Introduction to Discrete-Time Signals and Systems

Welcome to Discrete Time Signals and Systems

This is an introductory course on signal processing that studies signals and systems

DEFINITION

 ${\bf Signal}$ (n): A detectable physical quantity \ldots by which messages or information can be transmitted (Merriam-Webster)

Signals carry information

- Examples:
 - Speech signals transmit language via acoustic waves
 - Radar signals transmit the position and velocity of targets via electromagnetic waves
 - Electrophysiology signals transmit information about processes inside the body
 - · Financial signals transmit information about events in the economy

Welcome to Discrete Time Signals and Systems

Systems manipulate the information carried by signals

Signal processing involves the theory and application of

- filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals by digital or analog devices or techniques
- where signal includes audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and other signals

(IEEE Signal Processing Society Constitutional Amendment, 1994)

DEFINITION

Signal Processing

- Signal processing has traditionally been a part of electrical and computer engineering
- But now expands into applied mathematics, statistics, computer science, geophysics, and host of application disciplines
- Initially analog signals and systems implemented using resistors, capacitors, inductors, and transistors

- Since the 1940s increasingly digital signals and systems implemented using computers and computer code (Matlab, Python, C, ...)
 - Advantages of digital include stability and programmability
 - As computers have shrunk, digital signal processing has become ubiquitous

Digital Signal Processing Applications

Discrete Time Signals and Systems

 This edX course consists of one-half of the core Electrical and Computer Engineering course entitled "Signals and Systems" taught at Rice University in Houston, Texas, USA (see www.dsp.rice.edu)

- Goals: Develop intuition into and learn how to reason analytically about signal processing problems
- Video lectures, primary sources, supplemental materials, practice exercises, homework, programming case studies, final exam
- Integrated Matlab!
- The course comes in two halves
 - Part 1: Time Domain
 - Part 2: Frequency Domain

Course Outline

- Part 1: Time Domain
 - Week 1: Types of Signals
 - Week 2: Signals Are Vectors
 - Week 3: Systems
 - Week 4: Convolution
 - Week 5: Study Week, Practice Exam, Final Exam
- Part 2: Frequency Domain
 - Week 1: Discrete Fourier Transform (DFT)
 - Week 2: Discrete-Time Fourier Transform (DTFT)
 - Week 3: z Transform
 - Week 4: Analysis and Design of Discrete-Time Filters
 - Week 5: Study Week, Practice Exam, Final Exam

What You Should Do Each Week

- Watch the Lecture videos
- Do the Exercises (on the page to the right of the videos)
- As necessary, refer to the lesson's Supplemental Resources (the page to the right of the exercises)
- Do the homework problems
- Some weeks will also have graded MATLAB case study homework problems

Logistics and Grading

- How to get help: Course Discussion page
 - Use a thread set up for a particular topic, or
 - Start a new thread
- Rules for discussion
 - Be respectful and helpful
 - Do not reveal answers to any problem that will be graded

Grading

Quick Questions	15%
Homework	30%
Homework Free Response Questions	15%
Pre-Exam Survey	5%
Final exam	30%
Post-Exam Survey	5%

Passing grade: 60%

Supplemental Resources

- After the video lecture and a practice exercise or two, you will often see additional Supplemental Resources
- Sometimes these will contain background material to provide motivation for the topic
- Sometimes these will provide a refresher of pre-requisite concepts
- Sometimes these will provide deeper explanations of the content (more rigorous proofs, etc.)
- Sometimes a particular signal processing application will be showcased
- Important: Though the content in these resources will not be assessed in the homework or exam, you may find that they help you to understand a concept better or increase your interest in it

Before You Start

- Important: This is a mathematical treatment of signals and systems (no pain, no gain!)
- Please make sure you have a solid understanding of
 - Complex numbers and arithmetic
 - Linear algebra (vectors, matrices, dot products, eigenvectors, bases ...)
 - Series (finite and infinite)
 - Calculus of a single variable (derivatives and integrals)
 - Matlab
- To test your readiness or refresh your knowledge, visit the "Pre-class Mathematics Refresher" section of the course

Discrete Time Signals and Systems

Discrete Time Signals

Signals

Signal (n): A detectable physical quantity \dots by which messages or information can be transmitted (Merriam-Webster)

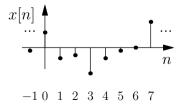
- Signals carry information
- Examples:
 - Speech signals transmit language via acoustic waves
 - Radar signals transmit the position and velocity of targets via electromagnetic waves
 - Electrophysiology signals transmit information about processes inside the body
 - · Financial signals transmit information about events in the economy
- Signal processing systems manipulate the information carried by signals
- This is a course about signals and systems

Signals are Functions

DEFINITION

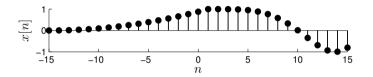
A signal is a function that maps an independent variable to a dependent variable.

