

AP BIOLOGY EQUATIONS AND FORMULAS

		STATIS	TICAL AN	ALYSIS A	ND PROB	ABILITY					
Standard Error			Mean					s = sample standard deviation (i.e. the sample-based estimate			
	$SE_X = \frac{S}{\sqrt{n}}$			$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$				į	of the standard devation of the population)		
	Standard Deviation			Chi - Square							
	ſ.	- <i>(</i>	=\2			_	. 2		n = size of the samp	ole	
S	$S = \sqrt{\frac{\sum (X_i - \bar{X})^2}{n - 1}}$			$X^2 = \sum \frac{(o-e)^2}{e}$					o = observed individuals with observed genotype		
	CHI - SQUARE TABLE										
			Degre	egrees of Freedom e = expected individuals with observed genotype							
p	1	2	3	4	5	6	7	8			
0.05	3.84	5.99	7.82	9.49	11.07	12.59	14.07	15.51	Degrees of freedom	n = (# of distinct possib	le outcomes) - 1
0.01	6.64	9.32	11.34	13.28	15.09	16.81	18.48	20.09			
							METRIC PREFIXES				
	LAWS OF PROBABILITY							Factor	Prefix	Symbol	
If A and B are mutually exclusive, then P (A or B) = P (A) + P (B) 10 9 giga							G				
	If A and B are independent, then P (A and B) = $P(A) \times P(B)$								10 ⁶	mega	М
									10 ³	kilo	k
	HARDY - WEINBERG EQUATIONS						10 -2	centil	С		
	n ² + 2no	$1 + a^2 = 1$		P	•	ncy of the		nt	10 -3	milli	m
$p^2 + 2pq + q^2 = 1$				allele in a population					10 ⁴	micro	μ

10 ⁻⁹

10 -12

nano

pico

p

MODE: Value that occurs most frequently in a data set

p+q=1

MEDIAN: Middle value that separates the greater and lesser halves of a data set

MEAN: Sum of all data points divided by number of data points

RANGE: Values obtained by subtracting the smallest observation (sample minimum) from the greatest (sample maximum)

q: frequency of the recessive

allele in a population

RATE AN	Water Potential (Ψ)			
Rate	dY = amount of change	$\Psi = \Psi p + \Psi s$		
dY/dt	t = time	Ψp = pressure potential		
Population Growth	B = birth date	Ψs = solute potential		
dN/dt = B - D	D = death rate	The water potential will be equal to		
Exponential Growth	N = population size	the solute potential of a solution in an		
dN N	K = carrying capacity	open container, since the pressure		
$\frac{dN}{dt} = r_{max}N$	r _{max} = maximum per capita growth	potential of the solution in an open		
Logistic Growth	rate of population	container is zero.		
$\frac{dN}{dt} = r_{max} N\left(\frac{K-N}{K}\right)$		The Solute Potential of the Solution		
$dt = I_{max} IV \binom{K}{K}$		Ψs = -iCRT		
Temperature Coefficient Q ₁₀	t ₂ = higher temperature	i = ionization constant (For sucrose		
	t ₁ = lower temperature	this is 1.0 because sucrose does		
$(k_2)\frac{10}{t_2-t_1}$	k_2 = metabolic rate at t_2	not ionize in water)		
$Q_{10} = \left(\frac{k_2}{k_1}\right)^{\frac{10}{t_2 - t_1}}$	k_1 = metabolic rate at t_1	C = molar concentration		
	Q_{10} = the <i>factor</i> by which the reaction	R = pressure constant		
Primary Productivity Calculation	rate increases when the	(R = 0.0831 liter bars/mole K)		
mg $O_2/L \times 0.698 = mL O_2/L$	temperature is raised	T = temperature in Kelvin (273 + °C		
mL O $_2$ /L x 0.536 = mg carbon fixed/L	by ten degrees	· · ·		
SURFACE ARE	Dillution - used to create a dilute			
Volume of a Sphere	r = radius	solution from a concentrated		
$V = 4/3 \pi r^3$	 I = length	stock solution		
Volume of a Rectangular Prism	h = height	$C_1V_i = C_fV_f$		
V = I w h	w = width	I = initial (starting)		
Volume of a Cylinder	A = surface area	C = concentration of solute		
$V = \pi r^2 h$	V = volume	f = final (desired)		
Surface Area of a Sphere	Σ = sum of all	V = volume of Solution		
$V = 4 \pi r^2$	a = surface area of one side of the cube	Gibbs Free Energy		
Surface Area of a Cube		$\Delta G = \Delta H - T \Delta S$		
A C -		ΔG = change in Gibbs Free Energy		
A = 6 a		20 change in Globs free Energy		
A = 6 a Surface Area of a Rectangular Solid		ΔS = change in entropy		

T = absolute temperature (in Kelvin)

pH = - log [H+]