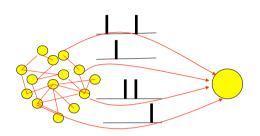
Week 5 – part 5 : Stochastic spike firing in integrate-and-fire models

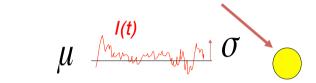
Neuronal Dynamics: Computational Neuroscience of Single Neurons

Week 5 – Variability and Noise: The question of the neural code

Wulfram Gerstner EPFL, Lausanne, Switzerland

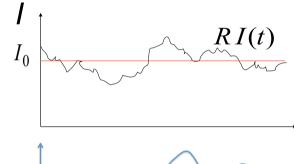
5.1 Variability of spike trains


- experiments
- √ 5.2 Sources of Variability?
 - Is variability equal to noise?
- **√**5.3 Three definitions of Rate code
 - Poisson Model
- 5.4 Stochastic spike arrival
 - Membrane potential fluctuations
 - 5.5. Stochastic spike firing
 - subthreshold and superthreshold


Week 5 – part 5 : Stochastic spike firing in integrate-and-fire models

- **√** 5.1 Variability of spike trains
 - experiments
- **√** 5.2 Sources of Variability?
 - Is variability equal to noise?
- 5.3 Three definitions of Rate code
 - Poisson Model
- 5.4 Stochastic spike arrival
 - Membrane potential fluctuations
 - 5.5. Stochastic spike firing
 - subthreshold and superthreshold

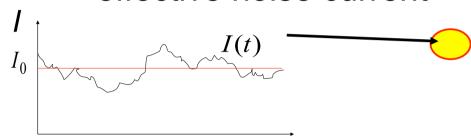
Neuronal Dynamics – review: Fluctuations of potential

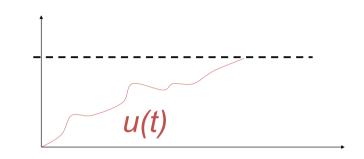


Fluctuating input current

Passive membrane

$$\tau \frac{d}{dt}u = -(u - u_{rest}) + RI(t)$$

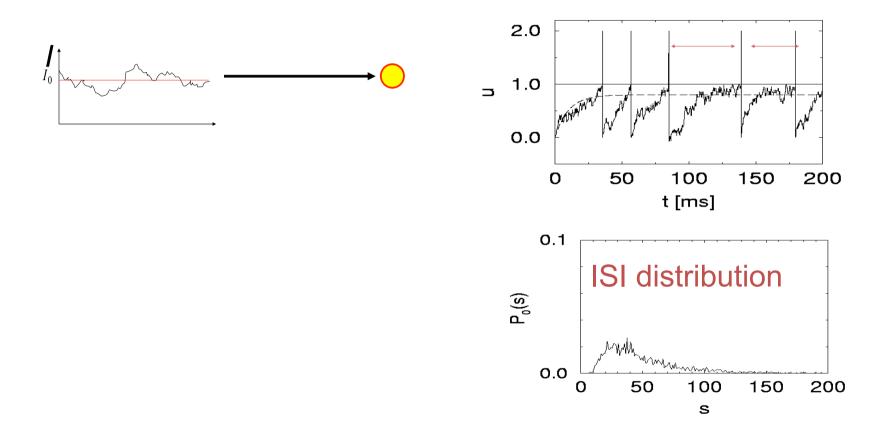

$$I^{syn}(t) = I_0 + I^{fluct}(t)$$


→ Fluctuating potential

Neuronal Dynamics — **5.5. Stochastic leaky integrate-and-fire**

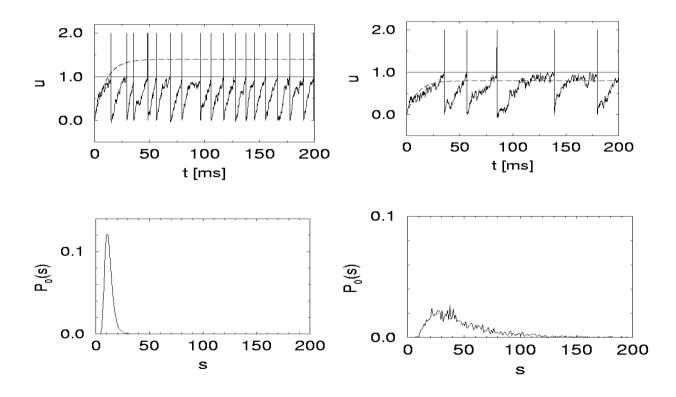
effective noise current

LIF


$$\tau \frac{d}{dt}u = -(u - u_{rest}) + RI(t)$$

$$I(t) = [I_o + I_{noise}]$$

IF
$$u(t) = \vartheta THEN \ u(t + \Delta) = u_r$$


noisy input/ diffusive noise/ stochastic spike arrival

stochastic spike arrival in I&F – interspike intervals

LIF with Diffusive noise (stochastic spike arrival)

Superthreshold vs. Subthreshold regime

Neuronal Dynamics — **5.5. Stochastic leaky integrate-and-fire**

noisy input/ diffusive noise/ stochastic spike arrival

u(t)

subthreshold regime:

- firing driven by fluctuations
- broad ISI distribution
- in vivo like

Neuronal Dynamics week 5– References and Suggested Reading

Reading: W. Gerstner, W.M. Kistler, R. Naud and L. Paninski, Neuronal Dynamics: from single neurons to networks and models of cognition. Ch. 7,8: Cambridge, 2014 **OR** W. Gerstner and W. M. Kistler, Spiking Neuron Models, Chapter 5, Cambridge, 2002

- -Rieke, F., Warland, D., de Ruyter van Steveninck, R., and Bialek, W. (1996). Spikes Exploring the neural code. MIT Press.
- -Faisal, A., Selen, L., and Wolpert, D. (2008). Noise in the nervous system. Nat. Rev. Neurosci., 9:202
- -Gabbiani, F. and Koch, C. (1998). Principles of spike train analysis. In Koch, C. and Segev, I., editors,
- Methods in Neuronal Modeling, chapter 9, pages 312-360. MIT press, 2nd edition.
- -Softky, W. and Koch, C. (1993). The highly irregular firing pattern of cortical cells is inconsistent with temporal integration of random epsps. *J. Neurosci.*, 13:334-350.
- -Stein, R. B. (1967). Some models of neuronal variability. *Biophys. J.*, 7:37-68.
- -Siegert, A. (1951). On the first passage time probability problem. Phys. Rev., 81:617{623.
- -Konig, P., et al. (1996). Integrator or coincidence detector? the role of the cortical neuron revisited. *Trends Neurosci*, 19(4):130-137.