

Data Structures and Algorithms (12)

Instructor: Ming Zhang Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook)

https://courses.edx.org/courses/PekingX/04830050x/2T2014/

Chapter 12 Advanced Data

Structure

Chapter 12 Advanced Data Structure

- 12.1 Multidimensional array
 - 12.1.1 Basic Concepts
 - 12.1.2 Structure of Array
 - 12.1.3 Storage of Array
 - 12.1.4 Declaration of Array

- 12.1.5 Special Matrices Implemented by Arrays
- 12.1.6 Sparse Matrix
- 12.2 Generalized List
- 12.3 Storage management
- 12.4 Trie
- 12.5 Improved BST

Basic Concepts

- Array is an ordered sequence with fixed number of elements and type.
- The size and type of static array must be specified at compile time
- Dynamic array is allocated memory at runtime

Basic Concepts

- Multidimensional array is an extension of onedimensional array (vector).
- Vector of vectors make up an multidimensional array.
- Represented as

ELEM $A[c_1..d_1][c_2..d_2]...[c_n..d_n]$

• c_i and d_i are upper and lower bounds of the indices in the i-th dimension. Thus, the total number of elements is: $\prod_{i=1}^{n} (d_i - 1)$

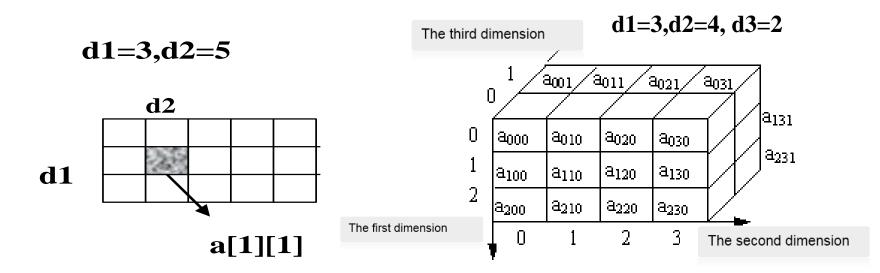
$$\prod_{i=1} (d_i - c_i + 1)$$

Chapter 12

Advanced Data Structure

12.1 Multidimensional Array

Structure of Array



5

2-dimensional array 3-dimensional array d1[0..2], d2[0..3], d3[0..1] are the three dimensions respectively

Storage of Array

- Memory is one-dimensional, so arrays are stored linearly
 - Stored row by row (row-major)

6

• Stored column by column (column-major)

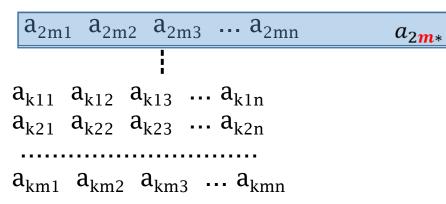
$$X = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Chapter 12

Advanced Data Structure

Row-Major in Pascal

$a_{111} a_{112} a_{113} \dots a_{11n}$	<i>a</i> _{11*}			
$a_{121} a_{122} a_{123} \dots a_{12n}$	<i>a</i> _{12*}			
$a_{1m1}a_{1m2} \ a_{1m3} \ \dots \ a_{1mn}$	a_{1m*}			
$a_{1m1}a_{1m2} \ a_{1m3} \ \dots \ a_{1mn}$ $a_{211} \ a_{212} \ a_{213} \ \dots \ a_{21n}$	a _{1m*} a _{21*}			



7

a[1..k,1..m,1..n]

Advanced Data Structure

Column-Major in FORTRAN a[1..k, 1..m, 1..n]

$$a_{11n} a_{21n} a_{31n} \dots a_{k1n}$$

 $a_{12n} a_{22n} a_{32n} \dots a_{k2n}$
 \dots
 $a_{1mn} a_{2mn} a_{3mn} \dots a_{kmn}$

• C++ multidimensional array ELEM $A[d_1][d_2]...[d_n];$ $loc(A[j_1, j_2, ..., j_n]) = loc(A[0, 0, ..., 0])$ $+d \cdot [j_1 \cdot d_2 \cdot \ldots \cdot d_n + j_2 \cdot d_3 \cdot \ldots \cdot d_n]$ $+...+j_{n-1}\cdot d_n+j_n$] $= loc(A[0,0,...,0]) + d \cdot [\sum_{i=1}^{n-1} j_i \prod_{i=1}^{n} d_k + j_n]$ k=i+1

Special Matrices Implemented by Arrays

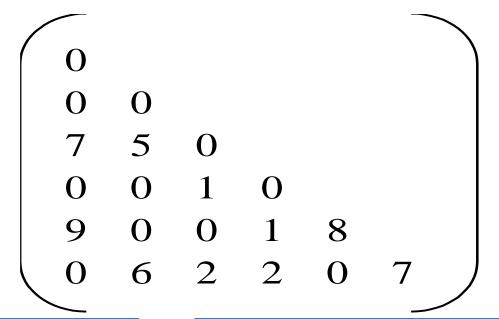
- Triangular matrix (upper/lower)
- Symmetric matrix

- Diagonal matrix
- Sparse matrix

Chapter 12Advanced Data
Structure12.1Multidimensional Array

Lower Triangular Matrix

- One-dimensional array: list[0.. (n²+n)/2-1]
 - The matrix element a_{i,j} is stored in list[(i²+i) /2 + j] (i>=j)



Multidimensional Array **Advanced Data** 12.1

Symmetric Matrix

- Satisfies that $a_{i,i} = a_{i,i}, 0 \le i, j < n$ The matrix on the right is a (symmetric) adjacent matrix for a undirected graph
- Store the lower triangle in a 1-dimensional array

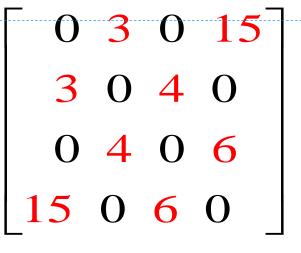
sa[0..n (n+1) /2-1]

