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Chapter 2

Summarizing Data

2.3.1 Contingency tables and bar plots

Table 2.26 summarizes two variables: spam and number. Recall that number is a categorical
variable that describes whether an email contains no numbers, only small numbers (values
under 1 million), or at least one big number (a value of 1 million or more). A table that
summarizes data for two categorical variables in this way is called a contingency table.
Each value in the table represents the number of times a particular combination of variable
outcomes occurred. For example, the value 149 corresponds to the number of emails in
the data set that are spam and had no number listed in the email. Row and column
totals are also included. The row totals provide the total counts across each row (e.g.
149 + 168 + 50 = 367), and column totals are total counts down each column.

Table 2.27 shows a frequency table for the number variable. If we replaced the counts
with percentages or proportions, the table is a relative frequency table.

number
none small big Total
spam 149 168 50 367
sSpam
not spam 400 2659 495 3554
Total 549 2827 545 3921

Table 2.26: A contingency table for spam and number.

none small big Total
549 2827 545 3921

Table 2.27: A frequency table for the number variable.

Because the numbers in these tables are counts, not to data points, they cannot be
graphed using the methods we applied to numerical data. Instead, another set of graphing
methods are needed that are suitable for categorical data.

A bar plot is a common way to display a single categorical variable. The left panel
of Figure 2.28 shows a bar plot for the number variable. In the right panel, the counts
are converted into proportions (e.g. 549/3921 = 0.140 for none), showing the proportion
of observations that are in each level (i.e. in each category).
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2.3. CONSIDERING CATEGORICAL DATA 63

2.3.2 Row and column proportions

Table 2.29 shows the row proportions for Table 2.26. The row proportions are computed
as the counts divided by their row totals. The value 149 at the intersection of spam and
none is replaced by 149/367 = 0.406, i.e. 149 divided by its row total, 367. So what does
0.406 represent? It corresponds to the proportion of spam emails in the sample that do not
have any numbers.

A contingency table of the column proportions is computed in a similar way, where
each column proportion is computed as the count divided by the corresponding column
total. Table 2.30 shows such a table, and here the value 0.271 indicates that 27.1% of emails
with no numbers were spam. This rate of spam is much higher compared to emails with
only small numbers (5.9%) or big numbers (9.2%). Because these spam rates vary between
the three levels of number (none, small, big), this provides evidence that the spam and
number variables are associated.
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Figure 2.28: Two bar plots of number. The left panel shows the counts,
and the right panel shows the proportions in each group.

none small big Total
spam 149/367 = 0.406 168/367 = 0.458 50/367 = 0.136  1.000
not spam  400/3554 = 0.113  2657/3554 = 0.748 495/3554 = 0.139  1.000
Total 549/3921 = 0.140 2827/3921 = 0.721 545/3921 = 0.139  1.000

Table 2.29: A contingency table with row proportions for the spam and
number variables.

We could also have checked for an association between spam and number in Table 2.29
using row proportions. When comparing these row proportions, we would look down
columns to see if the fraction of emails with no numbers, small numbers, and big num-
bers varied from spam to not spam.
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() Guided Practice 2.52 What does 0.458 represent in Table 2.297 What does 0.059

represent in Table 2.30?°¢

() Guided Practice 2.53 What does 0.139 at the intersection of not spam and big

represent in Table 2.29? What does 0.908 represent in the Table 2.307°7

none small big Total
spam 149/549 = 0.271 168,/2827 = 0.059 50/545 = 0.092 367/3921 = 0.094
not spam  400/549 = 0.729  2659/2827 = 0.941 495/545 = 0.908  3684/3921 = 0.906
Total 1.000 1.000 1.000 1.000

Table 2.30: A contingency table with column proportions for the spam and
number variables.

® Example 2.54 Data scientists use statistics to filter spam from incoming email

messages. By noting specific characteristics of an email, a data scientist may be able
to classify some emails as spam or not spam with high accuracy. One of those char-
acteristics is whether the email contains no numbers, small numbers, or big numbers.
Another characteristic is whether or not an email has any HTML content. A con-
tingency table for the spam and format variables from the email data set are shown
in Table 2.31. Recall that an HTML email is an email with the capacity for special
formatting, e.g. bold text. In Table 2.31, which would be more helpful to someone
hoping to classify email as spam or regular email: row or column proportions?

Such a person would be interested in how the proportion of spam changes within each
email format. This corresponds to column proportions: the proportion of spam in
plain text emails and the proportion of spam in HTML emails.

If we generate the column proportions, we can see that a higher fraction of plain text
emails are spam (209/1195 = 17.5%) than compared to HITML emails (158/2726 =
5.8%). This information on its own is insufficient to classify an email as spam or not
spam, as over 80% of plain text emails are not spam. Yet, when we carefully combine
this information with many other characteristics, such as number and other variables,
we stand a reasonable chance of being able to classify some email as spam or not
spam.

text HTML Total

spam 209 158 367
not spam 986 2568 3554
Total 1195 2726 3921

Table 2.31: A contingency table for spam and format.

36().458 represents the proportion of spam emails that had a small number. 0.058 represents the fraction

of emails with small numbers that are spam.

370.139 represents the fraction of non-spam email that had a big number. 0.908 represents the fraction

of emails with big numbers that are non-spam emails.
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2.3. CONSIDERING CATEGORICAL DATA 65

Example 2.54 points out that row and column proportions are not equivalent. Before
settling on one form for a table, it is important to consider each to ensure that the most
useful table is constructed.

