Time and Clocks in Distributed Systems

Seif Haridi

KTH
Outline

- Motivation for using physical clocks
- Two algorithms:
 - Time-based leader leases
 - Shared memory using clocks
Motivation

- Consider a slightly stronger system model:
 - Computation
 - No bounds on time to take a step
 - Communication
 - No bounds on latency
 - So far, this is the asynchronous system model
 - Clocks
 - Lower and upper bounds on clock rate
Motivation

- This is a fairly weak model in practice

- “Our machine statistics show that bad CPUs are 6 times more likely than bad clocks. That is, clock issues are extremely infrequent, relative to much more serious hardware problems.” – Google
Motivation

• Why consider algorithms that use clocks?
 • By making stronger assumptions about the system we can get better efficiency/performance
 • In this slightly stronger model we cannot still solve problems that are harder than what can be solved in the asynchronous model
 • i.e. the FLP impossibility still holds
 • But we can define some abstractions will better properties
Time-based Leader Leases
Outline – Leader Leases

- The optimization opportunity by using clocks
- The proposed algorithm
- An argument why correctness is maintained
Background

• We implement a key-value store using RSM
• Supporting the following commands:
 ● Read(k), Write(k, v), CAS(k, v_{exp}, v_{new})
 ● CAS:
 ▪ writes v_{new} if old value is v_{exp}; returns old value
• Needs RSM to do CAS (Shared Mem. is too weak)
• Service runs on leader-based Sequence Paxos
 ● N=3 replicas, Π_r={p_1, p_2, p_3}
 ● Each acting as proposer, acceptor, learner
Command ordering

- Paxos guarantees that all replicas execute commands in same order

<table>
<thead>
<tr>
<th>Old state</th>
<th>Command</th>
<th>Result</th>
<th>New state</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>Write(x,1)</td>
<td>OK</td>
<td>{x=1}</td>
</tr>
<tr>
<td>{x=1}</td>
<td>Write(y,0)</td>
<td>OK</td>
<td>{x=1,y=0}</td>
</tr>
<tr>
<td>{x=1,y=0}</td>
<td>Read(x)</td>
<td>1</td>
<td>{x=1,y=0}</td>
</tr>
<tr>
<td>{x=1,y=0}</td>
<td>CAS(y,0,1)</td>
<td>0</td>
<td>{x=1,y=1}</td>
</tr>
<tr>
<td>{x=1,y=1}</td>
<td>CAS(y,0,1)</td>
<td>1</td>
<td>{x=1,y=1}</td>
</tr>
<tr>
<td>{x=1,y=1}</td>
<td>Read(y)</td>
<td>1</td>
<td>{x=1,y=1}</td>
</tr>
<tr>
<td>{x=1,y=1}</td>
<td>Write(y,0)</td>
<td>OK</td>
<td>{x=1,y=0}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Clients and Leader

- Can have any number of clients $\Pi_c = \{p_4, \ldots\}$
- Assume network is stable and p_1 is leader (has started the highest round)
Executing a Command

- Client p_4 that wants to execute a command sends a request (1) to leader p_1
Executing a Command

- p_1 proposes command using Paxos, which sends Accept msgs (2) to replicas (using previously prepared round number)
Executing a Command

- The replicas accept and respond with AcceptAck (Accepted) messages (3)
Executing a Command

- After p_1 gets AcceptAck msgs from a majority, the command order is chosen and p_1 sends Decide msgs (4)
Executing a Command

- p_1 executes the command using the state of the state machine, and sends response ($4'$) with result of the operation to p_4
Opportunity: Faster Reads

- Assume that the operation requested by p_4 is a read operation, $C=\text{Read}(x)$
- p_1 stores the entire state, so can p_1 read the state variable x and respond immediately?
What could go wrong?

- A network split partitions p_1 away from p_2 and p_3
- p_2 is elected leader but p_1 never hears about this
What could go wrong?

- Client p_9 sends a $\text{Write}(x, \text{val}_{\text{new}})$ request to p_2, p_2 communicates with p_3 and then executes the write operation.
What could go wrong?