Chapter 12

Structure

•There is a one-to-one mapping between sa[k] and a_{i.i}:

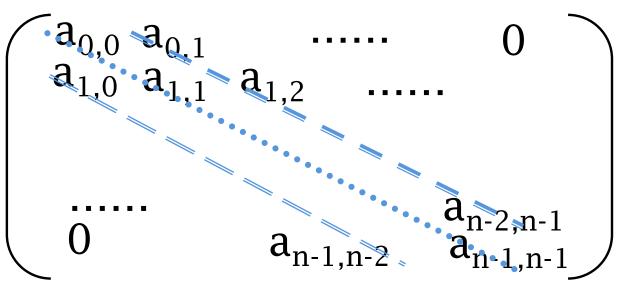
$$k = \begin{cases} j(j+1)/2 + i, i < j \\ i(i+1)/2 + j, i \ge j \end{cases}$$



Chapter 12 Image: Chapter 12 Advanced Data 12.1 Multidimensional Array Structure Image: Chapter 12

Diagonal Matrix

- Diagonal matrix: all non-zero elements are located at diagonal lines.
- Band matric: a[i][j] = 0 when |i-j| > 1
 - A band matrix with bandwidth 1 is shown as below



Sparse Matrix

• Few non-zero elemens, and these elements distribute unevenly

-6×7 =	$\left(\begin{array}{c} 0 \end{array} \right)$	0	0	0	0	0	5
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	· 0	0	0	0	0	0
	11	0	0	0	0	0	0
	(0 0 0 0 11 0	0	0	0	0	0	0)

• Sparse Factor

•In a m×n matrix, there are t non-zero elements, and the sparse factor is: t

$$\delta = \frac{\iota}{\iota}$$

•When this value is lower than 0.05, the matrix could be considered a sparse matrix.

• 3-tuple (i, j, a_{ij}): commonly used for input/output

- •i is the row number
- •j is the column number
- •a_{ij} is the element value

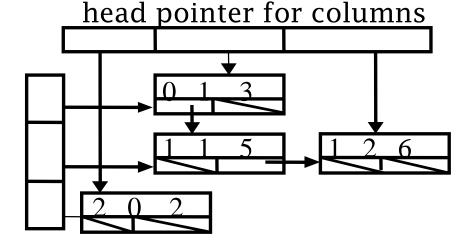
Orthogonal Lists of a Sparse Matrix

- An orthogonal list consists of two sets of lists
 - pointer sequense for rows and columns
 - Each node has two pointers: one points to the successor on the same row; the other points to the successor on the same column head point

$$\begin{bmatrix} 0 & 3 & 0 \\ 0 & 5 & 6 \\ 2 & 0 & 0 \end{bmatrix}$$

16

head pointer for rows



Chapter 12			
Advanced Data Structure	12.1	Multidimensional Array	

Classic Matrix Multiplication

• A[c1..d1][c3..d3] , B[c3..d3][c2..d2], C[c1..d1][c2..d2]。

$$\mathbf{C} = \mathbf{A} \times \mathbf{B} \quad (\mathbf{C}_{ij} = \sum_{k=c3}^{d3} A_{ik} \cdot \mathbf{B}_{kj})$$

Chapter 12			
Advanced Data Structure	12.1	Multidimensional Array	

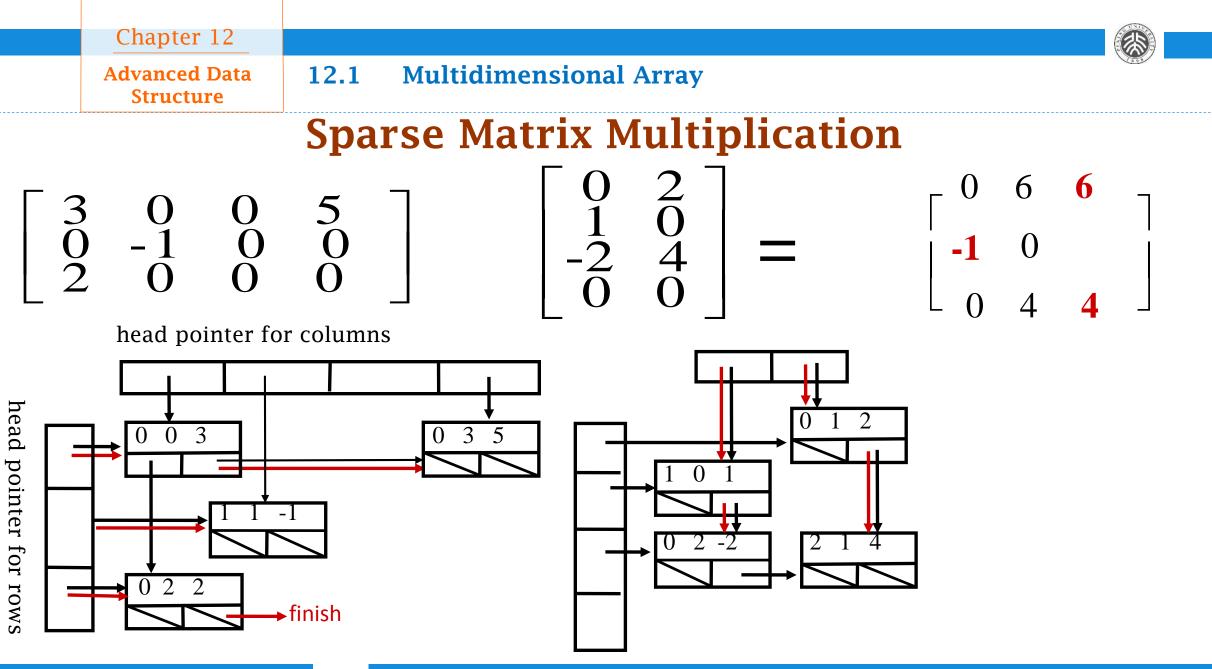
Time Cost of Classic Matrix Multiplication

```
•p=d1-c1+1 , m=d3-c3+1 , n=d2-c2+1 ;
```