- Signal x[n]: each value of n produces the value x[n]
- In this course, we will focus on discrete-time signals:
 - Independent variable is an **integer**: $n \in \mathbb{Z}$ (will refer to as time)
 - Dependent variable is a real or complex number: $x[n] \in \mathbb{R}$ or \mathbb{C}

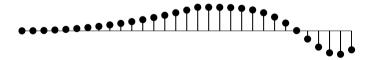


Plotting Real Signals

• When $x[n] \in \mathbb{R}$ (ex: temperature in a room at noon on Monday), we use one signal plot

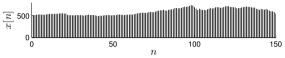


When it is clear from context, we will often suppress the labels on one or both axes, like this

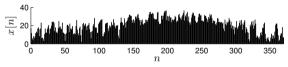


A Menagerie of Signals

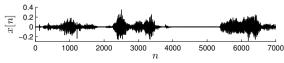
Google Share daily share price for 5 months



Temperature at Houston Intercontinental Airport in 2013 (Celcius)

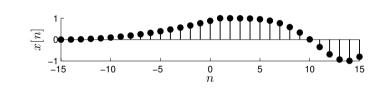


• Excerpt from Shakespeare's *Hamlet*



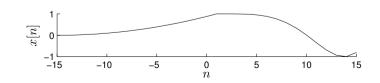
Plotting Signals Correctly

- In a discrete-time signal x[n], the independent variable n is discrete (integer)
- To plot a discrete-time signal in a program like Matlab, you should use the <u>stem</u> or similar command and not the plot command



Incorrect:

Correct:

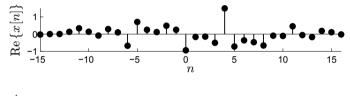


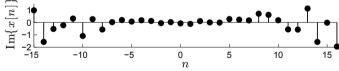
Plotting Complex Signals

- Recall that a complex number $a \in \mathbb{C}$ can be equivalently represented two ways:
 - Polar form: $a = |a| e^{j \angle a}$
 - Rectangular form: $a = \operatorname{Re}\{a\} + j \operatorname{Im}\{a\}$
- Here $j = \sqrt{-1}$ (engineering notation; mathematicians use $i = \sqrt{-1}$)
- When $x[n] \in \mathbb{C}$ (ex: magnitude and phase of an electromagnetic wave), we use two signal plots
 - Rectangular form: $x[n] = \operatorname{Re}\{x[n]\} + j \operatorname{Im}\{x[n]\}$
 - Polar form: $x[n] = |x[n]| e^{j \angle x[n]}$

Plotting Complex Signals (Rectangular Form)

• Rectangular form: $x[n] = \operatorname{Re}\{x[n]\} + j \operatorname{Im}\{x[n]\} \in \mathbb{C}$

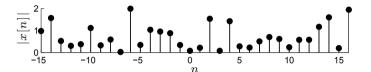


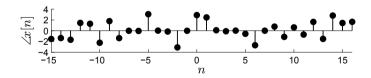


Plotting Complex Signals (Polar Form)

Polar form:

$$x[n] = |x[n]| e^{j \angle (x[n])} \in \mathbb{C}$$





- Discrete-time signals
 - Independent variable is an integer: $n \in \mathbb{Z}$ (will refer to as time)
 - Dependent variable is a real or complex number: $x[n] \in \mathbb{R}$ or \mathbb{C}

Plot signals correctly!

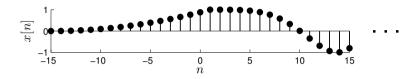
Signal Properties

Signal Properties

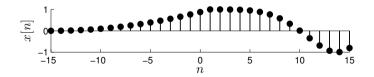
- Infinite/finite-length signals
- Periodic signals
- Causal signals
- Even/odd signals
- Digital signals

Finite/Infinite-Length Signals

An infinite-length discrete-time signal x[n] is defined for all $n \in \mathbb{Z}$, i.e., $-\infty < n < \infty$



• A finite-length discrete-time signal x[n] is defined <u>only</u> for a finite range of $N_1 \le n \le N_2$