- After this, p_1 gets Read(x) request from p_4
- p_1 is unaware of the split and the write operation, and responds to p_4 with the old value of x
- Linearizability is violated!
Problem summarized

● The reason p_1 can’t respond with its current state because some other replica may have assumed leadership and modified the state without p_1 knowing about it

● Is there some way to avoid this?

● False attempt:
 ● p_2 must communicate with p_1 before p_2 can become leader
 ● But this can’t work since p_1 may be dead
Time Leases
Solution: time-based leader lease

- We would like leaders to be disjoint in time
- Think of this as a Paxos group
 - Only one leader at an given point of time t
 - If q is a follower of p at time t then no other process can be a leader at t
Solution: time-based leader lease

- We would like leaders to be disjoint in time
- Think of this as a Paxos group
 - Only one leader at a given point of time t
 - If q is a follower of p at time t then no other process can be a leader at t
Solution: time-based leader lease

- A propose p to become leader: sends a request (prepare) to acceptors
 - An acceptor gives a time-based leader lease to p, lasting for 10 seconds
 - If a proposer gets leases from a majority of acceptors, then proposer holds lease on group and becomes a leader
 - In the time until the first acceptor lease expires, the proposer knows that no other proposer can hold the lease on the group
 - During this time, the leader can safely respond to reads from local state

\[\begin{align*}
 t_1 & = t_1 + 10s \\
 t_2 & = t_1 + 10s \\
 t_3 & = t_1 + 10s \\
 t_4 & = t_2 + 10s
\end{align*} \]
Solution: time-based leader lease

- Can be integrated with Paxos messages:
 - **As before** acceptor q joins round n by sending a Promise in response to a Prepare(n), and promises *to not accept proposals in lower rounds*
 - **In addition**, we require that if q joins round n at time t then q promises *not to join a higher round until after time t+10s*
 - If proposer p gets promises from a majority then p knows that no other proposer can get a majority of promises during next 10 seconds
Issues

- Notice that we are only taking about physical time intervals and not about absolute clock values.
- We have to take two issues into account:
 - Network is asynchronous
 - Clocks drift
Issue 1: asynchronous network

- p can’t know at what exact time q sent the Promise, only that $t_0 \leq t_1 \leq t_2$
 - p has to be conservative and assume that $t_1 = t_0$
 - p holds lease until $t_3 = t_0 + 10s$
Clock Drift
Issue 2: clock drift

- To understand the clock drift issue, we have to describe clocks and time more formally and in more detail
 - A clock at a process p_i is a monotonically increasing function from real-time to some real value
Introduction to clocks

- Each process p_i has an associated clock C_i
- $C_i(.)$ is modelled as a function from real times to clock times
 - Real time is defined by some time standard, such as Coordinated Universal Time (UTC)
 - The unit of time in UTC is the SI second, whose definition states that:
 - “The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom.”
Clock implementation

- A clock is implemented as an oscillator and a counter register that is incremented for each period of the oscillator
 - The oscillator frequency is not completely stable, varying depending on environmental conditions such as temperature, and aging
 - The oscillator’s manufacturer specifies a nominal frequency and **an error bound**
Clock rate

- The clock rate specifies how much the clock is incremented each second of real time
 - For example: the counter increments by nominally 1,000,000 ticks per second, with an error bounded to ±100 ticks per second
 - From here on we normalize the clock rate so that 1.0 is the nominal rate, and the error is given by \(\rho \) such that
 \[
 \frac{1}{1+\rho} \approx 1 - \rho \leq \frac{dC}{dt} \leq 1 + \rho
 \]
- In our example \(\rho = \frac{100}{1,000,000} = 100\text{ppm} \)
Clock drift

Clock drift is the accumulated effect of a clock rate that differs from real time.

Ideally, $\frac{dC}{dt} = 1$.