•A is a p×m matrix, B is a m×n matrix, resulting in C, a p×n matrix

•So the time cost of the classic matrix multiplication is O $(p \times m \times n)$

```
for (i=c1; i<=d1; i++)
for (j=c2; j<=d2; j++){
    sum = 0;
    for (k=c3; k<=d3; k++)
        sum = sum + A[i,k]*B[k,j];
    C[i,j] = sum;
}</pre>
```



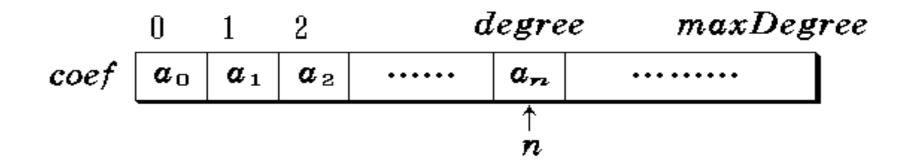
Time Cost of Sparse Matrix Multiplication

- A is a p×m matrix, B is a m×n matrix, resulting in C, a p×n matrix.
 - If the number of non-zero elements in a row of A is at most $\boldsymbol{t}_{\boldsymbol{a}}$
 - and the number of non-zero elements in a column of B is at most $t_{\rm b}$
- Overall running time is reduced to O ($(t_a \! + \! t_b) \times p \! \times \! n)$
- Time cost of classic matrix multiplication is O (p×m×n)

Applications of Sparse Matrix

polynomial of one indeterminate

$$P_{n}(x) = a_{0} + a_{1}x + a_{2}x^{2} + \dots + a_{n}x^{n}$$
$$= \sum_{i=0}^{n} a_{i}x^{i}$$



Chapter 12 Advanced Data Structure

Chapter 12 Advanced Data Structure

- 12.1 Multi-array
- 12.2 Generalized List
 - Basic Concepts
 - Different Types of Generalized List
 - Storage of Generalized List
 - Traversal algorithm for Generalized List
- 12.3 Storage management
- 12.4 Trie
- 12.5 Improved BST

12.2 **Generalized list and Storage management Advanced Data**

Basic Concepts

Review of linear list

Chapter 12

Structure

- Finite ordered sequence consisting of n(>=0) elements.
- All elements of a linear list have the same type.
- If a linear list contains one or more sub-lists, then it is called a generalized list, usually represented as:

- L=
$$(x_0, x_1, \dots, x_i, \dots, x_{n-1})$$

- $L = (x_0, x_1, ..., x_i, ..., x_{n-1})$
- L is the **name** of this generalized list.
- n is the **length.**
- Each $x_i (0 \le i \le n-1)$ is an **element.**
 - either a single element, i.e. atom,
 - or another generalized list, i.e. sublist.
- **Depth** : the number of brackets when all the elements are converted to atoms.

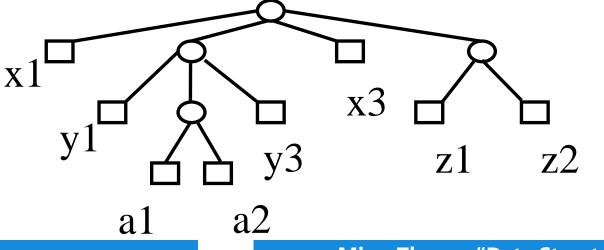
$$L = (x_0, x_1, ..., x_i, ..., x_{n-1})$$

- head = x_0
- tail = (x_1, \dots, x_{n-1})
 - smaller lists
- Easier to store and to implement.

Chapter 12Advanced Data
Structure12.2 Generalized list and Storage management

Different Types of Generalized Lits

- pure list
 - There is only one path existing from root to each leaf.
 - i.e. each element (atom, sublist) only appears
 once. (x1, (y1, (a1,a2), y3), x3, (z1,z2))



12.2 Generalized list and Storage management

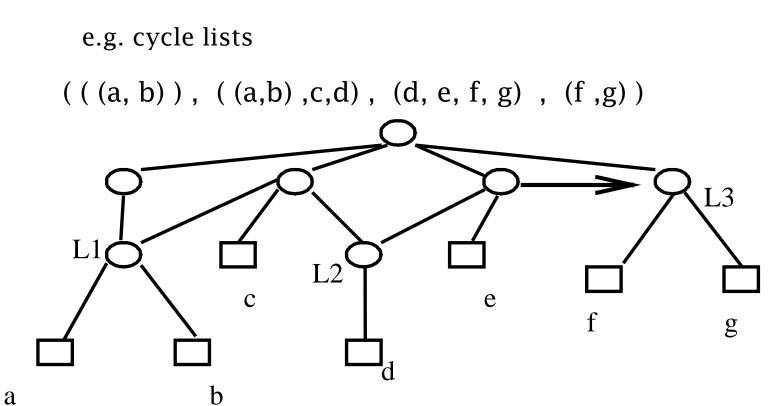
Different Types of Generalized Lits

• Reentrant lists

Chapter 12

Advanced Data Structure

- Its elements (atoms or sublists) might appear more than once.
- Corresponds to a DAG if no circles exists.
- Sublists and atoms are labeled.