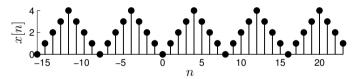
Important: a finite-length signal is undefined for $n < N_1$ and $n > N_2$

Periodic Signals

DEFINITION

A discrete-time signal is **periodic** if it repeats with period $N \in \mathbb{Z}$:

 $x[n+mN] = x[n] \quad \forall \, m \in \mathbb{Z}$



Notes:

- \blacksquare The period N must be an integer
- A periodic signal is infinite in length

A discrete-time signal is **aperiodic** if it is not periodic

Converting between Finite and Infinite-Length Signals

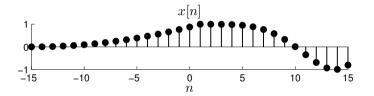
Convert an infinite-length signal into a finite-length signal by windowing

- Convert a finite-length signal into an infinite-length signal by either
 - (infinite) zero padding, or
 - periodization

Windowing

Converts a longer signal into a shorter one

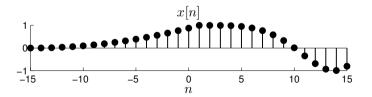
$$y[n] = \begin{cases} x[n] & N_1 \le n \le N_2 \\ 0 & \text{otherwise} \end{cases}$$



Zero Padding

- Converts a shorter signal into a longer one
- Say x[n] is defined for $N_1 \leq n \leq N_2$

• Given
$$N_0 \le N_1 \le N_2 \le N_3$$
 $y[n] = \begin{cases} 0 & N_0 \le n < N_1 \\ x[n] & N_1 \le n \le N_2 \\ 0 & N_2 < n \le N_3 \end{cases}$



Periodization

- Converts a finite-length signal into an infinite-length, periodic signal
- \blacksquare Given finite-length x[n], replicate x[n] periodically with period N

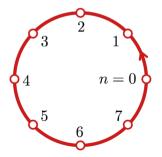
$$y[n] = \sum_{m=-\infty}^{\infty} x[n-mN], \quad n \in \mathbb{Z}$$

= $\dots + x[n+2N] + x[n+N] + x[n] + x[n-N] + x[n-2N] + \dots$
$$x[n] \longrightarrow x[n] \longrightarrow x$$

Useful Aside – Modular Arithmetic

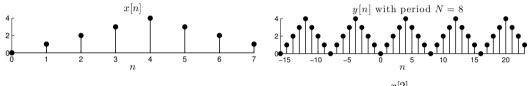
- Modular arithmetic with modulus $N \pmod{N}$ takes place on a clock with N "hours"
 - Ex: $(12)_8$ ("twelve mod eight")
- Modulo arithmetic is inherently periodic

• Ex: ...
$$(-12)_8 = (-4)_8 = (4)_8 = (12)_8 = (20)_8 \dots$$

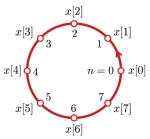


Periodization via Modular Arithmetic

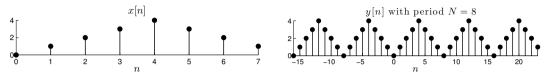
- \blacksquare Consider a length-N signal x[n] defined for $0 \leq n \leq N-1$
- A convenient way to express periodization with period N is $y[n] = x[(n)_N], n \in \mathbb{Z}$



- Important interpretation
 - Infinite-length signals live on the (infinite) number **line**
 - Periodic signals live on a circle
 - a clock with \boldsymbol{N} "hours"



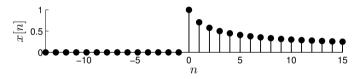
Finite-Length and Periodic Signals are Equivalent



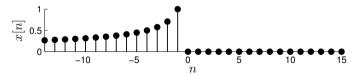
- All of the information in a periodic signal is contained in **one period** (of finite length)
- Any finite-length signal can be periodized
- Conclusion: We can and will think of finite-length signals and periodic signals interchangeably
- We can choose the most convenient viewpoint for solving any given problem
 - Application: Shifting finite length signals

Causal Signals

A signal
$$x[n]$$
 is **causal** if $x[n] = 0$ for all $n < 0$.