![Diagram showing clock drift and real time relationship]

$\frac{dC}{dt} = 1 + \rho$

$\frac{dC}{dt} = 1 - \rho$

Clock time

Real time

S. Haridi, KTHx ID2203.2x
Issue 2: clock drift at proposer

- Reason about what happens if proposer uses clock time instead of real time without any compensation?
 - Clock runs faster than real time: safety **cannot be violated** as proposer believes that its lease expired sooner than it actually did
 - Clock runs slower than real time: proposer believes it holds lease even after lease has expired, and proposer may respond to read, and **violate safety**
Issue 2: clock drift at proposer

- Proposer must compensate by assuming its clock is running as slowly as possible,
 \[\frac{dC}{dt} = 1 - \rho, \text{ and compensate} \]
 - \[\Delta t \leq 10, \text{ at most 10 seconds real time} \]
 - \[\Delta C = \Delta t \times (1 - \rho) \leq 10 \times (1 - \rho) \]
Issue 2: clock drift at acceptor

- What happens if acceptor uses clock time instead of real time without compensation?
 - Clock runs faster than real time: acceptor believes its promise expired too soon, and may give new lease early, **violating safety**
 - Clock runs slower than real time: safety cannot be violated if acceptor waits longer than necessary to give new promise
Issue 2: clock drift at acceptor

- Acceptor must assume its clock is running as fast as possible, \(\frac{dC}{dt} = 1 + \rho \), and compensate
 - \(\Delta t \geq 10 \), at least 10 seconds real time
 - \(\Delta C = \Delta t \times (1 + \rho) \geq 10 \times (1 + \rho) \)
Leases at acceptor

- Acceptors have new state variable, t_{prom}
 - The clock time when gave last promise
- If acceptor p_j gets Prepare(n) at time T and
 - $n > n_{prom}$ and $C_j(T) - t_{prom} > 10*(1+\rho)$
 - then give promise to reject rounds lower than n, and not give new promises within the next 10s (set $t_p = C_j(T)$)
 - Otherwise respond with Nack
Leases at proposer

- Proposer has new state variable t_L
- Before proposer p_i sends Prepare(n) at time T messages it sets variable $t_L = C_i(T)$
- If p_i gets promises from a majority, p_i knows that no other process can become leader until $10s$ after t_i
- As long as $C_i(T) - t_L < 10*(1-\rho)$, p_i can respond to reads from its local state
Time diagram

\[t_L = C_1(t_0) \]

\[\text{Prepare} \rightarrow \text{Promise} \]

\[p_1 \text{ knows it has lease between } t_2 \text{ and } t_3 \]

\[C_1(t_3) - t_L = 10*(1-\rho) \]

\[t_3 \]

\[C_2(t_4) - t_{\text{prom}} = 10*(1+\rho) \]

\[t_{\text{prom}} = C_2(t_1) \]

\[\text{Prepare} \rightarrow \text{Nack} \]

\[p_2 \text{ may grant another promise after } t_4 \]

S. Haridi, KTHx ID2203.2x
Extending a lease

- As long as p_i is alive and well it should remain the leader.
- To not loose the lease, p_i can ask for an extension of the lease.
 - I.e. a few seconds before the lease expires, p_i records the current clock time t and asks for an extension.
 - If an extension is granted by a majority of replicas then p_i holds the lease until 10s after t.
 - Each acceptor adjust its t_{prom} accordingly.
Shared Memory Using Clocks
Review of shared memory

- A set of *atomic registers*
- Two operations:
 - Write(v): update register’s value to v
 - Read(): return the register’s value
- Correctness: Linearizability
 - If operation o_1 returns before operation o_2 is invoked, then o_1 must be ordered before o_2 (the linearization point of o_1 is before the linearization point of o_2)
The **Read-Impose Write-Consult-Majority** algorithm does 2 round-trips to a majority of processes for both reads and writes.
Phases

- A phase is one round-trip of communication to a majority of replicas.
- Refer to the first phase as the *query phase* and the second phase as the *update phase*.
Read operation

- Process p_i invokes read operation o_r
- In the query phase, each process responds with the highest timestamp-value pair received
- p_i picks the highest timestamp-value pair received in the query phase, denoted (ts, v)
- Before returning value v, p_i performs an update phase using the pair
 - This way, any operation invoked after o_r is completed is guaranteed to see a timestamp greater than or equal to ts
Optimizing read operation

- If in the query phase all processes in a majority set respond with the same timestamp-value pair \((ts, v)\), then the update phase can be skipped
 - This works since a majority of the processes already store a timestamp-value pair with a timestamp greater than or equal to \(ts\)
- In good conditions (network is stable, low contention) this is likely to be the case, and reads can complete in a single round-trip
Write operation