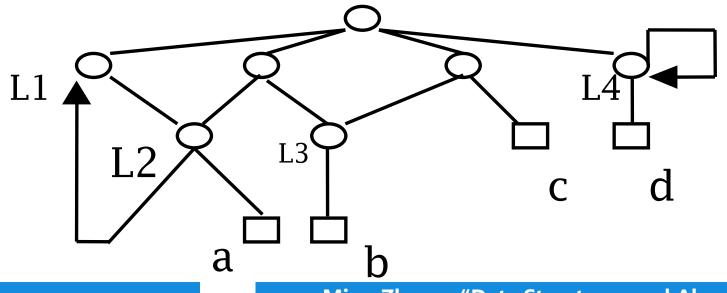
(L1: (a,b), (L1, c,L2: (d)), (L2, e,L3: (f,g)), L3)

Chapter 12 Advanced Data Structure Advanced Data

Different Types of Generalized Lits

- Circle lists
 - contains circles.
 - with infinite depth.

(L1: (L2: (L1, a)), (L2, L3: (b)), (L3, c), L4: (d, L4))



Chapter 12

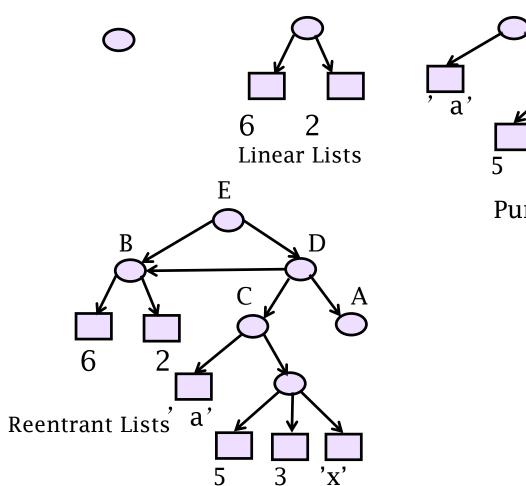
Advanced Data Structure

Α

12.2 Generalized list and Storage management

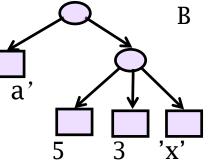
D

С

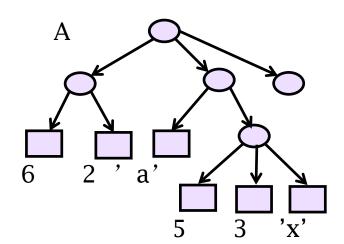


В

С



Pure Lists



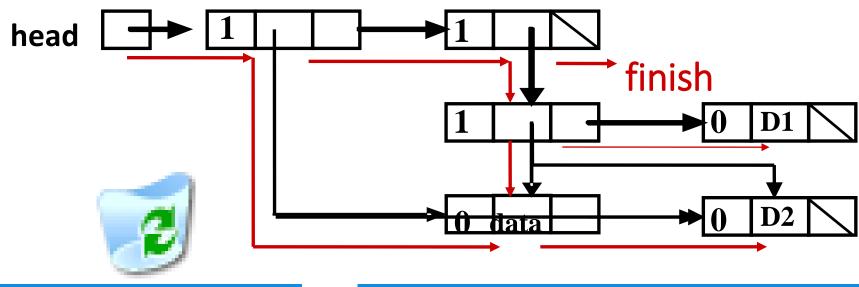
F 4 Circle Lists

- Graph \supseteq Reentrant List \supseteq Pure List(Tree) \supseteq Linear List
 - Generaized lists are extensions of linear and tree structures.
- Circle lists are reentrant lists that have circles.
- Applications of generalized lists
 - Relations between the invocation of the function
 - Reference relations in memory space
 - LISP

Chapter 12 Advanced Data 12.2 Generalized list and Storage management Structure Structure 12.2 Generalized list and Storage management

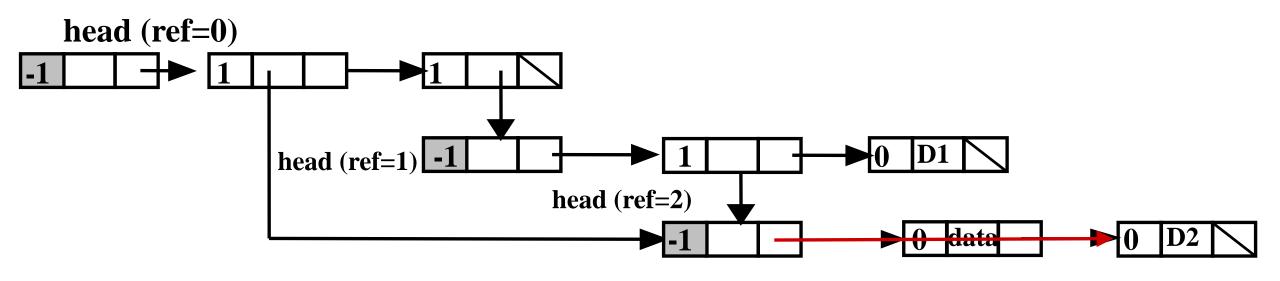
Storage of Generalized Lists

- Generalized link lists without head node
 - Problems might occur when deleting nodes.
 - The list must be adjusted when deleting node 'data'.



Chapter 12 Image: Chapter 12 Image: Chapter 12 Advanced Data Image: Chapter 12 Image: Chapter 12 Image: Chapter 12 Advanced Data Image: Chapter 12 Image: Chapter 12 Image: Chapter 12 Image: Chapter 12 Advanced Data Image: Chapter 12 <

