
Data Structures
and Algorithms（12）

Instructor: Ming Zhang
Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao

Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook)

https://courses.edx.org/courses/PekingX/04830050x/2T2014/

Ming Zhang "Data Structures and Algorithms"

2

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 12

Advanced Data

Structure

Chapter 12 Advanced Data Structure

• 12.1 Multidimensional array

• 12.1.1 Basic Concepts

• 12.1.2 Structure of Array

• 12.1.3 Storage of Array

• 12.1.4 Declaration of Array

• 12.1.5 Special Matrices Implemented by Arrays

• 12.1.6 Sparse Matrix

• 12.2 Generalized List

• 12.3 Storage management

• 12.4 Trie

• 12.5 Improved BST

3 Ming Zhang “Data Structures and Algorithms”

Basic Concepts

• Array is an ordered sequence with

fixed number of elements and type.

• The size and type of static array

must be specified at compile time

• Dynamic array is allocated memory

at runtime

12.1 Multidimensional Array目录页

Chapter 12

Advanced Data

Structure

44 Ming Zhang “Data Structures and Algorithms”

Basic Concepts

• Multidimensional array is an extension of one-

dimensional array (vector).

• Vector of vectors make up an multidimensional

array.

• Represented as

ELEM A[c
1
..d

1
][c

2
..d

2
]…[c

n
..d

n
]

• c
i
and d

i
are upper and lower bounds of the

indices in the i-th dimension. Thus, the total

number of elements is:

n

i

ii cd
1

)1(

12.1 Multidimensional Array目录页

Chapter 12

Advanced Data

Structure

55 Ming Zhang “Data Structures and Algorithms”

d1=3,d2=5

d1

d2

a[1][1]

d1

d2

d3

a[1][3][5]

Structure of Array

2-dimensional array 3-dimensional array

d1[0..2], d2[0..3], d3[0..1] are the three dimensions respectively

d1=3,d2=4, d3=2

12.1 Multidimensional Array目录页

Chapter 12

Advanced Data

Structure

6 Ming Zhang “Data Structures and Algorithms”

Storage of Array

• Memory is one-dimensional, so arrays are

stored linearly

• Stored row by row (row-major)

• Stored column by column (column-major)

X=

1 2 3

4 5 6

7 8 9

12.1 Multidimensional Array目录页

Chapter 12

Advanced Data

Structure

7 Ming Zhang “Data Structures and Algorithms”

Row-Major in Pascal

a
112

a
113

… a
11n

a
122

a
123

… a
12n

a
1m2

a
1m3

… a
1mn

…………………………

a
211

a
212

a
213

… a
21n

a
221

a
222

a
223

… a
22n

…………………………

a
2m1

a
2m2

a
2m3

… a
2mn

┇
a

k11
a

k12
a

k13
… a

k1n

a
k21

a
k22

a
k23

… a
k2n

…………………………

a
km1

a
km2

a
km3

… a
kmn

a
111

a
121

a
1m1

a[1..k,1..m,1..n]

12.1 Multidimensional Array目录页

Chapter 12

Advanced Data

Structure

8

目录页

Ming Zhang “Data Structures and Algorithms”

Chapter 12

Advanced Data

Structure

Column-Major in FORTRAN
a111 a211 a311 … ak11

a121 a221 a321 … ak21

…………………………
a1m1 a2m1 a3m1 … akm1

a112 a212 a312 … ak12

a122 a222 a322 … ak22

…………………………
a1m2 a2m2 a3m2 … akm2

┇
a11n a21n a31n … ak1n

a12n a22n a32n … ak2n

…………………………
a1mn a2mn a3mn … akmn

12.1 Multidimensional Array

a[1..k, 1..m, 1..n]

99 Ming Zhang “Data Structures and Algorithms”

• C++ multidimensional array

ELEM A[d
1
][d

2
]…[d

n
];

1 2

1 2 2 3

1

1

1 1

([, , ,]) ([0,0, ,0])

[

]

