Week 3 – part 4: Cable equation

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Week 3 – Adding Detail: Dendrites and Synapses

Wulfram Gerstner EPFL, Lausanne, Switzerland **√** 3.1 **Synapses**

3.2 Short-term plasticity

3.3 Dendrite as a Cable

3.4 Cable equation

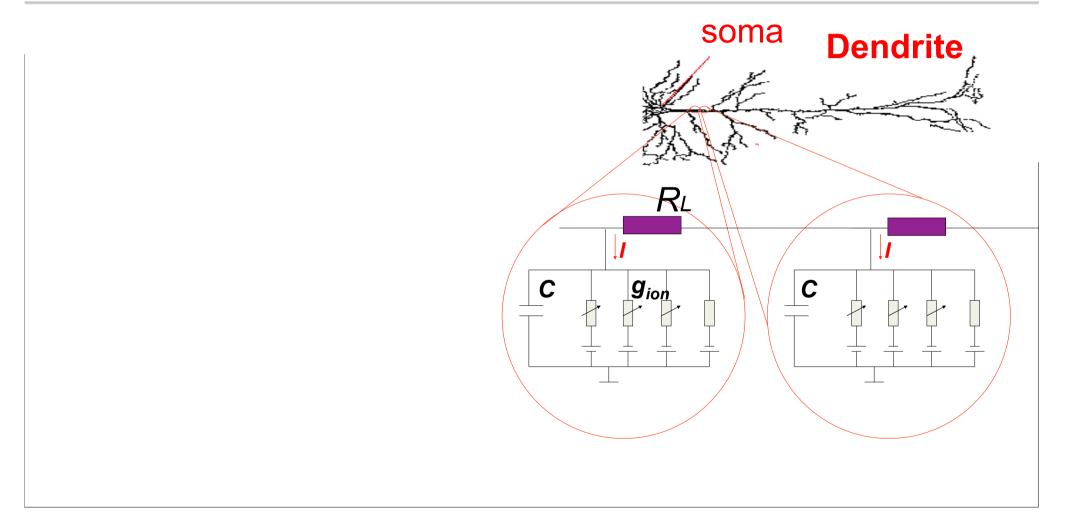
3.5 Compartmental Models

- active dendrites

Week 3 – part 4: Cable equation

- **√** 3.1 Synapses
- **√** 3.2 **Short-term plasticity**
- **3.3 Dendrite as a Cable**
 - 3.4 Cable equation
 - **3.5 Compartmental Models**
 - active dendrites

Neuronal Dynamics – 3.4. Cable equation



Neuronal Dynamics – 3.4 Cable equation

$$\frac{d^2}{dx^2}u(t,x) = cr_L\frac{d}{dt}u(t,x) + r_L\sum_{ion}i_{ion}(t,x) - r_Li^{ext}(t,x)$$

$$\sum_{ion} i_{ion}(t, x) = leak \qquad \text{passive dendrite}$$

 $\sum_{ion} i_{ion}(t, x) = Ca, Na, \dots$ active dendrite

$$\sum_{ion} i_{ion}(t, x) = Na, K, \dots \text{ axon}$$

Neuronal Dynamics – 3.4 Cable equation

Mathematical derivation
$$\frac{d^2}{dx^2}u(t,x) = cr_L \frac{d}{dt}u(t,x) + r_L \sum_{ion} i_{ion}(t,x) - r_L i^{ext}(t,x)$$

$$\sum_{ion} i_{ion}(t, x) = leak \qquad \text{passive dendrite}$$

 $\sum_{ion} i_{ion}(t, x) = Ca, Na, \dots$ active dendrite

$$\sum_{ion} i_{ion}(t, x) = Na, K, \dots \text{ axon}$$

Neuronal Dynamics – **3.4 Derivation for passive cable**

$$\frac{d^{2}}{dx^{2}}u(t,x) = cr_{L}\frac{d}{dt}u(t,x) + r_{L}\sum_{ion}i_{ion}(t,x) - r_{L}i^{ext}(t,x)$$