(©) Guided Practice 2.55 Look back to Tables 2.29 and 2.30. Which would be more
useful to someone hoping to identify spam emails using the number variable?”®

1.04
O not spam
2500 7 B spam
0.8
2000 -
0.6
1500 -
0.4
1000 -
500 E
0 .
none small big none small big
(a) (b)

Figure 2.32: (a) Segmented bar plot for numbers found in emails, where the
counts have been further broken down by spam. (b) Standardized version
of Figure (a).

38The column proportions in Table 2.30 will probably be most useful, which makes it easier to see that
emails with small numbers are spam about 5.9% of the time (relatively rare). We would also see that about
27.1% of emails with no numbers are spam, and 9.2% of emails with big numbers are spam.
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66 CHAPTER 2. SUMMARIZING DATA

2.3.3 Segmented bar plots

Contingency tables using row or column proportions are especially useful for examining
how two categorical variables are related. Segmented bar plots provide a way to visualize
the information in these tables.

A segmented bar plot is a graphical display of contingency table information. For
example, a segmented bar plot representing Table 2.30 is shown in Figure 2.32(a), where
we have first created a bar plot using the number variable and then divided each group
by the levels of spam. The column proportions of Table 2.30 have been translated into a
standardized segmented bar plot in Figure 2.32(b), which is a helpful visualization of the
fraction of spam emails in each level of number.

@® Example 2.56 Examine both of the segmented bar plots. Which is more useful?

Figure 2.32(a) contains more information, but Figure 2.32(b) presents the information
more clearly. This second plot makes it clear that emails with no number have a
relatively high rate of spam email — about 27%! On the other hand, less than 10% of
email with small or big numbers are spam.

Since the proportion of spam changes across the groups in Figure 2.32(h), we can
conclude the variables are dependent, which is something we were also able to discern using
table proportions. Because both the none and big groups have relatively few observations
compared to the small group, the association is more difficult to see in Figure 2.32(a).

In some other cases, a segmented bar plot that is not standardized will be more useful
in communicating important information. Before settling on a particular segmented bar
plot, create standardized and non-standardized forms and decide which is more effective at
communicating features of the data.
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Chapter 3

Probability

3.1.5 Independence

Just as variables and observations can be independent, random processes can be indepen-
dent, too. Two processes are independent if knowing the outcome of one provides no
useful information about the outcome of the other. For instance, flipping a coin and rolling
a die are two independent processes — knowing the coin was heads does not help deter-
mine the outcome of a die roll. On the other hand, stock prices usually move up or down
together, so they are not independent.

Example 3.5 provides a basic example of two independent processes: rolling two dice.
We want to determine the probability that both will be 1. Suppose one of the dice is red
and the other white. If the outcome of the red die is a 1, it provides no information about
the outcome of the white die. We first encountered this same question in Example 3.5
(page 84), where we calculated the probability using the following reasoning: 1/6'" of
the time the red die is a 1, and 1/6'" of those times the white die will also be 1. This
is illustrated in Figure 3.6. Because the rolls are independent, the probabilities of the

corresponding outcomes can be multiplied to get the final answer: (1/6) x (1/6) = 1/36.
This can be generalized to many independent processes.

14Brief solutions: (a) A¢ = {3, 4, 5, 6} and B¢ = {1, 2, 3, 5}. (b) Noting that each outcome is disjoint,
add the individual outcome probabilities to get P(A¢) = 2/3 and P(B¢) = 2/3. (c) A and A€ are disjoint,
and the same is true of B and B¢. Therefore, P(A) + P(A°¢) =1 and P(B) + P(B¢) = 1.

15(a) The complement of getting at least one 6 in ten rolls of a die is getting zero 6’s in the 10 rolls.
(b) The complement of getting at most three 6’s in 10 rolls is getting four, five, ..., nine, or ten 6’s in
10 rolls.
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All rolls

i | 1/6th of the first
: ' rolls are a 1.

1/6th of those times where
- the first roll is a 1 the
second roll is also a 1.

Figure 3.6: 1/6%" of the time, the first roll is a 1. Then 1/6*" of those times,
the second roll will also be a 1.

@® Example 3.25 What if there was also a blue die independent of the other two?
What is the probability of rolling the three dice and getting all 1s?

The same logic applies from Example 3.5. If 1/36'" of the time the white and red
dice are both 1, then 1/6" of those times the blue die will also be 1, so multiply:

P(white = 1 and red = 1 and blue = 1) = P(white = 1) X P(red = 1) x P(blue = 1)

= (1/6) x (1/6) x (1/6) = 1/216

Examples 3.5 and 3.25 illustrate what is called the Multiplication Rule for independent
processes.

Multiplication Rule for independent processes

If A and B represent events from two different and independent processes, then
the probability that both A and B occur can be calculated as the product of their
separate probabilities:

P(A and B) = P(A) x P(B) (3.26)
Similarly, if there are k events Aq, ..., A; from k independent processes, then the
probability they all occur is

P(A;1) x P(Ag) x -+ x P(Ag)
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() Guided Practice 3.27  About 9% of people are left-handed. Suppose 2 people
are selected at random from the U.S. population. Because the sample size of 2 is
very small relative to the population, it is reasonable to assume these two people are
independent. (a) What is the probability that both are left-handed? (b) What is the
probability that both are right-handed?'®

() Guided Practice 3.28 Suppose 5 people are selected at random.'”

