Ming Zhang “ Data Structures and Algorithms *“

N T -
>

Data Structures
and Algorithms (2)

Instructor: Ming Zhang
Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao

Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook)
https://courses.edx.org/courses/PekingX/04830050x/2T2014/

https://courses.edx.org/courses/PekingX/04830050x/2T2014/

_ Chapter II
Linear List | 2.3 Linked List

Chapter II Linear List

.+ 2.1 Linear List
. 2.2 Sequential List
. 2.3 Linked List tail

head —> > ao > al —t——p cccescse > an-l(

. 2.4 Comparison between
sequential list and linked list

Zhang Ming " Data Structures and Algorithms *

B Chevter I
Linear List | 2.3 Linked List

Linked List

- Link its storage nodes through pointers .
. Storage nodes are consisted of two

parts
- Data field + pointer field (successor
address)
data | next

Ming Zhang” Data Structures and Algorithms “

N Chover 1| |

Linear List | 2.3 Linked List

2.3 Linked List

- Classification (according to linked

ways and the number of points)

i i i tail
- Single linked list /
head——> " A S @y | > ceceeees >l ay
. . tail
- Double linked list e
head —, : | T el [an
. .. . tail
- Circular linked list al
{
head—> p > Ay | T—— a, (> a, —-|
| A

Ming Zhang” Data Structures and Algorithms “

B Chevter I
Linear List | 2.3 Linked List

Single linked list

- Simple single linked list
- The whole single linked list : head
- The first node : head
- The judge of empty list :
head == NULL
- The current node a, : curr

curr \ tail
an-1 (

head — d > Ay | > cccccece >

B Chevter I
Linear List | 2.3 Linked List

Single linked list

- Single linked list with head node
- The whole single linked list : head
- The first node : head->next, head = NULL
- The judge of empty list :
- head->next == NULL

- The current node a, : fence->next (curr
implied)
fence \ curr\ tail

head—> > aO > al ——) 00000000 > an-l(

I s 3 (MRS HIE)

_ Chapter II
Linear List | 2.3 Linked List

Node type of the single linked list

template <class T> class Link {

public:
T data; // to protect content of the node elements
Link<T> * next; // the pointer which points to successor point

Link(const T info, const Link<T>* nextValue =NULL) {
data = info;
next = nextValue;

}

Link(const Link<T>* nextValue) {
next = nextValue;
}

5

Ming Zhang” Data Structures and Algorithms “

B Chooter !
2.3 Linked List

Linear List

Class definition of single list

template <class T> class InkList : public List<T> {

private:

Link<T> * head, *tail; // head and tail pointer of the single list
Link<T> *setPos(const int p); // the pointer of the pth element

public:

InkList(int s); // constructed function

~InkList(); // destructor

bool isEmpty(); // judge whether the link is empty

void clear(); // clear the link’s storage and it becomes an empty list
int length(); // returns the current length of the sequential list
bool append(cosnt T value); // add an element value at the end ,

// the length of the list added by 1
bool insert(cosnt int p, cosnt T value); // insert an element at p
bool delete(cosnt int p); // delete the element at p,

// the length of the list decreased by 1
bool getValue(cosnt int p, T& value); // get the value of the element at p
bool getPos(int &p, const T value); // seek for element with value T

e s Ming Zhang” Data Structures and Algorithms *

_ Chapter II
Linear List | 2.3 Linked List

Seek the ith node in the single linked list

// the return value of the function is the found node pointer
template <class T> // the element type of the linked list is P
Link<T> * InkList <T>:: setPos(int i) {
int count = 0;
if (i ==-1) // if i was -1, then locate it to the head
return head;
// circular location, if [was 0 then locate to the first node
Link<T> *p = head->next;
while (p '= NULL && count < i) {
P = p-> next;
count++;
5
// points to the ith node , i=0,1,... , when the number of
// the nodes of the list is less than i then return NULL
return p;

e 0 Ming Zhang"” Data Structures and Algorithms *

BN Chavter ! |
Linear List | 2.3 Linked List

Insert operation of single linked list

tail
head—> » 20 » 23 » 12| cdecocee >]_5(
Insert 10 between 23 and 12 l
tail
head— [20 | 23 [10 127 Jeeeees > 15(

. Create a new node
- New node points to the right node
- The left node points to new node

_ 10 Zhang Ming ” Data Structures and Algorithms “

o] e
2.3 Linked List

Linear List

Insert algorithm of single linked list

// insert a new node as the ith node
template <class T>
// element type of the linked listis T
bool InkList<T> :: insert(const int i, const T value) {
Link<T> *p, *q;
if ((p = setPos(i -1)) == NULL) { // p is the previous node of the ith node
cout << "illegal insert position"<< endl;
return false;
}
q = new Link<T>(value, p->next);
p->next = q;
if (p == tail) // insert position is at the tail and
// the node inserted becomes the new tail
tail = q;
return true;