([0,0, ,0]) []

n

n n

n n n

nn

i k n

i k i

loc A j j j loc A

d j d d j d d

j d j

loc A d j d j

12.1 Multidimensional Array目录页

Chapter 12

Advanced Data

Structure

1010 Ming Zhang “Data Structures and Algorithms”

Special Matrices Implemented by Arrays

•Triangular matrix (upper/lower)

•Symmetric matrix

•Diagonal matrix

•Sparse matrix

12.1 Multidimensional Array目录页

Chapter 12

Advanced Data

Structure

1111 Ming Zhang “Data Structures and Algorithms”

Lower Triangular Matrix

• One-dimensional array: list[0.. (n
2
+n)/2-1]

• The matrix element a
i,j

is stored in

list[(i
2
+i) /2 + j] (i>=j)

0

0 0

7 5 0

0 0 1 0

9 0 0 1 8

0 6 2 2 0 7

12.1 Multidimensional Array目录页

Chapter 12

Advanced Data

Structure

1212 Ming Zhang “Data Structures and Algorithms”

Symmetric Matrix

• Satisfies that a
i,j

= a
j,i

, 0 ≤ i, j < n

The matrix on the right is a (symmetric) adjacent

matrix for a undirected graph

• Store the lower triangle in a 1-dimensional

array

sa[0..n (n+1) /2-1]

•There is a one-to-one mapping between sa[k] and a
i,j

:

3 15

3 4

4

 0 0

 0 0

 0 0

 0 0

6

15 6

jijii

jiijj
k

,2/)1(

,2/)1(

12.1 Multidimensional Array目录页

Chapter 12

Advanced Data

Structure

1313 Ming Zhang “Data Structures and Algorithms”

Diagonal Matrix

• Diagonal matrix: all non-zero elements are

located at diagonal lines.

• Band matric: a[i][j] = 0 when |i-j| > 1

• A band matrix with bandwidth 1 is shown as below

a
0,0

a
1,1

a
0,1

a
1,0

a
n-1,n-2

a
n-1,n-1

a
n-2,n-1

a
1,2

0

0

……

……

……

12.1 Multidimensional Array目录页

Chapter 12

Advanced Data

Structure

14 Ming Zhang “Data Structures and Algorithms”

Sparse Matrix

• Few non-zero elemens, and these elements

distribute unevenly

6 7

0 0 0 7 0 0 5

0 15 0 0 0 0 0

0 0 0 6 0 17 0
A

0 78 0 0 0 22 0

11 0 0 0 0 0 0

0 0 42 0 0 0 0

0

0

0

0

0

0

0

12.1 Multidimensional Array目录页

Chapter 12

Advanced Data

Structure

15 Ming Zhang “Data Structures and Algorithms”

• Sparse Factor

•In a m×n matrix, there are t non-zero elements, and the sparse factor

is:

•When this value is lower than 0.05, the matrix could be considered a

sparse matrix.

• 3-tuple (i, j, a
ij
): commonly used for input/output

•i is the row number

•j is the column number

•a
ij

is the element value

nm

t

12.1 Multidimensional Array目录页

Chapter 12

Advanced Data

Structure

1616 Ming Zhang “Data Structures and Algorithms”

Orthogonal Lists of a Sparse Matrix

• An orthogonal list consists of two sets of lists

• pointer sequense for rows and columns

• Each node has two pointers: one points to the

successor on the same row; the other points to

the successor on the same column

0 3 0

0 5 6

2 0 0

0 1 3

1 1 5

2 0 2

head pointer for columns

1 2 6

12.1 Multidimensional Array目录页

Chapter 12

Advanced Data

Structure

h
e
a
d
 p

o
in

te
r fo

r ro
w

s

1717 Ming Zhang “Data Structures and Algorithms”
”

Classic Matrix Multiplication

12.1 Multidimensional Array目录页

Chapter 12

Advanced Data

Structure

1818 Ming Zhang “Data Structures and Algorithms”

Time Cost of Classic Matrix Multiplication

•p=d1-c1+1，m=d3-c3+1，n=d2-c2+1；

•A is a p×m matrix, B is a m×n matrix, resulting in C, a p×n

matrix

•So the time cost of the classic matrix multiplication is O (p×m×n)

for (i=c1; i<=d1; i++)

for (j=c2; j<=d2; j++){

sum = 0;

for (k=c3; k<=d3; k++)

sum = sum + A[i,k]*B[k,j];