(a) What is the probability that all are right-handed?
(b) What is the probability that all are left-handed?
(c) What is the probability that not all of the people are right-handed?

Suppose the variables handedness and gender are independent, i.e. knowing some-
one’s gender provides no useful information about their handedness and vice-versa. Then
we can compute whether a randomly selected person is right-handed and female'® using
the Multiplication Rule:

P(right-handed and female) = P(right-handed) x P(female)
= 0.91 x 0.50 = 0.455

() Guided Practice 3.29 Three people are selected at random. '’

(a) What is the probability that the first person is male and right-handed?

(b) What is the probability that the first two people are male and right-handed?.
(¢c) What is the probability that the third person is female and left-handed?
)

(d) What is the probability that the first two people are male and right-handed and
the third person is female and left-handed?

Sometimes we wonder if one outcome provides useful information about another out-
come. The question we are asking is, are the occurrences of the two events independent?
We say that two events A and B are independent if they satisfy Equation (3.26).

16(a) The probability the first person is left-handed is 0.09, which is the same for the second person.
We apply the Multiplication Rule for independent processes to determine the probability that both will be
left-handed: 0.09 x 0.09 = 0.0081.

(b) It is reasonable to assume the proportion of people who are ambidextrous (both right and left handed)
is nearly 0, which results in P(right-handed) = 1 —0.09 = 0.91. Using the same reasoning as in part (a),
the probability that both will be right-handed is 0.91 x 0.91 = 0.8281.

17(a) The abbreviations RH and LH are used for right-handed and left-handed, respectively. Since each
are independent, we apply the Multiplication Rule for independent processes:

P(all five are RH) = P(first = RH, second = RH, ..., fiftth = RH)
= P(first = RH) X P(second = RH) x - -- x P(fifth = RH)
=0.91 x 0.91 x 0.91 x 0.91 x 0.91 = 0.624

(b) Using the same reasoning as in (a), 0.09 x 0.09 x 0.09 x 0.09 x 0.09 = 0.0000059
(¢) Use the complement, P(all five are RH), to answer this question:

P(not all RH) = 1 — P(all RH) = 1 — 0.624 = 0.376

18The actual proportion of the U.S. population that is female is about 50%, and so we use 0.5 for the
probability of sampling a woman. However, this probability does differ in other countries.

19Brief answers are provided. (a) This can be written in probability notation as P(a randomly selected
person is male and right-handed) = 0.455. (b) 0.207. (c) 0.045. (d) 0.0093.
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@® Example 3.30 If we shuffle up a deck of cards and draw one, is the event that the
card is a heart independent of the event that the card is an ace?

The probability the card is a heart is 1/4 and the probability that it is an ace is 1/13.
The probability the card is the ace of hearts is 1/52. We check whether Equation 3.26
is satisfied:

1 P(© and ace)

1
P(V) x P(ace) = = X 13 = 52

1=

Because the equation holds, the event that the card is a heart and the event that the
card is an ace are independent events.

3.2 Conditional probability

Are students more likely to use marijuana when their parents used drugs? The drug_use
data set contains a sample of 445 cases with two variables, student and parents, and is
summarized in Table 3.7.°° The student variable is either uses or not, where a student is
labeled as uses if she has recently used marijuana. The parents variable takes the value

used if at least one of the parents used drugs, including alcohol.

parents
used not Total
uses 125 94 219
student ¢ 85 141 226
Total 210 235 445

Table 3.7: Contingency table summarizing the drug_use data set.

Drug use
parents used
LA el L]
0.19 student uses

Figure 3.8: A Venn diagram using boxes for the drug_use data set.

20Ellis GJ and Stone LH. 1979. Marijuana Use in College: An Evaluation of a Modeling Explanation.
Youth and Society 10:323-334.
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parents: used parents: not Total

student: uses 0.28 0.21 0.49
student: not 0.19 0.32 0.51
Total 0.47 0.53 1.00

Table 3.9: Probability table summarizing parental and student drug use.

® Example 3.31 If at least one parent used drugs, what is the chance their child
(student) uses?

We will estimate this probability using the data. Of the 210 cases in this data set
where parents used, 125 represent cases where student uses:
125

P(student uses given parents used) = 310 = 0.60

@® Example 3.32 A student is randomly selected from the study and she does not use
drugs. What is the probability that at least one of her parents used?

If the student does not use drugs, then she is one of the 226 students in the second
row. Of these 226 students, 85 had at least one parent who used drugs:

P(parents used given student does not use) = 226 = 0.376

3.2.1 Marginal and joint probabilities

Table 3.9 includes row and column totals for each variable separately in the drug_use
data set. These totals represent marginal probabilities for the sample, which are the
probabilities based on a single variable without conditioning on any other variables. For
instance, a probability based solely on the student variable is a marginal probability:
219
P(student = — =10.492

(student uses) VT
A probability of outcomes for two or more variables or processes is called a joint proba-
bility:

9
P(student uses and parents did not use) = YT 0.21

It is common to substitute a comma for “and” in a joint probability, although either is
acceptable.

Marginal and joint probabilities

If a probability is based on a single variable, it is a marginal probability. The
probability of outcomes for two or more variables or processes is called a joint
probability.