- Process p_i invokes write operation o_w
- In the query phase, each process responds with the highest timestamp-value pair received
- After the query phase, p_i picks a unique timestamp higher than all timestamps received and pairs it with the value to write
- In the update phase, each process stores this timestamp-value pair if the pair is greater the timestamp than the previously stored pair’s timestamp
Optimizing write operation

- If processes have access to clocks then it is possible to skip the query phase
- Process \(p_i \) invoking a write instead picks a timestamp by reading the current time and forms a timestamp \(ts=(C_i, i) \)
 - Timestamps are time-pid pairs; \((t, pid) \)
- How well clocks are synchronized will determine if the atomicity property of the Atomic Register abstraction is satisfied
Synchronized Clocks
Optimizing write operation

- If processes have access to clocks then it is possible to skip the query phase
- Process p_i invoking a write instead picks a timestamp by reading the current time and forms a timestamp $ts=(C_i, i)$
 - Timestamps are time-pid pairs; (t, pid)
- How well clocks are synchronized will determine if the atomicity property of the Atomic Register abstraction is satisfied
Clock synchronization

- Clocks C_i and C_j are δ-synchronized if, for all times t, $|C_i(t) - C_j(t)| \leq \delta$
 - Saying that C_i and C_j are synchronized to within 10ms means that $\delta = 10$ms
- A set of clocks are *perfectly synchronized* if each pair of clocks is $\delta = 0$-synchronized
- *Loosely synchronized clocks* attempts to be as closely synchronized as possible, but give no guarantees
 - In practice, can be arbitrarily out of sync
Correctness of write optimization

- If clocks are perfectly synchronized then registers satisfy linearizability
 - o_1 is read or write, o_2 is read: by the same argument as before, o_1 is ordered before o_2
 - o_1 is write, o_2 is write: as o_1 is completed before o_2 is invoked, $ts(o_1) < ts(o_2)$, and value written by o_1 is overwritten by value of o_2
 - o_1 is read, o_2 is write: exists a write o_0 that was invoked before o_1 completed, $ts(o_0) = ts(o_1) < ts(o_2)$
- Writes (and often reads) take one round-trip, and correctness is guaranteed
Correctness of write optimization

• If clocks are loosely synchronized then registers don’t satisfy linearizability
 • If write o_1 is complete before write o_2 is invoked then the timestamp picked by o_1 may still be greater than the timestamp picked by o_2

• Important to remember in practice
 • Cassandra uses loosely synchronized clocks in this way, and can therefore not guarantee linearizability
Correctness – Logical clocks

- If clocks are logical clocks (Lamport clocks) then the shared memory doesn’t satisfy linearizability.
- Instead, the memory satisfies sequential consistency.
 - We have seen the proof in part 1 of the course.
Problem solved?

- Using perfectly synchronized clocks (PSCs) guarantees linearizability, so just use PSCs and everything is good?
- No, since PSCs are **impossible** to implement
 - Any measurement contains some uncertainty
 - Synchronizing clocks across an asynchronous network adds more uncertainty
- We introduce a new kind of clocks…
Interval Clocks
Interval clocks

- An interval clock (IC) at process p_i read at time t returns a pair $C_i(t) = (lo, hi)$
- Represents an interval $[C_i(t).lo .. C_i(t).hi]$
 - The correct time t is guaranteed to be in interval
 - $C_i(t).lo \leq t \leq C_i(t).hi$
- Synchronization uncertainty is exposed in width of interval
- This is the strongest guarantee that can be implemented in practice
 - Wide interval may hurt performance of algorithm using ICs, but does not affect correctness
Overlapping intervals

- The interval values of a set of clocks read at the same time \(t \) are guaranteed to overlap in the correct time.