C[i，j] = sum;

}

12.1 Multidimensional Array目录页

Chapter 12

Advanced Data

Structure

1919 Ming Zhang “Data Structures and Algorithms”

Sparse Matrix Multiplication

 3 0 0 5
 0 -1 0 0
 2 0 0 0

 0 2
 1 0
-2 4
 0 0

=

0 1 2

1 0 1

0 2 -2 2 1 4

-1 0

0 4

0 6

6

-1

head pointer for columns

0 0 3 0 3 5

1 1 -1

0 2 2

4

finish

h
e
a
d

p

o
i
n

t
e
r

f
o
r

r
o
w

s

12.1 Multidimensional Array目录页

Chapter 12

Advanced Data

Structure

2020 Ming Zhang “Data Structures and Algorithms”

Time Cost of Sparse Matrix Multiplication

• A is a p×m matrix, B is a m×n matrix, resulting

in C, a p×n matrix.

• If the number of non-zero elements in a row of A is at

most t
a

• and the number of non-zero elements in a column of

B is at most t
b

• Overall running time is reduced to O ((t
a
+t

b
)

×p×n)

• Time cost of classic matrix multiplication is O

(p×m×n)

12.1 Multidimensional Array目录页

Chapter 12

Advanced Data

Structure

2121 Ming Zhang “Data Structures and Algorithms”

Applications of Sparse Matrix

i
n

i

i

n

nn

xa

xaxaxaaxP

0

2

210

)(polynomial of one

indeterminate

12.1 Multidimensional Array目录页

Chapter 12

Advanced Data

Structure

Ming Zhang “Data Structures and Algorithms”

Chapter 12 Advanced Data Structure

• 12.1 Multi-array

• 12.2 Generalized List

• Basic Concepts

• Different Types of Generalized List

• Storage of Generalized List

• Traversal algorithm for Generalized List

• 12.3 Storage management

• 12.4 Trie

• 12.5 Improved BST

目录页

Chapter 12

Advanced Data

Structure

Ming Zhang “Data Structures and Algorithms”

Basic Concepts

• Review of linear list

– Finite ordered sequence consisting of n(>=0)

elements.

– All elements of a linear list have the same

type.

• If a linear list contains one or more sub-lists, then

it is called a generalized list, usually represented

as:

– L＝ (x
0
，x

1
，…，x

i
，…，x

n-1
)

目录页

Chapter 12

Advanced Data

Structure

12.2 Generalized list and Storage management

24Ming Zhang “Data Structures and Algorithms”

L＝ (x
0
，x

1
，…，x

i
，…，x

n-1
)

• L is the name of this generalized list.

• n is the length.

• Each x
i
(0≤ i ≤ n-1) is an element.

– either a single element, i.e. atom,

– or another generalized list, i.e. sublist.

• Depth : the number of brackets when all

the elements are converted to atoms.

目录页

Chapter 12

Advanced Data

Structure

12.2 Generalized list and Storage management

25Ming Zhang “Data Structures and Algorithms”

L＝ (x
0
，x

1
，…，x

i
，…，x

n-1
)

• head = x
0

• tail = (x
1
，…，x

n-1
)

• smaller lists

• Easier to store and to implement.

目录页

Chapter 12

Advanced Data

Structure

12.2 Generalized list and Storage management

26Ming Zhang “Data Structures and Algorithms”

Different Types of Generalized Lits

• pure list

• There is only one path existing from root to

each leaf.

• i.e. each element (atom, sublist) only appears

once. (x1, (y1 , (a1 ,a2) , y3) , x3 , (z1 ,z2))

x1

y1

a1 a2

y3 z1 z2

x3

目录页

Chapter 12

Advanced Data

Structure

12.2 Generalized list and Storage management

27Ming Zhang “Data Structures and
Algorithms”

• Reentrant lists

• Its elements (atoms or

sublists) might appear

more than once.