We use table proportions to summarize joint probabilities for the drug_use sample.
These proportions are computed by dividing each count in Table 3.7 by 445 to obtain the
proportions in Table 3.9. The joint probability distribution of the parents and student
variables is shown in Table 3.10.
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Joint outcome Probability
parents used, student uses 0.28
parents used, student does not use 0.19
parents did not use, student uses 0.21
parents did not use, student does not use 0.32
Total 1.00

Table 3.10: A joint probability distribution for the drug_use data set.

() Guided Practice 3.33  Verify Table 3.10 represents a probability distribution:
events are disjoint, all probabilities are non-negative, and the probabilities sum to 1.!

We can compute marginal probabilities using joint probabilities in simple cases. For
example, the probability a random student from the study uses drugs is found by summing
the outcomes from Table 3.10 where student uses:

P(student uses) = P(parents used, student uses)
+ P(parents did not use, student uses)
=0.2840.21
=0.49

3.2.2 Defining conditional probability

There is some connection between drug use of parents and of the student: drug use of one is
associated with drug use of the other.?”? In this section, we discuss how to use information
about associations between two variables to improve probability estimation.

The probability that a random student from the study uses drugs is 0.49. Could we
update this probability if we knew that this student’s parents used drugs? Absolutely. To
do so, we limit our view to only those 210 cases where parents used drugs and look at the
fraction where the student uses drugs:

P(student uses given parents used) = % = 0.60
We call this a conditional probability because we computed the probability under a
condition: parents used. There are two parts to a conditional probability, the outcome
of interest and the condition. It is useful to think of the condition as information we
know to be true, and this information usually can be described as a known outcome or event.
We separate the text inside our probability notation into the outcome of interest and
the condition:

P(student uses given parents used)
125
= P(student uses| parents used) = 210 = 0.60 (3.34)
The vertical bar “|” is read as given.
In Equation (3.34), we computed the probability a student uses based on the condition
that at least one parent used as a fraction:

€|77

21Each of the four outcome combination are disjoint, all probabilities are indeed non-negative, and the
sum of the probabilities is 0.28 + 0.19 + 0.21 + 0.32 = 1.00.
22This is an observational study and no causal conclusions may be reached.
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P(student uses | parents used)

_ # times student uses and parents used (3.35)
N # times parents used '

125

= — =0.60
210

We considered only those cases that met the condition, parents used, and then we com-
puted the ratio of those cases that satisfied our outcome of interest, the student uses.

Counts are not always available for data, and instead only marginal and joint probabil-
ities may be provided. For example, disease rates are commonly listed in percentages rather
than in a count format. We would like to be able to compute conditional probabilities even
when no counts are available, and we use Equation (3.35) as an example demonstrating
this technique.

We considered only those cases that satisfied the condition, parents used. Of these
cases, the conditional probability was the fraction who represented the outcome of interest,
student uses. Suppose we were provided only the information in Table 3.9 on page 95, i.e.
only probability data. Then if we took a sample of 1000 people, we would anticipate about
47% or 0.47 x 1000 = 470 would meet our information criterion. Similarly, we would expect
about 28% or 0.28 x 1000 = 280 to meet both the information criterion and represent our
outcome of interest. Thus, the conditional probability could be computed:

# (student uses and parents used)

P(student uses| parents used) = 77 - 3
parents use

280  0.28
= 70 = o7 = 060 (3.36)

In Equation (3.36), we examine exactly the fraction of two probabilities, 0.28 and 0.47,
which we can write as

P(student uses and parents used) and P(parents used)

The fraction of these probabilities represents our general formula for conditional probability.

Conditional Probability
The conditional probability of the outcome of interest A given condition B is
computed as the following:

P(A and B)

PUAIB) = =55

(3.37)

() Guided Practice 3.38 (a) Write out the following statement in conditional prob-
ability notation: “The probability a random case has parents did not use if it is
known that student does not use”. Notice that the condition is now based on the
student, not the parent. (b) Determine the probability from part (a). Table 3.9 on
page 95 may be helpful.??

23(a) P(parents did not use| student does not use). (b) Equation (3.37) for conditional proba-
bility indicates we should first find P(parents did not use and student does not use) = 0.32 and
P(student does not use) = 0.51. Then the ratio represents the conditional probability: 0.32/0.51 = 0.63.
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inoculated
Jes  mo  Total
result lived 238 5136 5374
died 6 844 850
Total 244 5980 6224

Table 3.11: Contingency table for the smallpox data set.

inoculated
yes no  Total
result lived 0.0382 0.8252 0.8634
died 0.0010 0.1356 0.1366
Total 0.0392 0.9608 1.0000

Table 3.12: Table proportions for the smallpox data, computed by dividing
each count by the table total, 6224.

(9 Guided Practice 3.39 (a) Determine the probability that one of the parents had
used drugs if it is known the student does not use drugs. (b) Using the answers from
part (a) and Guided Practice 3.38(b), compute

P(parents used|student does not use)

+P(parents did not use|student does not use)

(c) Provide an intuitive argument to explain why the sum in (b) is 1.%*

() Guided Practice 3.40 The data indicate that drug use of parents and children
are associated. Does this mean the drug use of parents causes the drug use of the
students?””

3.2.3 Smallpox in Boston, 1721

The smallpox data set provides a sample of 6,224 individuals from the year 1721 who were
exposed to smallpox in Boston.”® Doctors at the time believed that inoculation, which
involves exposing a person to the disease in a controlled form, could reduce the likelihood
of death.

