chains, and also

increase ASL

• A mass of deletion would increase the number of tombstones.

• Which increase the average length from records to their base

addresses

• In the practical application, for hash tables with frequent insertion

or deletion, we can perform rehashing for hash tables regularly

• Insert all the records to another new table

• Clear tombstones

• Put the record visited most frequently on its base address

10.3 Search in a Hash Table

25

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 10

Search

Thinking

• Can we mark the status of empty cell

and having been deleted as a special

value, to distinguish them from

“occupied” status?

• Survey implementation of dictionary

other than hash tables.

10.3 Search in a Hash Table

Data Structures
and Algorithms

Thanks

the National Elaborate Course (Only available for IPs in China)
http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/

Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)

Ming Zhang “Data Structures and Algorithms”