• Corresponds to a DAG

if no circles exists.

• Sublists and

atoms are labeled.

(L1: (a,b) , (L1, c ,L2: (d)) , (L2, e,L3: (f,g)) , L3)

(((a, b)) , ((a,b) ,c,d) , (d, e, f, g) , (f ,g))

L1
L2

L3

a b
d

e
f g

c

e.g. cycle lists

Different Types of Generalized Lits

目录页

Chapter 12

Advanced Data

Structure

12.2 Generalized list and Storage management

28Ming Zhang “Data Structures and Algorithms”

• Circle lists

• contains circles.

• with infinite depth.

(L1: (L2: (L1, a)) , (L2, L3: (b)) , (L3, c) , L4: (d,L4))

L1

L2
L3

a b

c

L4

d

Different Types of Generalized Lits

目录页

Chapter 12

Advanced Data

Structure

12.2 Generalized list and Storage management

29Ming Zhang “Data Structures and Algorithms”

A B C D

B C A

6 2

Linear Lists

’a’

5 3 ’x’

Pure Lists

6 2 ’a’

5 3 ’x’

E

B D

C A

6 2

’a’

5 3 ’x’

Reentrant Lists

F

4 Circle Lists

目录页

Chapter 12

Advanced Data

Structure

12.2 Generalized list and Storage management

Ming Zhang “Data Structures and Algorithms”

• Graph Reentrant List Pure List(Tree) Linear

List

• Generaized lists are extensions of linear and tree

structures.

• Circle lists are reentrant lists that have circles.

• Applications of generalized lists

• Relations between the invocation of the function

• Reference relations in memory space

• LISP

目录页

Chapter 12

Advanced Data

Structure

12.2 Generalized list and Storage management

31Ming Zhang “Data Structures and Algorithms”

Storage of Generalized Lists

1

1

1

data0

head

D10

D20

finish

• Generalized link lists without head node

– Problems might occur when deleting nodes.

– The list must be adjusted when deleting node

'data'.

目录页

Chapter 12

Advanced Data

Structure

12.2 Generalized list and Storage management

32Ming Zhang “Data Structures and Algorithms”

-1 1

-1

1

data0

head (ref=0)

D10head (ref=1) 1

-1

head (ref=2)

D20

• Add the head node, and the deleting/inserting operation would

be simplified.

• Reentrant lists, especially circle lists

– mark each node (because it is a graph)

Storage of Generalized Lists

目录页

Chapter 12

Advanced Data

Structure

12.2 Generalized list and Storage management

33Ming Zhang “Data Structures and Algorithms”

Circle Generalized Lists with Head Nodes

 -1 1

 -1

 1

 1

L

 1 \

Lx

 1

 -1

Ly

c 0 \

 1 1 \

 d 0 -1 L4 1 \

 -1 b 0 \

L3

 -1 1 \ a 0

 -1 1 \

L2

L1

目录页

Chapter 12

Advanced Data

Structure

12.2 Generalized list and Storage management

34Ming Zhang “Data Structures and Algorithms”

 -1 1

 -1

 1

 1

L

 1 ＼

Lx

 1

 -1

Ly

c 0 ＼

 1 1 ＼

 d 0 -1 L4 1 ＼

 -1 b 0 ＼

L3

 -1 1 ＼ a 0

 -1 1 ＼

L2

L1

(L1 : (L2 : (a)) ,L1

目录页

Chapter 12

Advanced Data

Structure

12.2 Generalized list and Storage management

Ming Zhang “Data Structures and Algorithms”

 -1 1

 -1

 1

 1

L

 1 ＼

Lx

 1

 -1

Ly

c 0 ＼

 1 1 ＼

 d 0 -1 L4 1 ＼

 -1 b 0 ＼

L3

 -1 1 ＼ a 0

 -1 1 ＼

L2

L1

finish

(L1: (L2: (a ,L1)) Lx : L3, L2 , : (b)) , Ly : (L3 , c) , L4 : (d ,)) L4(

讲师录像
4:3

目录页

Chapter 12

Advanced Data

Structure

12.2 Generalized list and Storage management

Ming Zhang “Data Structures and Algorithms”