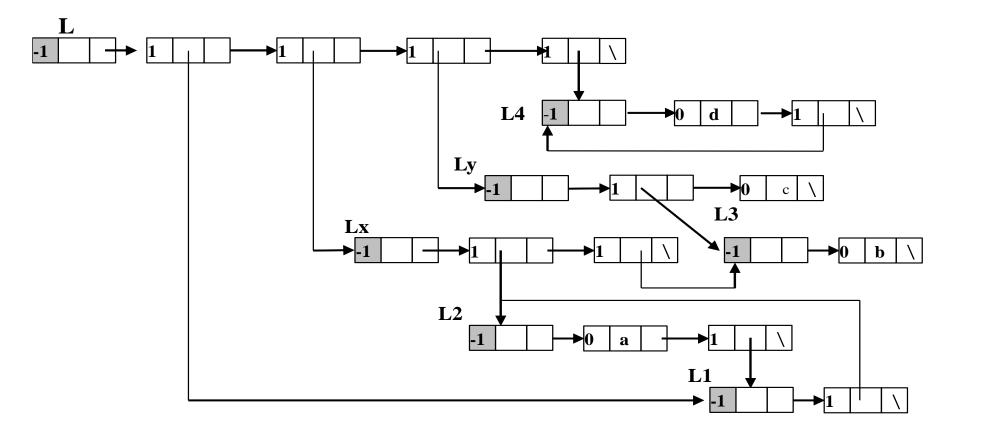
Storage of Generalized Lists



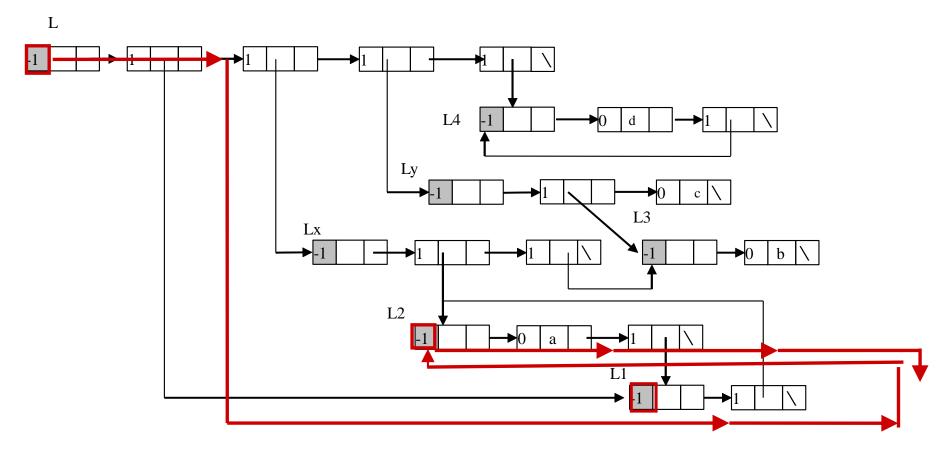
- Add the head node, and the deleting/inserting operation would be simplified.
- Reentrant lists, especially circle lists
 - mark each node (because it is a graph)

Chapter 12 Advanced Data 12.2 Generalized list and Storage management Structure 12.2 Generalized list and Storage management

Circle Generalized Lists with Head Nodes



(L1: (L2: (a,L1))



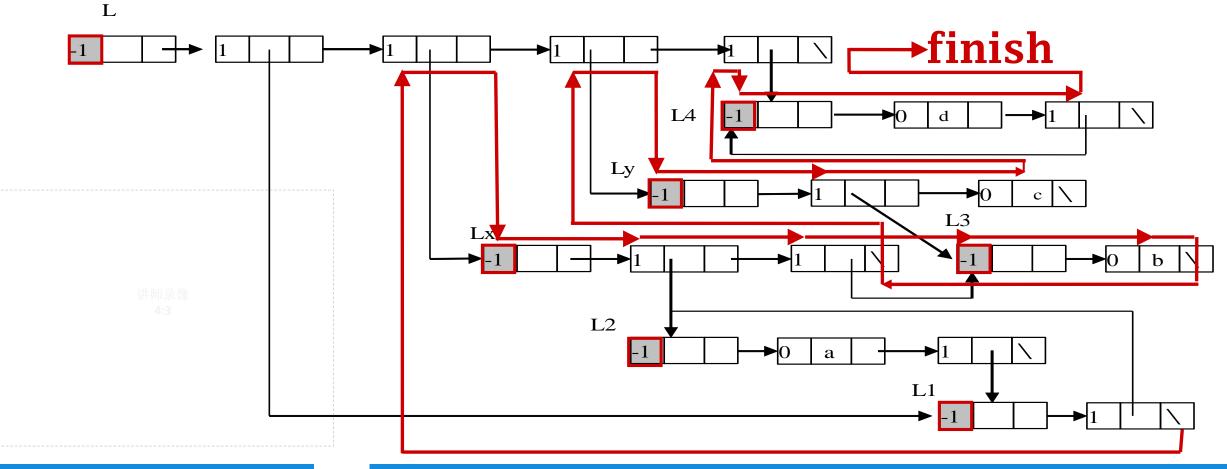
Chapter 12

Advanced Data Structure

12.2 Generalized list and Storage management

。 家

(L1: (L2: (a,L1)) , Lx : (L2 , L3 : (b)), Ly : (L3 , c), L4 : (d, L4))



Chapter 12 Advanced Data Structure

Chapter 12 Advanced Data Structure

- 12.1 Multidimensional array
- 12.2 Generalized Lists
- 12.3 Storage management
 - Allocation and Reclamation
 - Freelist
 - Dynamic Memory Allocation and Reclamation
 - Failure Policy and Collection of Useless Units
- 12.4 Trie
- 12.5 Improved BST