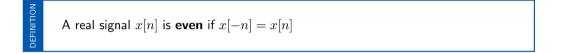


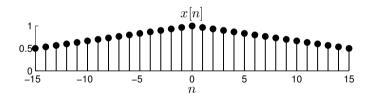
 \blacksquare A signal x[n] is anti-causal if x[n]=0 for all $n\geq 0$



• A signal x[n] is **acausal** if it is not causal

Even Signals

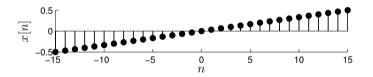




• Even signals are symmetrical around the point n = 0

Odd Signals

A real signal
$$x[n]$$
 is **odd** if $x[-n] = -x[n]$



• Odd signals are anti-symmetrical around the point n = 0

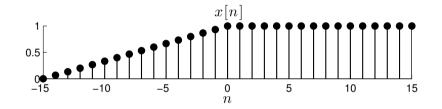
Even+Odd Signal Decomposition

- Useful fact: Every signal x[n] can be decomposed into the sum of its even part + its odd part
- Even part: $e[n] = \frac{1}{2} (x[n] + x[-n])$ (easy to verify that e[n] is even)
- Odd part: $o[n] = \frac{1}{2} (x[n] x[-n])$ (easy to verify that o[n] is odd)
- **Decomposition** x[n] = e[n] + o[n]
- Verify the decomposition:

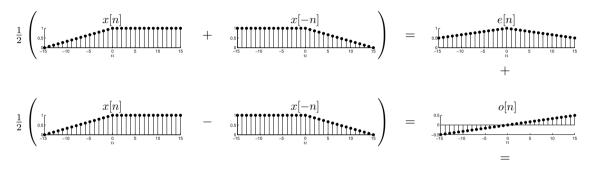
$$e[n] + o[n] = \frac{1}{2}(x[n] + x[-n]) + \frac{1}{2}(x[n] - x[-n])$$

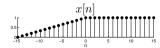
= $\frac{1}{2}(x[n] + x[-n] + x[n] - x[-n])$
= $\frac{1}{2}(2x[n]) = x[n] \checkmark$

Even+Odd Signal Decomposition in Pictures



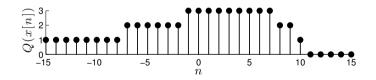
Even+Odd Signal Decomposition in Pictures





Digital Signals

- Digital signals are a special sub-class of discrete-time signals
 - Independent variable is still an integer: $n \in \mathbb{Z}$
 - Dependent variable is from a finite set of integers: $x[n] \in \{0, 1, \dots, D-1\}$
 - Typically, choose $D = 2^q$ and represent each possible level of x[n] as a digital code with q bits
 - Ex: Digital signal with q = 2 bits $\Rightarrow D = 2^2 = 4$ levels



• Ex: Compact discs use q = 16 bits $\Rightarrow D = 2^{16} = 65536$ levels

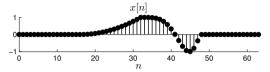
Signals can be classified many different ways (real/complex, infinite/finite-length, periodic/aperiodic, causal/acausal, even/odd, ...)

Finite-length signals are equivalent to periodic signals; modulo arithmetic useful

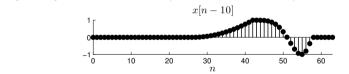
Shifting Signals

Shifting Infinite-Length Signals

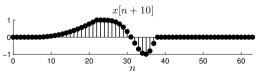
Given an infinite-length signal x[n], we can **shift** it back and forth in time via x[n-m], $m \in \mathbb{Z}$



• When m > 0, x[n - m] shifts to the **right** (forward in time, delay)



• When m < 0, x[n-m] shifts to the left (back in time, advance)

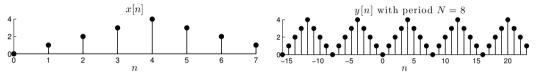


Periodic Signals and Modular Arithmetic

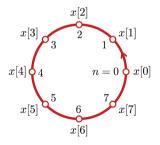
A convenient way to express a signal y[n] that is periodic with period N is

$$y[n] = x[(n)_N], \quad n \in \mathbb{Z}$$

where x[n], defined for $0 \le n \le N-1$, comprises one period

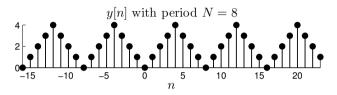


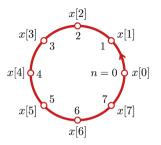
- Important interpretation
 - Infinite-length signals live on the (infinite) number line
 - Periodic signals live on a circle
 - a clock with ${\boldsymbol N}$ "hours"



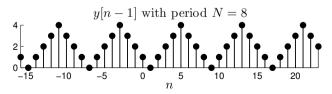
Shifting Periodic Signals

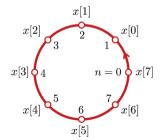
Periodic signals can also be shifted; consider $y[n] = x[(n)_N]$