Chapter 12 Advanced Data Structure

• 12.1 Multidimensional array

• 12.2 Generalized Lists

• 12.3 Storage management

• Allocation and Reclamation

• Freelist

• Dynamic Memory Allocation and Reclamation

• Failure Policy and Collection of Useless Units

• 12.4 Trie

• 12.5 Improved BST

目录页

Chapter 12

Advanced Data

Structure

Ming Zhang “Data Structures and
Algorithms”

Allocation and Reclamation

• Basic problems in storage management

• Allocate memory

• Reclaim "freed" memory

• Fragmentation problem

• The compression of storage

• Collection of useless units

• Useless units: memory that can be collected but has

not been collected yet

• Memory leak

• Programmers forget to delete pointers which will not be

used

12.3 Storage Management目录页

Chapter 12

Advanced Data

Structure

38Ming Zhang “Data Structures and Algorithms”

Freelist

• Consider the memory as an array of changeable

number of blocks

• Some blocks has been allocated

• Link free blocks together, and form a freelist.

• Memory allocation and reclamation

• new p: allocate from available space

• delete p: return the block that p points to to the

freelist.

• If there is not enough space, resort to failure policy.

12.3 Storage Management目录页

Chapter 12

Advanced Data

Structure

39Ming Zhang “Data Structures and Algorithms”

avail avail

（1）初始状态的可利用空间表
（2）系统运行一段时间后

的可利用空间表

结点等长的可利用空间表

12.3 Storage Management目录页

Chapter 12

Advanced Data

Structure

40Ming Zhang “Data Structures and Algorithms”

Function overloading of freelist

template <class Elem> class LinkNode{

private:

static LinkNode avail; // head pointer

public:

Elem value; // value of each node

LinkNode next; // pointer pointing to next node

LinkNode (const Elem & val, LinkNode p) ;

LinkNode (LinkNode p = NULL) ; // construction function

void operator new (size_t) ; // redefine new

void operator delete (void p) ; // redefine delete

};

12.3 Storage Management目录页

Chapter 12

Advanced Data

Structure

41Ming Zhang “Data Structures and Algorithms”

//implementation of new

template <class Elem>

void LinkNode<Elem>::operator new (size_t) {

if (avail == NULL) //if the list is empty

return ::new LinkNode; //allocate memory using new

LinkNode<Elem> temp = avail;

//allocate from available space
list

avail = avail->next;

return temp;

}

12.3 Storage Management目录页

Chapter 12

Advanced Data

Structure

42Ming Zhang “Data Structures and Algorithms”

//implementation of delete

template <class Elem>

void LinkNode<Elem>::operator delete (void p) {

((LinkNode<Elem>) p) ->next = avail;

avail = (LinkNode<Elem>) p;

}

12.3 Storage Management目录页

Chapter 12

Advanced Data

Structure

43Ming Zhang “Data Structures and Algorithms”

Free List: Stack in a Singly-Linked List

• new: deletion in the stack

• delete: insertion in the stack

• If the default new and delete operations

are needed, use “::new p” and “::delete p”.

• For example, when a program is finished,

return the memory occupied by avail back to

the system (free the memory completely)

12.3 Storage Management目录页

Chapter 12

Advanced Data

Structure

44Ming Zhang “Data Structures and Algorithms”

• When pmax is equal to or

larger than S, no more

memory can be allocated.

12.3 Storage Management目录页

Chapter 12

Advanced Data

Structure

info

node of single linked list 1

link

static area

info

link

single linked list head1

freelist avail1

pmax

S
static area

freelist avail2

single linked list head2

node of single linked list 2

dynamic storage area

backup

storage

area

Ming Zhang “Data Structures and Algorithms”

Dynamic Memory Allocation and Reclamation

Available blocks with variable lengths

•Allocation

• Find a block whose length is larger than the

requested length.

• Truncate suitable length from it.

•Reclamation

• Consider whether the space deleted can be

merged with adjacent nodes,

• So as to satisfy later request of large node.