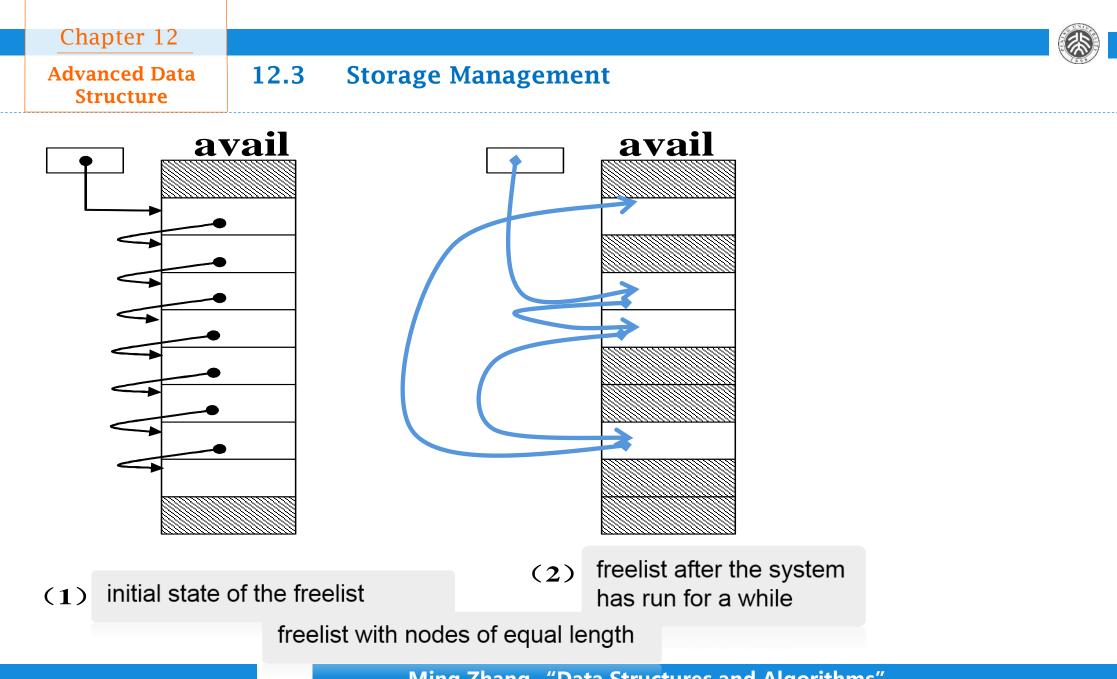
Chapter 12 Image: Chapter 12 Advanced Data Image: Chapter 12 Structure Image: Chapter 12

Allocation and Reclamation

- Basic problems in storage management
 - Allocate memory
 - Reclaim "freed" memory
- Fragmentation problem
 - The compression of storage
- Collection of useless units
 - Useless units: memory that can be collected but has not been collected yet
 - Memory leak
 - Programmers forget to delete pointers which will not be used

Freelist

- Consider the memory as an array of changeable number of blocks
 - Some blocks has been allocated
 - Link free blocks together, and form a freelist.
- Memory allocation and reclamation
 - new p: allocate from available space
 - delete p: return the block that p points to to the freelist.
- If there is not enough space, resort to failure policy.



Function overloading of freelist

};

```
template <class Elem> class LinkNode{
private:
   static LinkNode avail;
                          // head pointer
public:
   Elem value;
                                     // value of each node
   LinkNode
             next;
                                     // pointer pointing to next node
   LinkNode (const Elem & val, LinkNode
                                        p);
   LinkNode (LinkNode p = NULL); // construction function
   void operator new (size_t) ; // redefine new
   void operator delete (void p) ; // redefine delete
```

```
return temp;
```

}

```
Ming Zhang "Data Structures and Algorithms"
```

Chapter 12			
Advanced Data Structure	12.3	Storage Management	

```
//implementation of delete
```

```
template <class Elem>
```

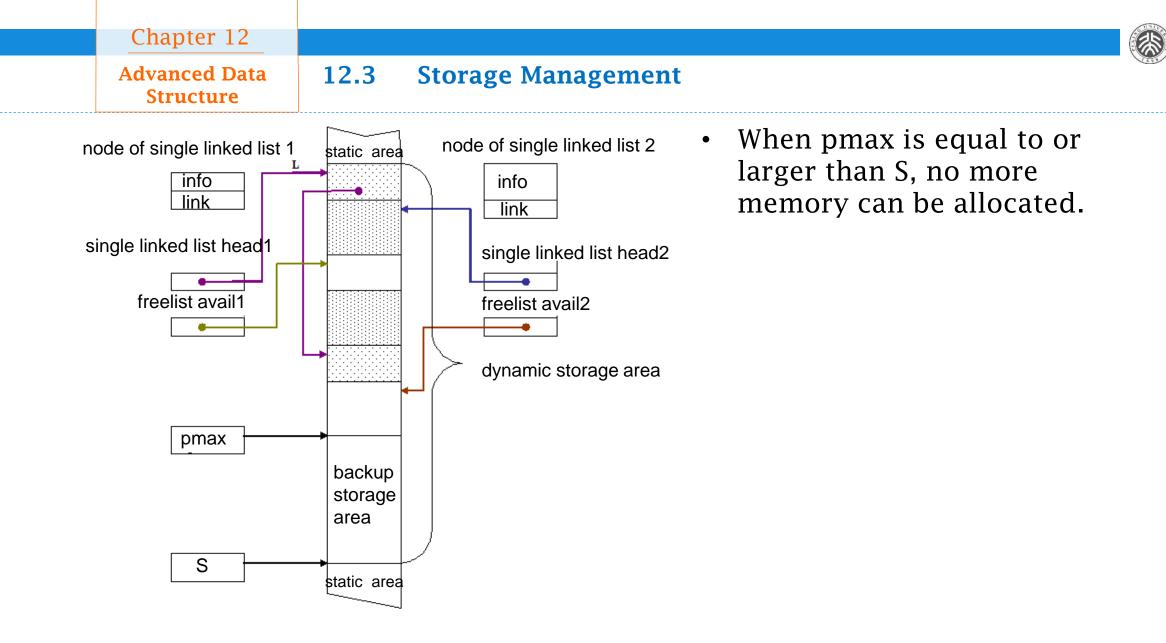
void LinkNode<Elem>::operator delete (void p) {

```
( (LinkNode<Elem> ) p) ->next = avail;
```

```
avail = (LinkNode<Elem> ) p;
```

Free List: Stack in a Singly-Linked List

- new: deletion in the stack
- delete: insertion in the stack
- If the default new and delete operations are needed, use "::new p" and "::delete p".
 - For example, when a program is finished, return the memory occupied by avail back to the system (free the memory completely)