 \blacksquare Shift one sample into the future: $y[n-1] = x[(n-1)_N]$





Shifting Finite-Length Signals

• Consider finite-length signals x and v defined for $0 \le n \le N-1$ and suppose "v[n] = x[n-1]"

$$v[0] = ??$$

$$v[1] = x[0]$$

$$v[2] = x[1]$$

$$v[3] = x[2]$$

$$\vdots$$

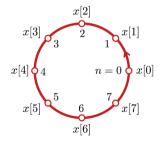
$$v[N-1] = x[N-2]$$

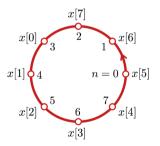
$$?? = x[N-1]$$

- What to put in v[0]? What to do with x[N-1]? We don't want to invent/lose information
- Elegant solution: Assume x and v are both periodic with period N; then $v[n] = x[(n-1)_N]$
- This is called a periodic or circular shift (see circshift and mod in Matlab)

Circular Shift Example

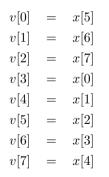
- Elegant formula for circular shift of x[n] by m time steps: $x[(n-m)_N]$
- Ex: x and v defined for $0 \le n \le 7$, that is, N = 8. Find $v[n] = x[(n-3)_8]$

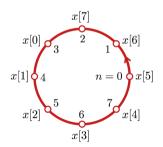




Circular Shift Example

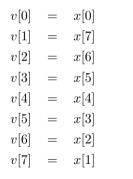
- Elegant formula for circular shift of x[n] by m time steps: $x[(n-m)_N]$
- Ex: x and v defined for $0 \le n \le 7$, that is, N = 8. Find $v[n] = x[(n-m)_N]$

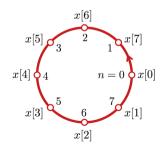




Circular Time Reversal

- For infinite length signals, the transformation of reversing the time axis x[-n] is obvious
- Not so obvious for periodic/finite-length signals
- Elegant formula for reversing the time axis of a periodic/finite-length signal: $x[(-n)_N]$
- Ex: x and v defined for $0 \le n \le 7$, that is, N = 8. Find $v[n] = x[(-n)_N]$





Shifting a signal moves it forward or backward in time

Modulo arithmetic provides and easy way to shift periodic signals

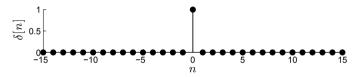
Key Test Signals

A Toolbox of Test Signals

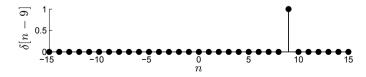
- Delta function
- Unit step
- Unit pulse
- Real exponential
- Still to come: sinusoids, complex exponentials
- Note: We will introduce the test signals as <u>infinite-length</u> signals, but each has a finite-length equivalent

Delta Function

The **delta function** (aka unit impulse)
$$\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$



• The shifted delta function $\delta[n-m]$ peaks up at n=m; here m=9

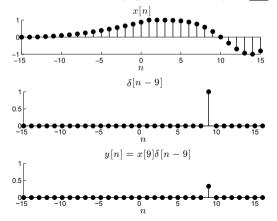


Delta Functions Sample

 Multiplying a signal by a shifted delta function picks out one sample of the signal and sets all other samples to zero

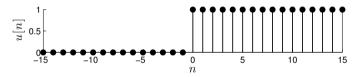
$$y[n] = x[n] \delta[n-m] = x[m] \delta[n-m]$$

Important: m is a fixed constant, and so x[m] is a constant (and not a signal)



Unit Step

The unit step
$$u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$



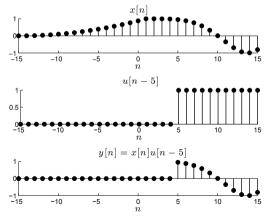
• The shifted unit step u[n-m] jumps from 0 to 1 at n=m; here m=5

Unit Step Selects Part of a Signal

• Multiplying a signal by a shifted unit step function zeros out its entries for n < m

$$y[n] = x[n] u[n-m]$$

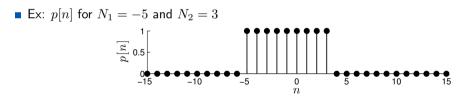
(Note: For m = 0, this makes y[n] causal)



Unit Pulse

DEFINITION

The unit pulse (aka boxcar)
$$p[n] = \begin{cases} 0 & n < N_1 \\ 1 & N_1 \le n \le N_2 \\ 0 & n > N_2 \end{cases}$$