Each case represents one person with two variables: inoculated and result. The
variable inoculated takes two levels: yes or no, indicating whether the person was inocu-
lated or not. The variable result has outcomes lived or died. These data are summarized
in Tables 3.11 and 3.12.

() Guided Practice 3.41  Write out, in formal notation, the probability a ran-
domly selected person who was not inoculated died from smallpox, and find this
probability.”"

. i s P ts used and student d t 0.19
24(a) This probability is (paren ;F::ud::t o u°::) not use) _ 05t = 0.37. (b) The total equals 1.

(c) Under the condition the student does not use drugs, the parents must either use drugs or not. The
complement still appears to work when conditioning on the same information.

25No. This was an observational study. Two potential confounding variables include income and region.
Can you think of others?

26Fenner F. 1988. Smallpox and Its Eradication (History of International Public Health, No. 6).
Geneva: World Health Organization. ISBN 92-4-156110-6.

27P(resu1t — died | not inoculated) _ P(result = died and not inoculated) _ 0.1356 —0.1411.

P(not inoculated) 0.9608
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() Guided Practice 3.42 Determine the probability that an inoculated person died
from smallpox. How does this result compare with the result of Guided Prac-
tice 3.4172°

() Guided Practice 3.43 The people of Boston self-selected whether or not to be
inoculated. (a) Is this study observational or was this an experiment? (b) Can we infer
any causal connection using these data? (c) What are some potential confounding
variables that might influence whether someone lived or died and also affect whether
that person was inoculated??’

28 P(died | inoculated) = P(di;i(f;iuilzi:;l)ated> = 8:8&1}2 = 0.0255. The death rate for individuals who

were inoculated is only about 1 in 40 while the death rate is about 1 in 7 for those who were not inoculated.
29Brief answers: (a) Observational. (b) No, we cannot infer causation from this observational study.
(c) Accessibility to the latest and best medical care. There are other valid answers for part (c).
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3.2.8 Tree diagrams

Tree diagrams are a tool to organize outcomes and probabilities around the structure of
the data. They are most useful when two or more processes occur in a sequence and each
process is conditioned on its predecessors.

The smallpox data fit this description. We see the population as split by inoculation:
yes and no. Following this split, survival rates were observed for each group. This structure
is reflected in the tree diagram shown in Figure 3.14. The first branch for inoculation is
said to be the primary branch while the other branches are secondary.

Tree diagrams are annotated with marginal and conditional probabilities, as shown in
Figure 3.14. This tree diagram splits the smallpox data by inoculation into the yes and no
groups with respective marginal probabilities 0.0392 and 0.9608. The secondary branches
are conditioned on the first, so we assign conditional probabilities to these branches. For
example, the top branch in Figure 3.14 is the probability that 1ived conditioned on the
information that inoculated. We may (and usually do) construct joint probabilities at
the end of each branch in our tree by multiplying the numbers we come across as we move
from left to right. These joint probabilities are computed using the General Multiplication
Rule:

P(inoculated and lived) = P(inoculated) x P(lived| inoculated)
=0.0392 x 0.9754

— 0.0382
Inoculated Result

_lived, 0.9754 ) 1392%0.9754 = 0.03824
yes, 0.0392

_ died, 0.0246 ) 1392%0.0246 = 0.00096

_lived, 08589 ) 9608%0.8589 = 0.82523
no, 0.9608

died, 0.1411

--------- . 0.9608*0.1411 = 0.13557

Figure 3.14: A tree diagram of the smallpox data set.
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® Example 3.60 What is the probability that a randomly selected person who was
inoculated died?

This is equivalent to P(died| inoculated). This conditional probability can be
found in the second branch as 0.0246.

® Example 3.61 What is the probability that a randomly selected person lived?

There are two ways that a person could have lived: be inoculated and live OR not be
inoculated and live. To find this probability, we sum the two disjoint probabilities:

P(1lived) = 0.0392 x 0.9745 + 0.9608 x 0.8589 = 0.03824 + 0.82523 = 0.86347

(O Guided Practice 3.62  After an introductory statistics course, 78% of students
can successfully construct tree diagrams. Of those who can construct tree diagrams,
97% passed, while only 57% of those students who could not construct tree diagrams
passed. (a) Organize this information into a tree diagram. (b) What is the probability
that a student who was able to construct tree diagrams did not pass? (c) What is the
probability that a randomly selected student was able to successfully construct tree
diagrams and passed? (d) What is the probability that a randomly selected student
passed? **

3.2.9 Bayes’ Theorem
In many instances, we are given a conditional probability of the form
P(statement about variable 1| statement about variable 2)
but we would really like to know the inverted conditional probability:
P(statement about variable 2| statement about variable 1)
For example, instead of wanting to know P(lived | inoculated), we might want to know
P(inoculated | lived). This is more challenging because it cannot be read directly from the

tree diagram. In these instances we use Bayes’ Theorem. Let’s begin by looking at a
new example.