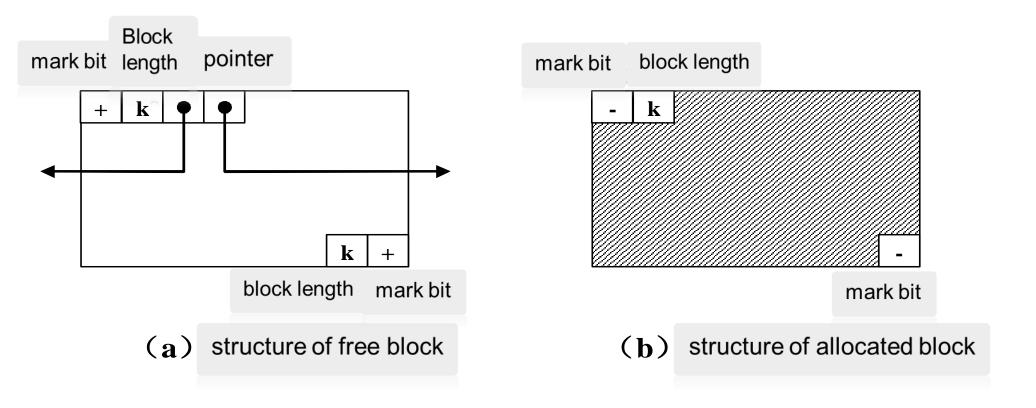


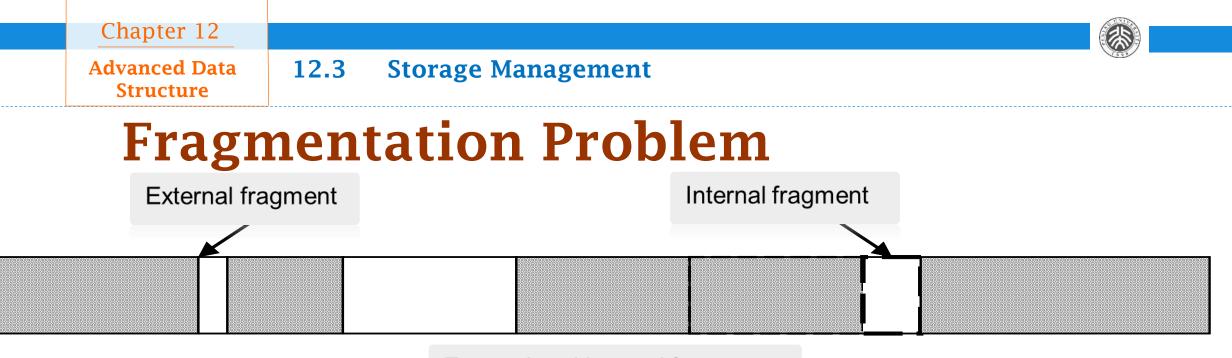
Dynamic Memory Allocation and Reclamation

Available blocks with variable lengths

- Allocation
 - Find a block whose length is larger than the requested length.
 - Truncate suitable length from it.
- Reclamation
 - Consider whether the space deleted can be merged with adjacent nodes,
 - So as to satisfy later request of large node.

Data Structure of Free Blocks





External and internal fragment

- Internal fragment: space larger than the requested bytes
- External fragment: small free blocks