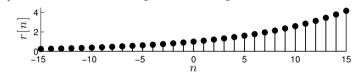
One of many different formulas for the unit pulse

$$p[n] = u[n - N_1] - u[n - (N_2 + 1)]$$

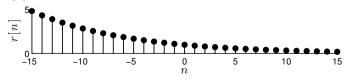
Real Exponential

The real exponential
$$r[n] = a^n$$
, $a \in \mathbb{R}$, $a \ge 0$

• For a > 1, r[n] shrinks to the left and grows to the right; here a = 1.1



For 0 < a < 1, r[n] grows to the left and shrinks to the right; here a = 0.9



• We will use our test signals often, especially the delta function and unit step

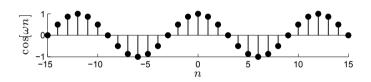
Sinusoids

Sinusoids appear in myriad disciplines, in particular signal processing

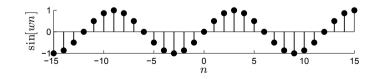
- They are the basis (literally) of Fourier analysis (DFT, DTFT)
- We will introduce
 - Real-valued sinusoids
 - (Complex) sinusoid
 - Complex exponential

Sinusoids

- There are two natural real-valued sinusoids:
- Frequency: ω (units: radians/sample)
- Phase: ϕ (units: radians)
- $\bullet \cos(\omega n)$



 $\cos(\omega n + \phi)$ and $\sin(\omega n + \phi)$



(even)

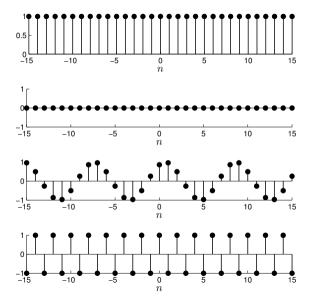
(odd)

$\Box \cos(0n)$

Sinusoid Examples

 $\bullet \sin(\frac{\pi}{4}n + \frac{2\pi}{6})$

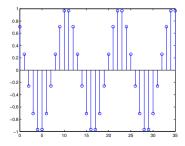
 $\bullet \cos(\pi n)$



Get Comfortable with Sinusoids!

It's easy to play around in Matlab to get comfortable with the properties of sinusoids

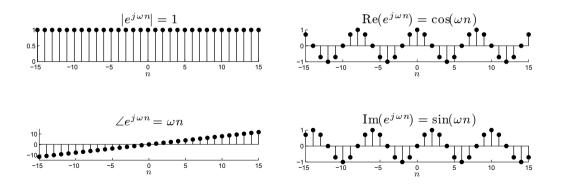
```
\label{eq:N=36} \begin{array}{l} N=36;\\ n=0:N-1;\\ omega=pi/6;\\ phi=pi/4;\\ x=cos(omega*n+phi);\\ stem(n,x) \end{array}
```



Complex Sinusoid

The complex-valued sinusoid combines both the cos and sin terms (via Euler's identity)

 $e^{j(\omega n+\phi)} = \cos(\omega n+\phi) + j\sin(\omega n+\phi)$



A Complex Sinusoid is a Helix

 $e^{j(\omega n+\phi)} = \cos(\omega n+\phi) + j\sin(\omega n+\phi)$

- \blacksquare A complex sinusoid is a **helix** in 3D space $(\mathrm{Re}\{\},\mathrm{Im}\{\},n)$
 - Real part (\cos term) is the projection onto the $\operatorname{Re}\{\}$ axis
 - Imaginary part (sin term) is the projection onto the $\mathrm{Im}\{\}$ axis
- Frequency ω determines rotation speed and direction of helix
 - $\omega > 0 \Rightarrow$ anticlockwise rotation
 - $\omega < 0 \Rightarrow$ clockwise rotation

Complex Sinusoid is a Helix (Animation)

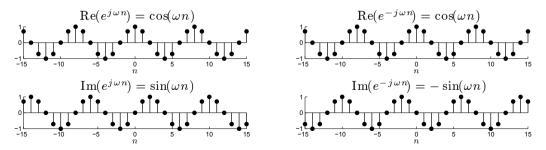
Complex sinusoid animation

Negative Frequency

Negative frequency is nothing to be afraid of! Consider a sinusoid with a negative frequency $-\omega$

$$e^{j(-\omega)n} = e^{-j\omega n} = \cos(-\omega n) + j\sin(-\omega n) = \cos(\omega n) - j\sin(\omega n)$$