Able to construct Pass class

40(a) The tree diagram is shown to the right. tree diagrams pass, 0.97
(b) P(not pass | able to construct tree . o7s 0.78+0.97 = 0.7566

diagram) = 0.03. (c¢) P(able to construct y< il 003
tree diagrams and passed) = P(able to con- -~ T~ Lt 0.780.03 = 0.0234

struct tree diagrams) x P(passed | able to pass, 0.57
construct tree diagrams) = 0.78 x 0.97 = 0.7566. o 022 _— T 0.22°0.57 = 0.1254

(d) P(passed) = 0.7566 + 0.1254 = 0.8820. et < il 043
ffffffffffffff 0.22%0.43 = 0.0946
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® Example 3.63 In Canada, about 0.35% of women over 40 will be diagnosed with

breast cancer in any given year. A common screening test for cancer is the mam-
mogram, but this test is not perfect. In about 11% of patients with breast cancer,
the test gives a false negative: it indicates a woman does not have breast cancer
when she does have breast cancer. Similarly, the test gives a false positive in 7% of
patients who do not have breast cancer: it indicates these patients have breast cancer
when they actually do not.*' If we tested a random woman over 40 for breast cancer
using a mammogram and the test came back positive — that is, the test suggested
the patient has cancer — what is the probability that the patient actually has breast
cancer?

We are given sufficient information to quickly compute the probability of testing
positive if a woman has breast cancer (1.00 — 0.11 = 0.89). However, we seek the
inverted probability of cancer given a positive test result:
P(has BC | mammogram™)

Here, “has BC” is an abbreviation for the patient actually having breast cancer,
and “mammogram™” means the mammogram screening was positive, which in this
case means the test suggests the patient has breast cancer. (Watch out for the non-
intuitive medical language: a positive test result suggests the possible presence of
cancer in a mammogram screening.) We can use the conditional probability formula
from the previous section: P(A|B) = %. Our conditional probability can be
found as follows:

P(has BC and mammogram™
P(has BC | mammogram™) ( P{mammogram™) )

The probability that a mammogram is positive is as follows.

P(mammogram™) = P(has BC and mammogram™) + P(no BC and mammogram™)

A tree diagram is useful for identifying each probability and is shown in Figure 3.15.

41The probabilities reported here were obtained using studies reported at www.breastcancer.org and
www.ncbi.nlm.nih.gov/pmec/articles/PMC1173421.

Advanced High School Statistics

Preliminary Edition


http://www.breastcancer.org/symptoms/testing/new_research/20090831b.jsp
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1173421/

3.2. CONDITIONAL PROBABILITY 107

Using the tree diagram, we find that

P(has BC | mammogram™)

B P(has BC and mammogram™)
P(has BC and mammogram™) + P(no BC and mammogram™)
_ 0.0035(0.89)
~0.0035(0.89) + 0.9965(0.07)
~0.00312

©0.07288

~ 0.0428

That is, even if a patient has a positive mammogram screening, there is still only
a 4% chance that she has breast cancer.

Truth Mammogram
__Positive, 089 5 0035+0.89 = 0.00312
cancer, 0.0035
<..r.‘?9?fi3’?1.9:1-1---~ 0.0035%0.11 = 0.00038
positive, 0.07

------------------ 0.9965*0.07 = 0.06976
no cancer, 0.996<
_hegative, 093 4.0965%0.93 = 0.92675
Figure 3.15: Tree diagram for Example 3.63, computing the probability a

random patient who tests positive on a mammogram actually has breast
cancer.

Example 3.63 highlights why doctors often run more tests regardless of a first positive
test result. When a medical condition is rare, a single positive test isn’t generally definitive.

Consider again the last equation of Example 3.63. Using the tree diagram, we can see
that the numerator (the top of the fraction) is equal to the following product:

P(has BC and mammogram™) = P(mammogram™| has BC)P(has BC)

The denominator — the probability the screening was positive — is equal to the sum of
probabilities for each positive screening scenario:

P(mammogram™) = P(mammogram™ and no BC) + P(mammogram™ and has BC)

In the example, each of the probabilities on the right side was broken down into a product
of a conditional probability and marginal probability using the tree diagram.

P(mammogram™) = P(mammogram™ and no BC) + P(mammogram™ and has BC)
= P(mammogram™ | no BC)P(no BC)
+ P(mammogram™| has BC)P(has BC)
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We can see an application of Bayes’ Theorem by substituting the resulting probability
expressions into the numerator and denominator of the original conditional probability.
P(has BC| mammogram™)
P(mammogram™| has BC)P(has BC)
P(mammogram™| no BC)P(no BC) + P(mammogram™| has BC)P(has BC)

Bayes’ Theorem: inverting probabilities
Consider the following conditional probability for variable 1 and variable 2:

P(outcome A; of variable 1| outcome B of variable 2)

Bayes’ Theorem states that this conditional probability can be identified as the
following fraction:

P(B|Ay)P(A;)
P(B|A1)P(A1) + P(B|A2)P(A2) + - - + P(B|Ag) P(Ag)

(3.64)

where Ay, As, ..., and Ay represent all other possible outcomes of the first variable.

Bayes’ Theorem is just a generalization of what we have done using tree diagrams.
The formula can be memorized. If not, it is important to be able to derive the formula
quickly with a tree diagram:

e The numerator identifies the probability of getting both A; and B.
e The denominator is the overall probability of getting B.

The bottom component (the denominator) of the fraction often appears long and compli-
cated. However, it is equivalent to what we did numerically using tree diagrams: traverse
each branch of the tree diagram that ends with event B.

() Guided Practice 3.65 Jose visits campus every Thursday evening. However,
some days the parking garage is full, often due to college events. There are academic
events on 35% of evenings, sporting events on 20% of evenings, and no events on 45%
of evenings. When there is an academic event, the garage fills up about 25% of the
time, and it fills up 70% of evenings with sporting events. On evenings when there
are no events, it only fills up about 5% of the time. If Jose comes to campus and
finds the garage full, what is the probability that there is a sporting event? Use a
tree diagram to solve this problem.*?