$$\sum_{ion}i_{ion}(t,x) = leak \qquad \text{passive dendrite}$$

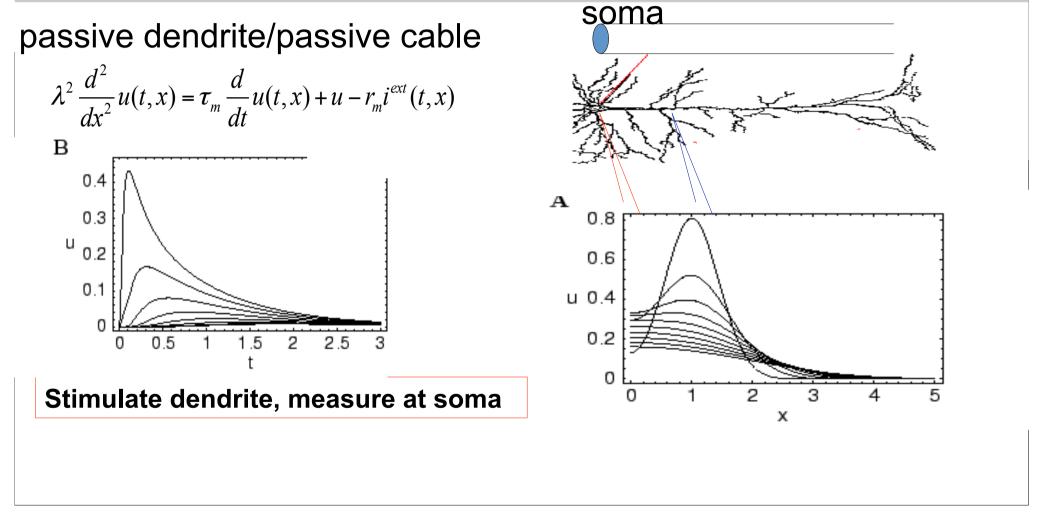
$$I_{ion} = i_{ion}dx$$

$$I^{ext} = i^{ext}dx$$

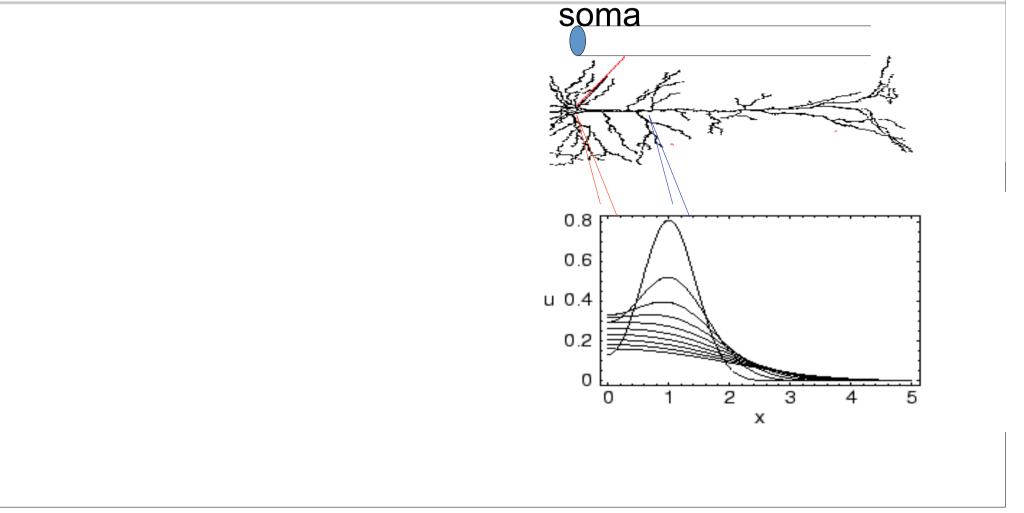
$$\lambda^2 \frac{d^2}{dx^2} u(t,x) = \tau_m \frac{d}{dt} u(t,x) + u - r_m i^{ext}(t,x)$$

$$\sum_{ion} i_{ion}(t, x) = \frac{u}{r_m}$$

Neuronal Dynamics – 3.4 dendritic stimulation



Neuronal Dynamics – 3.4 dendritic stimulation



Neuronal Dynamics – Quiz 3.4

Multiple answers possible!

The space constant of a passive cable is



Dendritic current injection. If a short current pulse is injected into the dendrite [] the voltage at the injection site is maximal immediately after the end of the injection [] the voltage at the dendritic injection site is maximal a few milliseconds after the end of the injection [] the voltage at the soma is maximal immediately after the end of the injection. [] the voltage at the soma is maximal a few milliseconds

It follows from the cable equation that

[] the shape of an EPSP depends on the dendritic location of the synapse.

[] the shape of an EPSP depends only on the synaptic time

constant, but not on dendritic location.

Neuronal Dynamics – Homework 3.1 Consider (*) $u(t,x) = \frac{1}{\sqrt{4\pi t}} \exp[-t - \frac{(x-x_0)^2}{4t}]$ for t > 0u(t, x) = 0 for t < 0(i) Take the second derivative of (*) with respect to x. The result is $\frac{d^2}{dx^2}u(t,x) = \dots$ (ii) Take the derivative of (*) with respect to t. The result is $\frac{d}{dt}u(t,x) = \dots$ (iii) Therefore the equation is a solution to $\lambda^2 \frac{d^2}{dx^2} u(t,x) = \tau_m \frac{d}{dt} u(t,x) + u - r_m i^{ext}(t,x)$ with $\tau_m = \dots and \lambda = \dots$ (iv) The input current is [] $i^{ext}(t,x) = \delta(t)\delta(x-x_0)$ [] $i^{ext}(t,x) = i_{0}$ for t > 0

<u>Neuronal Dynamics – Homework 3.2</u>

Consider the two equations

(1)
$$\lambda^2 \frac{d^2}{dx^2} u(t,x) = \tau_m \frac{d}{dt} u(t,x) + u - r_m i^{ext}(t,x)$$

(2)
$$\frac{d^2}{d\Re_0} u(t', \Re) = \frac{d}{dt'} u(t', \Re) + u - i^{ext}(t', \Re)$$

The two equations are equivalent under the transform

 $\mathcal{H} = cx and t' = at$

with constants $c = \dots$ and $a = \dots$