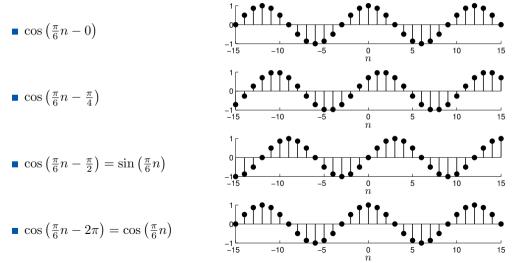
- Also note: $e^{j(-\omega)n} = e^{-j\omega n} = (e^{j\omega n})^*$
- Bottom line: negating the frequency is equivalent to complex conjugating a complex sinusoid, which flips the sign of the imaginary, sin term



Phase of a Sinusoid

$$e^{j(\omega n + \phi)}$$

• ϕ is a (frequency independent) shift that is referenced to one period of oscillation



- Sinusoids play a starring role in both the theory and applications of signals and systems
- A sinusoid has a **frequency** and a **phase**
- A complex sinusoid is a helix in three-dimensional space and naturally induces the sine and cosine
- Negative frequency is nothing to be scared by; it just means that the helix spins backwards

Discrete-Time Sinusoids Are Weird

Discrete-Time Sinusoids are Weird!

• Discrete-time sinusoids $e^{j(\omega n+\phi)}$ have two counterintuitive properties

 \blacksquare Both involve the frequency ω

■ Weird property #1: Aliasing

■ Weird property #2: Aperiodicity

Weird Property #1: Aliasing of Sinusoids

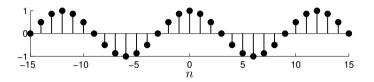
- Consider two sinusoids with two different frequencies
 - $\omega \Rightarrow x_1[n] = e^{j(\omega n + \phi)}$
 - $\omega + 2\pi \quad \Rightarrow \quad x_2[n] = e^{j((\omega + 2\pi)n + \phi)}$
- But note that

$$x_2[n] = e^{j((\omega+2\pi)n+\phi)} = e^{j(\omega n+\phi)+j2\pi n} = e^{j(\omega n+\phi)} e^{j2\pi n} = e^{j(\omega n+\phi)} = x_1[n]$$

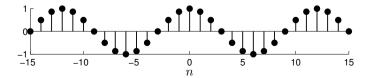
- The signals x_1 and x_2 have different frequencies but are **identical**!
- We say that x_1 and x_2 are aliases; this phenomenon is called **aliasing**
- Note: Any integer multiple of 2π will do; try with $x_3[n] = e^{j((\omega + 2\pi m)n + \phi)}$, $m \in \mathbb{Z}$

Aliasing of Sinusoids – Example

 $x_1[n] = \cos\left(\frac{\pi}{6}n\right)$



•
$$x_2[n] = \cos\left(\frac{13\pi}{6}n\right) = \cos\left((\frac{\pi}{6} + 2\pi)n\right)$$



Alias-Free Frequencies

Since

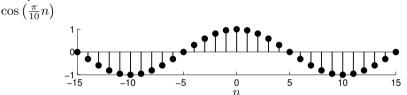
$$x_3[n] = e^{j(\omega + 2\pi m)n + \phi} = e^{j(\omega n + \phi)} = x_1[n] \quad \forall m \in \mathbb{Z}$$

the only frequencies that lead to unique (distinct) sinusoids lie in an interval of length 2π

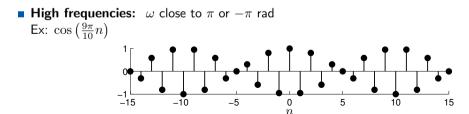
- Convenient to interpret the frequency ω as an angle (then aliasing is handled automatically; more on this later)
- Two intervals are typically used in the signal processing literature (and in this course)
 - $0 \le \omega < 2\pi$
 - $-\pi < \omega \leq \pi$

Low and High Frequencies

 $e^{j(\omega n + \phi)}$



• Low frequencies: ω close to 0 or 2π rad Ex: $\cos\left(\frac{\pi}{10}n\right)$

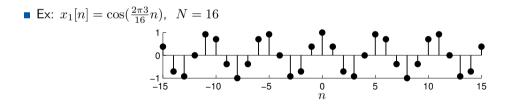


Weird Property #2: Periodicity of Sinusoids

Consider
$$x_1[n] = e^{j(\omega n + \phi)}$$
 with frequency $\omega = \frac{2\pi k}{N}$, $k, N \in \mathbb{Z}$ (harmonic frequency)