42The tree diagram, with three primary branches, is Event Garage full
shown to the right. We want
) L Ful 025 .3540.25 = 0.0875
. Academic, 0.35
P(sporting event|garage full) e <ﬂ§q€§ Available, 0750 s 2e_ ) H6os
P(sporting event and garage full) Full, 0.7 o
= P(garage full) Sportng, 020 __—— "~ oo
garag; Spaces Available, 03 _
Y N 0.2°0.3=0.06
= = 0.56. .. Fub oos +0.05 =
0.0875 4 0.14 + 0.0225 ,,N9,"?:,9;‘!§,,< 0.45%0.05 = 0.0225
Spaces Available, 0.95) o, o5 _ 4275

If the garage is full, there is a 56% probability
that there is a sporting event.
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Appendix A

End of chapter exercise
solutions

2 Summarizing data

2.3 (a) 1/linear and 3/nonlinear. (b) 4/some curvature (nonlinearity) may be present on the
right side. “Linear” would also be acceptable for the type of relationship for plot 4. (c) 2.

2.5 (a) Decrease: the new score is smaller than the mean of the 24 previous scores. (b) Cal-
culate a weighted mean. Use a weight of 24 for the old mean and 1 for the new mean: (24 x 74 +
1 x 64)/(24 + 1) = 73.6. There are other ways to solve this exercise that do not use a weighted

mean. (¢) The new score is more than 1 standard deviation away from the previous mean, so
increase.

3 Probability

3.1 (a) False. These are independent trials. (b) False. There are red face cards. (¢) True. A card
cannot be both a face card and an ace.

3.3 (a) 10 tosses. Fewer tosses mean more vari- ability in the sample fraction of heads, mean- ing
there’s a better chance of getting at least 60% heads. (b) 100 tosses. More flips means the observed
proportion of heads would often be closer to the average, 0.50, and therefore also above 0.40. (¢)
100 tosses. With more flips, the observed proportion of heads would often be closer to the average,
0.50. (d) 10 tosses. Fewer flips would increase variability in the fraction of tosses that are heads.

3.5 (a) 0.5'° = 0.00098. (b) 0.5 = 0.00098. (c) P (at least one tails) = 1 — P (no tails) = 1 —
0.5 ~ 1 —0.001 = 0.999.

3.7 (a) No, there are voters who are both politically Independent and also swing voters. (b) Venn
diagram below:

Independent .
Swing

0.53

(c) 24%. (d) Add up the corresponding dis- joint sections in the Venn diagram: 0.24 4+ 0.11 + 0.12 =
0.47. Alternatively, use the Gen- eral Addition Rule: 0.35 + 0.23 — 0.11 = 0.47. (e) 1 — 0.47 = 0.53.
(f) P (Independent) x P (swing) = 0.35 x 0.23 = 0.08, which does not equal P(Independent and
swing) = 0.11, so the events are dependent. If you stated that this difference might be due to

sampling variability in the survey, that answer would also be rea- sonable (we’ll dive into this topic
more in later chapters).
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3.9 (a) If the class is not graded on a curve, they are independent. If graded on a curve, then neither
independent nor disjoint (unless the instructor will only give one A, which is a situation we will ignore in
parts (b) and (c)). (b) They are probably not independent: If you study together, your study habits would be
related, which suggests your course performances are also related. (c) No. See the answer to part (a) when
the course is not graded on a curve. More generally: if two things are unrelated (independent), then one
occurring does not preclude the other from occurring.

3.11 (a) 0.16 + 0.09 = 0.25. (b) 0.17 + 0.09 = 0.26. (c) Assuming that the education level of the husband and
wife are independent: 0.25 X 0.26 = 0.065. You might also notice we actually made a second assumption:
that the decision to get married is unrelated to education level. (d) The husband/wife independence
assumption is probably not reasonable, because people often marry another person with a comparable level
of education. We will leave it to you to think about whether the second assumption noted in part (c) is
reasonable.

3.13 (a) Invalid. Sum is greater than 1. (b) Valid. Probabilities are between 0 and 1, and they sum
to 1. In this class, every student gets a C. (¢) Invalid. Sum is less than 1. (d) In- valid. There is a
negative probability. (e) Valid. Probabilities are between 0 and 1, and they sum to 1. (f) Invalid.
There is a negative probability.

3.15 (a) No, but we could if A and B are inde- pendent. (b-i) 0.21. (b-ii) 0.3+0.7—0.21 = 0.79.
(b-iii) Same as P (A): 0.3. (¢) No, because 0.1 # 0.21, where 0.21 was the value computed un- der
independence from part (a). (d) P(A|B) =0.1/0.7 = 0.143.

3.17 (a) 0.60 + 0.20 — 0.18 = 0.62. (b) 0.18/0.20 = 0.90. (c) 0.11/0.33 ~ 0.33. (d) No, otherwise
the final answers of parts (b) and (c) would have been equal. (e) 0.06/0.34 ~ 0.18.

3.19 (a) 162/248 = 0.65. (b) 181/252 = 0.72 (c) Under the assumption of a dating choices be- ing
independent of hamburger preference, which on the surface seems reasonable: 0.65 x 0.72 = 0.468.
(d) (25246 — 1)/500 = 0.514

3.21 (a) 0.3. (b) 0.3. (c) 0.3. (d) 0.3 x 0.3 = 0.09. (e) Yes, the population that is being sam- pled
from is identical in each draw.