_ 11 Ming Zhang” Data Structures and Algorithms “

B Choote !
2.3 Linked List

Linear List

Delete operation of single linked list

. Delete the node x from linked list

- 1. Assign p to point to the previous node of
element x

- 2. delete the node with element x
- 3. release the space that x occupied

Ming Zhang” Data Structures and Algorithms “

B Cheoter ! |

Linear List | Linear List

Example of delete operation of single linked list

. 2.3 Linked List tail
head—— > > > X | edececece > (
/
p
p = head;

while (p->next!=NULL && p->next->info!= x)
p = p->next,

Ming Zhang” Data Structures and Algorithms “

Chapter II | Linear List

Delete the node with value X

. 2.3 Linked List ail
AP P N
13/ Cl/

q = p->hext;
p->next = g->next;
free(q);

_ 14 Ming Zhang” Data Structures and Algorithms “

_ Chapter II
Linear List | 2.3 Linked List

Delete algorithm of single linked list

template <class T> // Element type of the linked listis T
bool InkList<T>:: delete((const int i) {
Link<T> *p, *q;
// node to delete doesn’t exist, when the given i is bigger than
// the number of the current elements in the list
if ((p = setPos(i-1)) == NULL || p == tail) {
cout << "illegal delete position " << endl;
return false;

}
g = p->hext; // q is the real node to delete
if (q == tail) { // if the node to delte is the tail,
// then change the tail pointer
tail = p; p->next = NULL:
}
else //delete node q and change linked pointer
p->next = q->next;
delete q;

return true;

_ 15 Ming Zhang” Data Structures and Algorithms “

Chapter II
Linear List

— L
2.3 Linked List

Operation analysis of single linked list

To operate on a node you must find it first, which means to get a pointer address

* To find any node in single linked list you must begin from the first node

p = head;
while (not reaching) p = p->next;
The time complexity O(TL)
- locating : 0(n)

-insert : 0(n) + 0(1)
- delete : 0(n) + 0(1)

_ 16 Ming Zhang” Data Structures and Algorithms “

BN Charter I
Linear List | 2.3 Linked List

Double linked list

« To make up the disadvantages of single linked
list, double linked list appears.

« The next field of single linked list only points to
the previous node , it can not be used to find
the successive node. The same for “single prev”.

« S0, we add a pointer that points to the
precursor node of it in the double linked list.

prev | data | next il

head_> < > a() ——) 000000).

o] e
2.3 Linked List

Linear List

Double linked list and type of its node

template <class T> class Link {

public:

T data; // used to store content of node elements
Link<T> * next; // the pointer points to successor node
Link<T> *prev; // the pointer points to precursor node

Link(const T info, Link<T>* preValue = NULL, Link<T>* nextValue = NULL)

// constructor with given value and precursor and successor pointers
data = info;
next = nextValue;
prev = preValue;
}
Link(Link<T>* preValue = NULL, Link<T>* nextValue = NULL) {
// constructor with given value and precursor and successor pointers
next = nextValue;
prev = preValue;

Ming Zhang” Data Structures and Algorithms “

_ Chapter II _
Linear List | 2.3 Linked List

Insert procedure of double linked list (Be careful with the order)

Insert a new node after the node pointed by p

new (; / S l@ @

g->next=p->next
q->prev=p /
p->next=q

J->next->prev=q

I 19

Zhang Ming " Data Structures and Algorithms *

BN Chavter ! |
Linear List | 2.3 Linked List

Delete procedure

--l__> —--——» ——

p/ ©@

Delete the node pointed by p - If you delete p

p->prev->next=p->next immediately
p->next->prev=p->prev - Do not need to
p->next=NULL assign the null
p->prev=NULL value

_ 20 Zhang Ming " Data Structures and Algorithms “

B Chepter !l
Linear List | 2.3 Linked List

Circularly linked list

- Link the head and tail of single linked list and
double linked list, and we created circular lists

- Do not increase other cost, but benefit lots of
operations

- From any node of circular list you can access all
the other nodes

' |
head—> : > a, | i — a, | 2l [ana]

Ming Zhang” Data Structures and Algorithms “

. Cheoter !

Linear List | 2.3 Linked List

Boundary conditions of linked list

Treatment of some special points
- Treatment with the head node

- Pointer field of the tail node of a non-circular list
should be kept as NULL

- Tail of a circular list points to its head pointer
Treatment with linked list
- Special treatment with empty linked list

- When insert or delete nodes, be careful with the
linking process of the related pointers

- The correctness of points moving

- insert
. search or iteration

_ 22 Ming Zhang” Data Structures and Algorithms “

B Chepter I
2.3 Linked List

Linear List

Thinking
- Think about the single linked list

with head or not.

.- The problems you should consider
when deal with linked list.

Ming Zhang” Data Structures and Algorithms “

Ming Zhang “ Data Structures and Algorithms *“

Data Structures
and Algorithms

Thanks

the National Elaborate Course (Only available for IPs in China)
http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/

Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)