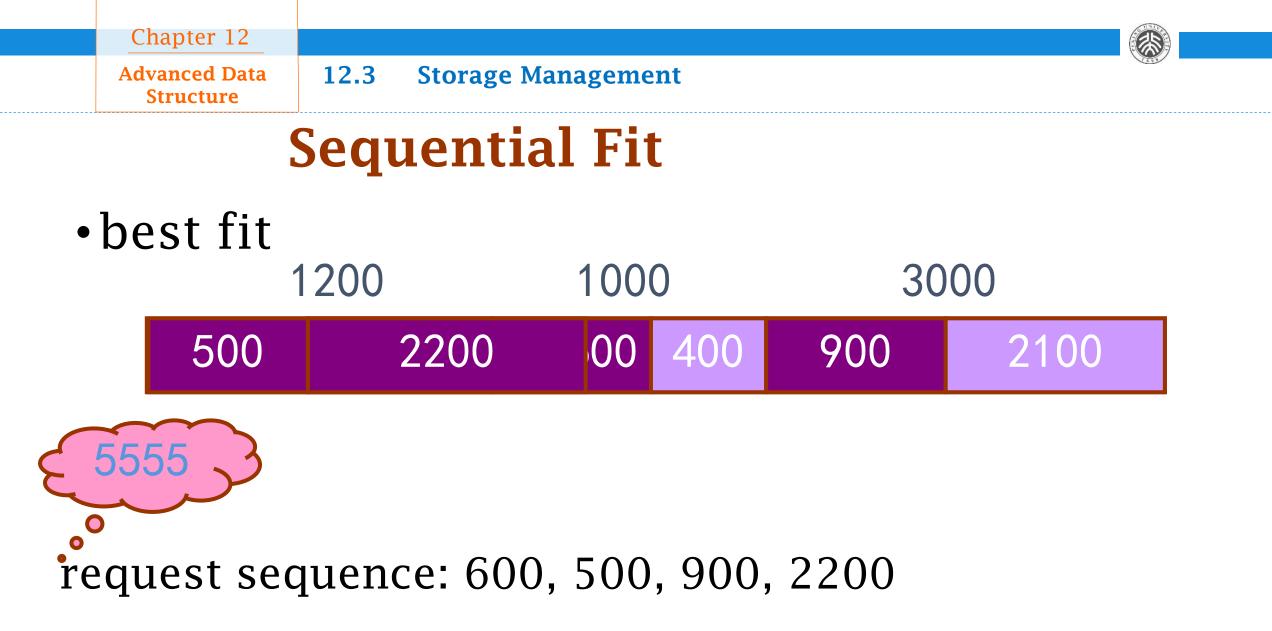
Sequential Fit

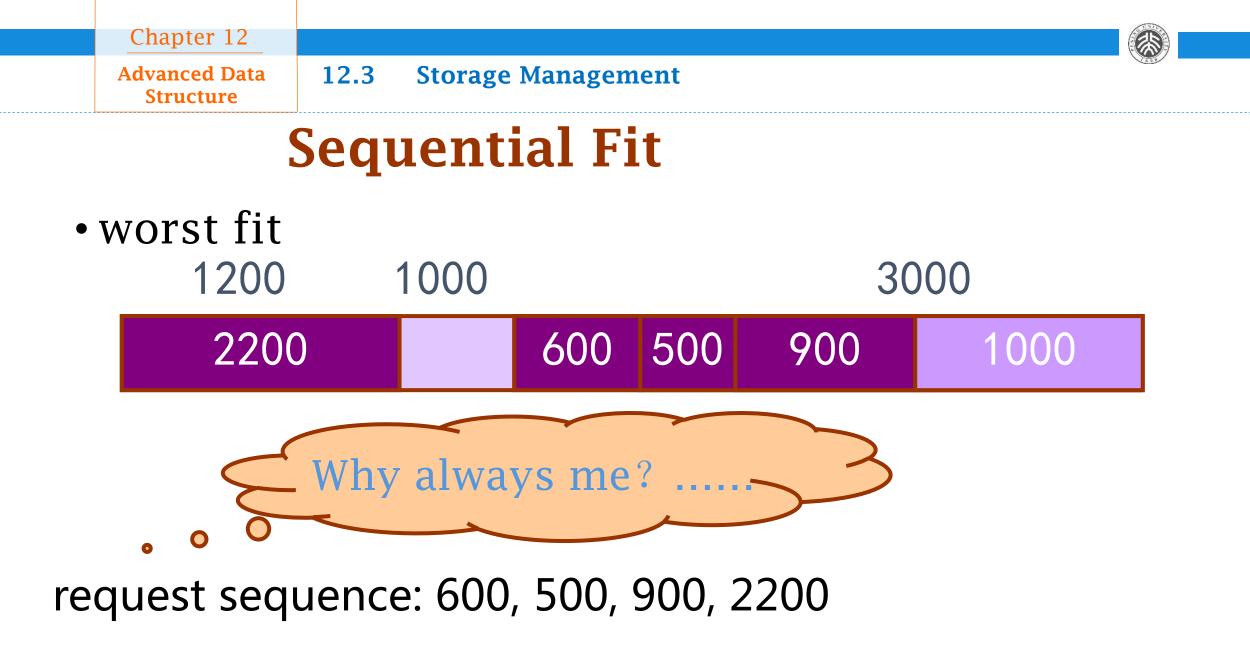
Allocation of free blocks

•Common sequential fit algorithms

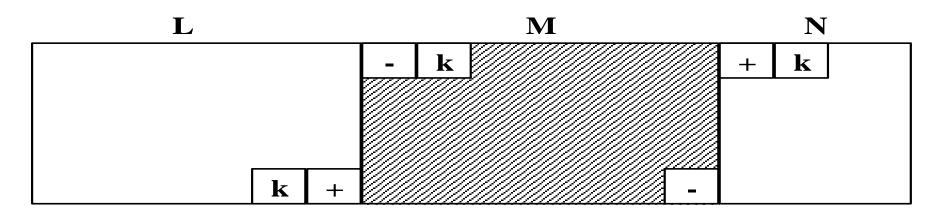
- first fit
- best fit
- worst fit

- 3 Blocks 1200, 1000, 3000 request sequence: 600, 500, 900, 2200
- first fit:





Reclamation: merge adjacent blocks



allocate block M back to the freelist

Fitting Strategy Selection

- Need to take the following user request into account
 - Importance of allocation and reclamation efficiency.
 - Variation range of the length of allocated memory
 - Frequency of allocation and reclamation
- In practice, fist fit is **the most commonly used.**
 - Quicker allocation and reclamation.
 - Support random memory requests.

Hard to decide which one is the best in general.

Failure Policy and Collection of Useless Units

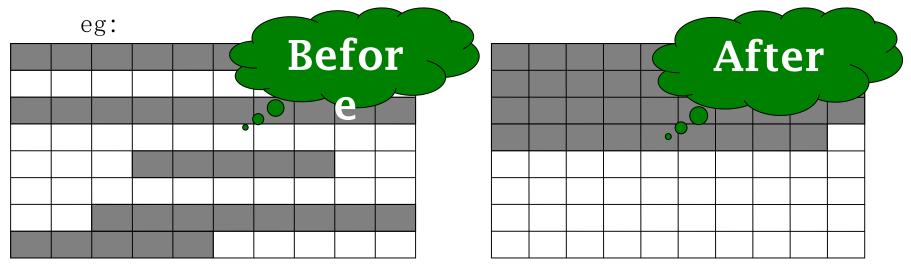
- If a memory request cannot be satisfied because of insufficient memory, the memory manager has two options:
 - do nothing, and return failure info;
 - follow failure policy to satisfy requests.

Compaction

- Collect all the fragments together
 - Generate a larger free block.
 - Used when there are a lot of fragments.
- Handler makes the address relative
 - Secondary indirect reference to the storage location.
 - Only have to change handlers to move blocks.
 - No need to change applications.

Two Types of Compaction

- Perform a compact once a block is freed.
- Perform a compact when there is not enough memory or when collecting useless units.



- Collecting useless units: the most complete failure policy.
 - Search the whole memory, and label those nodes not belonging to any link.
 - Collect them to the freelist.
 - The collection and compaction processes usually can perform at the same time.

Data Structures and Algorithms Thanks

the National Elaborate Course (Only available for IPs in China) http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/ Ming Zhang, Tengjiao Wang and Haiyan Zhao Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)