3.23 (a) 2/9. (b) 3/9=1/3. (c) (3/10) x (2/9) ~ 0.067. (d) No. In this small population of marbles,
removing one marble meaningfully changes the probability of what might be drawn next.

3.25 For 1 leggings (L) and 2 jeans (J), there are three possible orderings: LJJ, JLJ, and JJL. The
probability for LJJ is (5/24) x (7/23) x (6/22) = 0.0173. The other two orderings have the same
probability, and these three possible orderings are disjoint events. FInal answer: 0.0519.

3.27 (a) The tree diagram:

Yes, 0.86

g 0.8%0.86 = 0.688
No, 0.14
° 0.8%0.14 = 0.112

,,,,,,,,,,,,,,, 0.2°0.65=0.13
no, 0.2 <
No. 035 02:035=007

P(can construct and pass)
P(pass)

(b) P(can constructlpass) =
0.8x0.86

__ 0.688
0.8x0.86 + 0.2x0.65 — 0.818 > 0.84.
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3.29 First draw a tree diagram:

_positive, 0997 25970997 = 0.2582
,,vss;,?,???,,<
_fegative, 0.003 4 259+0.003 = 0.0008
,,,,,,,,,,,,,,,,, 0.741*0.074 = 0.0548
™ ,97,4,1,,,<
_negative, 0.926 ; 741+0.926 = 0.6862
Then compute the probability: P(HIV|+) =

P(HIV and +) _ 0.259x0.997
P(+ 0.259x0.997+0.741x0.074

)
0.2582 __
02582 — (.8247.

3.31 A tree diagram of the situation:

p0§|7l|7\/7e0987 0.02*0.98 = 0.0196
yes, 002 <
negative, 0.92 6.02+0.02 = 0.0004
no, 0.98
negative, 0.74 _ 0.98+0.74 = 0.7252
P(lupus|positive) = P(positive) =

%9.?714. Even when a patient 0-0196+0.2548 . .
tests positive for lupus, there is only a 7.14% chance that he actually has lupus. While House is not

exactly right — it is possible that the pa- tient has lupus — his implied skepticism is war- ranted.
Anna Ben Carl Damian Eddy

3.33 (a) 1/5 x1/4x1/3 x 1/2 x 1/1=

1/5!'=1/120. (b) Since the probabilities must add to 1, there must be 5! - 120 possible orderings. (c) 8!

=40,320.

3.35 (a) Yes. The conditions are satisfied: independence, fixed number of trials, either success or failure
for each trial, and probability of success being constant across trials. (b) 0.0200. (c) 0.200. (d) 0.0024 +
0.0284 +0.1323 = 0.1631. (e) 1 - 0.0024 = 0.9976.

3.37 (a) p = 35,0 = 3.24. (b) Yes. Z = 3.09. Since 45 is more than 2 standard deviations from the
mean, it would be considered unusual. Note that the normal model is not required to apply this
rule of thumb. (c¢) Using a normal model: 0.0010. This does indeed appear to be an un- usual
observation. If using a normal model with a 0.5 correction, the probability would be calcu- lated as
0.0017.

3.39 (a) The table below summarizes the probability model:

Event X P(X) X - P(X) (X — E(X))? (X — E(X))? . P(X)
3 hearts | 50 I3 12 Il — 00129 0.65 (50 — 3.59)2 = 2154.1 | 2154.1 X 0.0129 = 27.9
3 blacks | 25 g—é X % X g—o =0.1176 2.94 (25 — 3.59)2 = 458.5 458.5 X 0.1176 = 53.9
Else 0 1 — (0.0129 4 0.1176) = 0.8695 | 0 (0 —3.59)2 = 12.9 12.9 X 0.8695 = 11.2
B(X) = $3.59 V(X) = 93.0
SD(X) = /V(X) = 9.64

(b) E(X—-5) = E(X)—5=3.59—5 = —$1.41. The standard deviation is the same as the standard
deviation of X: $9.64. (c) No. The expected earnings is negative, so on average you would lose
money playing the game.
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3.41
Event X P(X) | X -P(X)
Boom 018 | % 0.18 x 3 = 0.06
Normal 0.09 | % 0.09 X 4 =0.03
Recession | -0.12 | % —0.12 x 2 = —0.04
E(X) =0.05

The expected return is a 5% increase in value for a single year.

3.43 (a) Expected: -$0.16. Variance: 8.95. SD: $2.99. (b) Expected: -$0.16. SD: $1.73. (c) Expected
values are the same, but the SDs differ. The SD from the game with tripled win- nings/losses is
larger, since the three indepen- dent games might go in different directions (e.g. could win one game
and lose two games). So the three independent games is lower risk, but in this context, it just means we
are likely to lose a more stable amount since th eexpected value is still negative.

3.45 A fair game has an expected value of zero: $5 x 0.46 + x x 0.54 = 0. Solving for z: -$4.26. You
would bet $4.26 for the Padres to make the game fair.

3.47 (a) Expected: $3.90. SD: $0.34. (b) Ex- pected: $27.30. SD: $0.89. If you computed part (b)
using part (a), you should have ob- tained an SD of $0.90.

3.49 Approximate answers are OK. Answers are only estimates based on the sample. (a) (29 +
32)/144 = 0.42. (b) 21/144 = 0.15. (c¢) (26 + 12 4+ 15)/144 = 0.37.





