Week 7 – part 6 : Modeling in vitro data

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Week 7 – Optimizing Neuron Models For Coding and Decoding

Wulfram Gerstner

EPFL, Lausanne, Switzerland

- **√** 7.1 What is a good neuron model?
 - Models and data
- **√** 7.2 AdEx model
 - Firing patterns and analysis
- **√** 7.3 Spike Response Model (SRM)
 - Integral formulation
- **√**7.4 Generalized Linear Model (GLM)
 - Adding noise to the SRM
- **√**7.5 Parameter Estimation
 - Quadratic and convex optimization
 - 7.6. Modeling in vitro data
 - how long does the effect of a spike last?
 - 7.7. Helping Humans

Week 7 – part 6 : Modeling in vitro data

- **√**7.1 What is a good neuron model?
 - Models and data
- **√** 7.2 AdEx model
 - Firing patterns and analysis
- **√** 7.3 Spike Response Model (SRM)
 - Integral formulation
- 7.4 Generalized Linear Model (GLM)
 - Adding noise to the SRM
- **√**7.5 Parameter Estimation
 - Quadratic and convex optimization
 - 7.6. Modeling in vitro data
 - how long does the effect of a spike last?
 - 7.7. Helping Humans

Neuronal Dynamics – 7.6 Models and Data

comparison model-data

Predict

- -Subthreshold voltage
- -Spike times

Neuronal Dynamics – 7.6 GLM/SRM with escape noise

potential
$$u(t) = \int \underline{\eta(s)} S(t-s) ds + \int_0^\infty \underline{\kappa(s)} I(t-s) ds + u_{rest}$$

threshold
$$\vartheta(t) = \theta_0 + \int \underline{\theta_1(s)} S(t-s) ds$$
 firing intensity $\rho(t) = f(u(t) - \vartheta(t))$

Neuronal Dynamics – 7.6 GLM/SRM predict subthreshold voltage

Neuronal Dynamics — 7.6 GLM/SRM predict spike times

Role of moving threshold

No moving threshold

Mensi et al., 2012

Change in model formulation:

What are the units of?

'soft-threshold adaptive IF model'

potential

$$C\frac{d}{dt}u(t) = \int \underline{\mathcal{P}(s)}S(t-s)ds + I(t)$$

threshold

$$\mathcal{O}(t) = \theta_0 + \int \underline{\theta_1(s)} S(t-s) ds$$

firing intensity $\rho(t) = f(u(t) - \vartheta(t))$

adaptation current

Neuronal Dynamics -7.6 How long does the effect of a spike last?

Neuronal Dynamics – 7.6 Models and Data

- -Predict spike times
- -Predict subthreshold voltage
- -Easy to interpret (not a 'black box')
- -Variety of phenomena
- -Systematic: 'optimize' parameters

BUT so far limited to in vitro