Overlap

\[
\begin{align*}
C_3(t).lo & \quad C_1(t).lo & \quad t & \quad C_3(t).hi & \quad C_1(t).hi \\
C_2(t).lo & \quad t & \quad C_3(t).hi & \quad C_2(t).hi
\end{align*}
\]
Clocks read at different times

- C_i read at t_1, C_j read at t_2, and $t_1 < t_2$
 - $C_i(t_1).lo \leq t_1 \leq C_i(t_1).hi$
 - $C_j(t_2).lo \leq t_2 \leq C_j(t_2).hi$
 - Implies: $C_i(t_1).lo < C_j(t_2).hi$

- $C_i(t_1).lo \leq t_1 < t_2 \leq C_j(t_2).hi$
Using ICs to remove query phase in write operations

- Two changes:
 - In process p_i that is invoking a write operation, use timestamp $ts = (C_i.hi, i)$
 - Before an operation o (a read or a write) executed by process p_i can return it has to wait until $ts(o).t < C_i.lo$
 - $ts(o)$ is the timestamp associated with the value that is read or written by operation o
Intuition why waiting is needed

- o_1 is allowed to return when ICs guarantee that later write will pick a higher timestamp

$$ts(o_1).t = C_1(t_0).hi$$

p_1 must wait until $ts(o_1).t \leq C_1(t_1).lo$

$$ts(o_2).t = C_2(t_2).hi$$

IC guarantee:
If $t_1 < t_2$ then $C_1(t_1).lo < C_2(t_2).hi$

We have:
$ts(o_1).t \leq C_1(t_1).lo < C_2(t_2).hi = ts(o_2).t$

Hence: $ts(o_1) < ts(o_2)$
Intuition why waiting is needed

If o_1 is completed before o_2 is invoked, then o_1 must be ordered before o_2

Case: o_1 does not wait o_1 completes before o_2 is issued: no guarantee that o_1 before o_2 ($ts(o_1).t > ts(o_2).t$)
Correctness

- Algorithm with ICs satisfy linearizability:
 - o_1 is read or write, o_2 is read: by the same argument as before, o_1 is ordered before o_2
 - o_1 is read or write, o_2 is write:
 - o_1 is completed at t_1 by p_i, and o_2 is invoked at t_2 by p_j
 - $t_1 < t_2$ implies that $ts(o_1).t \leq C_i(t_1).lo < C_j(t_2).hi = ts(o_2).t$
 - Since $ts(o_1) < ts(o_2)$, the value in o_1 is overwritten by the value of o_2
On **Init**:
- \(\text{ts} := (0, 0) \)
- \(\text{v} := 0 \)

On **ReadInvoke**:
- \(\text{reading} := \text{true} \)
- \(\text{readlist} := [\bot]^N \)
- \(\text{send} \langle \text{Read} \rangle \) to \(\Pi \)

On \(\langle \text{Read} \rangle \) from \(p_i \):
- \(\text{send} \langle \text{Value}, \text{ts}, \text{v} \rangle \) to \(p_i \)

On \(\langle \text{Value}, \text{ts}', \text{v}' \rangle \) from \(q \):
- \(\text{readlist}[q] := (\text{ts}', \text{v}') \)
- if \(\#(\text{readlist}) > N/2 \):
 - \((\text{rts}, \text{rv}) = \max(\text{readlist}) \)
 - if all pairs in readlist are equal:
 - **DoReturn**
 - else:
 - \(\text{acks} := 0 \)
 - \(\text{send} \langle \text{Write}, \text{rts}, \text{rv} \rangle \) to \(\Pi \)

On **WriteInvoke**(\(v \)):
- \(\text{reading} := \text{false} \)
- \(\text{rts} := (C_i.\text{hi}, i) \)
- \(\text{acks} := 0 \)
- \(\text{send} \langle \text{Write}, \text{rts}, v \rangle \) to \(\Pi \)

On \(\langle \text{Write}, \text{ts}', \text{v}' \rangle \) from \(p_i \):
- if \(\text{ts}' > \text{ts} \):
 - \(\text{ts} := \text{ts}' \)
 - \(\text{v} := \text{v}' \)
 - \(\text{send} \langle \text{Ack} \rangle \) to \(p_i \)

On **Ack**:
- \(\text{acks} := \text{acks} + 1 \)
- if \(\text{acks} > N/2 \):
 - **DoReturn**

fun **DoReturn**():
- \(\text{wait until} \ rts.t < C_i.\text{lo} \)
- if \(\text{reading} \): trigger **ReadReturn**(rv)
- else: trigger **WriteReturn**