It is easy to show that $\underline{x_1}$ is periodic with period N, since

$$x_1[n+N] = e^{j(\omega(n+N)+\phi)} = e^{j(\omega n+\omega N+\phi)} = e^{j(\omega n+\phi)} e^{j(\omega N)} = e^{j(\omega n+\phi)} e^{j(\frac{2\pi k}{N}N)} = x_1[n] \checkmark$$

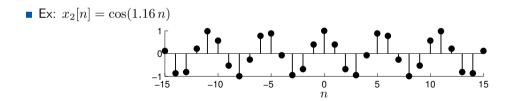


• Note: x_1 is periodic with the (smaller) period of $\frac{N}{k}$ when $\frac{N}{k}$ is an integer

Aperiodicity of Sinusoids

- Consider $x_2[n] = e^{j(\omega n + \phi)}$ with frequency $\omega \neq \frac{2\pi k}{N}$, $k, N \in \mathbb{Z}$ (not harmonic frequency)
- Is x_2 periodic?

$$x_2[n+N] = e^{j(\omega(n+N)+\phi)} = e^{j(\omega n+\omega N+\phi)} = e^{j(\omega n+\phi)} e^{j(\omega N)} \neq x_1[n] \quad \text{NO!}$$



If its frequency ω is not harmonic, then a sinusoid oscillates but is not periodic!

Harmonic Sinusoids

 $e^{j(\omega n + \phi)}$

Semi-amazing fact: The only periodic discrete-time sinusoids are those with harmonic frequencies

$$\omega = \frac{2\pi k}{N}, \quad k, N \in \mathbb{Z}$$

Which means that

- Most discrete-time sinusoids are not periodic!
- The harmonic sinusoids are somehow magical (they play a starring role later in the DFT)

Harmonic Sinusoids (Matlab)

• Click here to view a MATLAB demo that visualizes harmonic sinusoids.

Summary

Discrete-time sinusoids $e^{j(\omega n + \phi)}$ have two counterintuitive properties

 \blacksquare Both involve the frequency ω

■ Weird property #1: Aliasing

- Weird property #2: Aperidiocity
- The only sinusoids that are periodic: Harmonic sinusoids $e^{j(\frac{2\pi k}{N}n+\phi)}$, $n,k,N\in\mathbb{Z}$

Complex Exponentials

Complex Exponential

- Complex sinusoid $e^{j(\omega n + \phi)}$ is of the form $e^{\text{Purely Imaginary Numbers}}$
- Generalize to $e^{\text{General Complex Numbers}}$
- ${\scriptstyle \ensuremath{\bullet}}$ Consider the general complex number ${\scriptstyle \ensuremath{ \ z = |z|} e^{j\omega}}$, $z \in \mathbb{C}$
 - |z| = magnitude of z
 - $\omega = \angle(z)$, phase angle of z
 - Can visualize $z \in \mathbb{C}$ as a **point** in the **complex plane**
- Now we have

$$z^n = (|z|e^{j\omega})^n = |z|^n (e^{j\omega})^n = |z|^n e^{j\omega n}$$

- $|z|^n$ is a real exponential (a^n with a = |z|)
- $e^{j\omega n}$ is a complex sinusoid

Complex Exponential is a Spiral

$$z^n = (|z|e^{j\omega})^n = |z|^n e^{j\omega n}$$

- $|z|^n$ is a real exponential envelope $(a^n \text{ with } a = |z|)$
- $e^{j\omega n}$ is a complex sinusoid
- z^n is a helix with expanding radius (spiral)

Complex Exponential is a Spiral

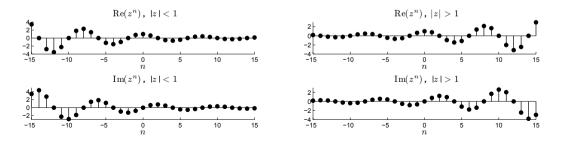
$$z^n = (|z|e^{j\omega n})^n = |z|^n e^{j\omega n}$$

• $|z|^n$ is a real exponential envelope $(a^n \text{ with } a = |z|)$

|z| < 1

• $e^{j\omega n}$ is a complex sinusoid

|z| > 1



Complex Exponentials and z Plane (Matlab)

• **<u>Click here</u>** to view a MATLAB demo plotting the signals z^n .

Summary

- Complex sinusoid $e^{j(\omega n + \phi)}$ is of the form $e^{\text{Purely Imaginary Numbers}}$
- Complex exponential: Generalize $e^{j(\omega n + \phi)}$ to $e^{\text{General Complex Numbers}}$

A complex exponential is the product of a real exponential and a complex sinusoid

A complex exponential is a spiral in three-dimensional space