12.3 Storage Management目录页

Chapter 12

Advanced Data

Structure

46Ming Zhang “Data Structures and Algorithms”

Data Structure of Free Blocks

标记位 标记位 块长度

标记位 块长度 指针

块长

度 标记位

+ k

+ k

- k

-

（a）空闲块的结构 （b）已分配块的结构

12.3 Storage Management目录页

Chapter 12

Advanced Data

Structure

47Ming Zhang “Data Structures and Algorithms”

Fragmentation Problem

• Internal fragment: space larger than the

requested bytes

• External fragment: small free blocks

外部碎片 内部碎片

外部碎片和内部碎片

12.3 Storage Management目录页

Chapter 12

Advanced Data

Structure

48Ming Zhang “Data Structures and Algorithms”

Sequential Fit

Allocation of free blocks

•Common sequential fit algorithms

• first fit

• best fit

• worst fit

12.3 Storage Management目录页

Chapter 12

Advanced Data

Structure

49Ming Zhang “Data Structures and Algorithms”

Sequential Fit

• 3 Blocks 1200，1000，3000

request sequence: 600, 500, 900, 2200

• first fit：

1200 1000 3000

600 600500 100 900 100 2200 800

12.3 Storage Management目录页

Chapter 12

Advanced Data

Structure

Ming Zhang “Data Structures and Algorithms”

Sequential Fit

•best fit

1200 1000 3000

600500 400 900 21007002200

5555

request sequence: 600, 500, 900, 2200

12.3 Storage Management目录页

Chapter 12

Advanced Data

Structure

Ming Zhang “Data Structures and Algorithms”

Sequential Fit

• worst fit

1200 1000 3000

600 240019002200 500 900 1000

Why always me？……

request sequence: 600, 500, 900, 2200

12.3 Storage Management目录页

Chapter 12

Advanced Data

Structure

Ming Zhang “Data Structures and Algorithms”

Reclamation: merge adjacent blocks

L M N

+ k

k + k -

-

把块 M 释放回可利用空间表

12.3 Storage Management目录页

Chapter 12

Advanced Data

Structure

53Ming Zhang “Data Structures and Algorithms”

Fitting Strategy Selection

• Need to take the following user request into

account

• Importance of allocation and reclamation

efficiency.

• Variation range of the length of al located

memory

• Frequency of allocation and reclamation

• In practice, fist fit is the most commonly used.

• Quicker allocation and reclamation.

• Support random memory requests.

Hard to decide which one is the best in general.

12.3 Storage Management目录页

Chapter 12

Advanced Data

Structure

Ming Zhang “Data Structures and Algorithms”

Failure Policy and Collection of Useless Units

• If a memory request cannot be satisfied

because of insufficient memory, the

memory manager has two options:

• do nothing, and return failure info;

• follow failure policy to satisfy requests.

12.3 Storage Management目录页

Chapter 12

Advanced Data

Structure

55Ming Zhang “Data Structures and Algorithms”

Compaction

• Collect all the fragments together

• Generate a larger free block.

• Used when there are a lot of fragments.

• Handler makes the address relative

• Secondary indirect reference to the

storage location.

• Only have to change handlers to move

blocks.

• No need to change applications.

12.3 Storage Management目录页

Chapter 12

Advanced Data

Structure

56Ming Zhang “Data Structures and Algorithms”

Two Types of Compaction

• Perform a compact once a block is freed.

• Perform a compact when there is not

enough memory or when collecting useless

units.

eg:

Befor

e

After

12.3 Storage Management目录页

Chapter 12

Advanced Data

Structure

57Ming Zhang “Data Structures and Algorithms”

Collecting Useless Units

• Collecting useless units: the most

complete failure policy.

• Search the whole memory, and label

those nodes not belonging to any link.

• Collect them to the freelist.

• The collection and compaction

processes usually can perform at the

same time.

12.3 Storage Management目录页

Chapter 12

Advanced Data

Structure

Data Structures
and Algorithms

Thanks

the National Elaborate Course (Only available for IPs in China)
http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/

Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)

Ming Zhang “Data Structures and Algorithms”

