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Basic Concepts

• Array is an ordered sequence with 

fixed number of elements and type.

• The size and type of static array 

must be specified at compile time

• Dynamic array is allocated memory 

at runtime
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Basic Concepts

• Multidimensional array is an extension of one-

dimensional array (vector).

• Vector of vectors make up an multidimensional 

array.

• Represented as

ELEM A[c
1
..d

1
][c

2
..d

2
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n
..d

n
]

• c
i 
and d

i 
are upper and lower bounds of the 

indices in the i-th dimension. Thus, the total 

number of elements is:
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d1=3,d2=5 

d1 

d2 

a[1][1] 

d1 

d2 

d3 

a[1][3][5] 

Structure of Array

2-dimensional array                         3-dimensional array

d1[0..2], d2[0..3], d3[0..1] are the three dimensions respectively

d1=3,d2=4, d3=2
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Storage of Array

• Memory is one-dimensional, so arrays are 

stored linearly

• Stored row by row (row-major)

• Stored column by column (column-major)

 

X= 

1  2  3 

4  5  6 

7  8  9 
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Row-Major in Pascal
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a111 a211 a311 … ak11

a121 a221 a321 … ak21

…………………………
a1m1 a2m1 a3m1 … akm1

a112 a212 a312 … ak12

a122 a222 a322 … ak22

…………………………
a1m2 a2m2 a3m2 … akm2

┇
a11n a21n a31n … ak1n

a12n a22n a32n … ak2n

…………………………
a1mn a2mn a3mn … akmn
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• C++ multidimensional array 

ELEM A[d
1
][ d

2
]…[d

n
];

1 2

1 2 2 3
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1 1
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]
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Special Matrices Implemented by Arrays

•Triangular matrix (upper/lower)

•Symmetric matrix

•Diagonal matrix 

•Sparse matrix
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Lower Triangular Matrix

• One-dimensional array: list[0.. (n
2
+n)/2-1]

• The matrix element a
i,j

is stored in

list[ (i
2
+i) /2 + j] (i>=j) 

 
0   

0  0  

7  5  0   

0  0  1  0 

9  0  0  1  8 

0  6  2  2  0  7 
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Symmetric Matrix

• Satisfies that a
i,j

= a
j,i

, 0 ≤ i, j < n

The matrix on the right is a (symmetric) adjacent 

matrix for a undirected graph

• Store the lower triangle in a 1-dimensional 

array

sa[0..n (n+1) /2-1] 

•There is a one-to-one mapping between sa[k] and a
i,j

:
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Diagonal Matrix

• Diagonal matrix: all non-zero elements are 

located at diagonal lines.

• Band matric: a[i][j] = 0 when |i-j| > 1

• A band matrix with bandwidth 1 is shown as below

a
0,0

a
1,1

a
0,1

a
1,0

a
n-1,n-2

a
n-1,n-1

a
n-2,n-1

a
1,2

0

0

……

……

……
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Sparse Matrix

• Few non-zero elemens, and these elements 

distribute unevenly
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• Sparse Factor

•In a m×n matrix, there are t non-zero elements, and the sparse factor 

is:

•When this value is lower than 0.05, the matrix could be considered a 

sparse matrix.

• 3-tuple (i, j, a
ij
): commonly used for input/output

•i is the row number

•j is the column number

•a
ij

is the element value

nm

t
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Orthogonal Lists of a Sparse Matrix

• An orthogonal list consists of two sets of lists

• pointer sequense for rows and columns

• Each node has two pointers: one points to the 

successor on the same row; the other points to 

the successor on the same column

0   3    0

0   5    6

2   0    0

0   1    3

1   1    5

2   0    2

head pointer for columns

1   2   6
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”

Classic Matrix Multiplication
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Time Cost of Classic Matrix Multiplication

•p=d1-c1+1，m=d3-c3+1，n=d2-c2+1；

•A is a p×m matrix, B is a m×n matrix, resulting in C, a p×n 

matrix

•So the time cost of the classic matrix multiplication is O (p×m×n)

for (i=c1; i<=d1; i++)

for (j=c2; j<=d2; j++){

sum = 0;

for (k=c3; k<=d3; k++)

sum = sum + A[i,k]*B[k,j];

C[i，j] = sum;

} 
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Sparse Matrix Multiplication
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Time Cost of Sparse Matrix Multiplication

• A is a p×m matrix, B is a m×n matrix, resulting 

in C, a p×n matrix.

• If the number of non-zero elements in a row of A is at 

most t
a

• and the number of non-zero elements in a column of 

B is at most t
b

• Overall running time is reduced to O ( (t
a
+t

b
) 

×p×n) 

• Time cost of classic matrix multiplication is O 

(p×m×n) 
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Applications of Sparse Matrix
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Chapter 12 Advanced Data Structure

• 12.1 Multi-array

• 12.2 Generalized List

• Basic Concepts

• Different Types of Generalized List
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• Traversal algorithm for Generalized List
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Basic Concepts 

• Review of linear list 

– Finite ordered sequence consisting of n(>=0) 

elements.

– All elements of a linear list have the same 

type.

• If a linear list contains one or more sub-lists, then 

it is called a generalized list, usually represented 

as:

– L＝ (x
0
，x

1
，…，x

i
，…，x

n-1
) 
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L＝ (x
0
，x

1
，…，x

i
，…，x

n-1
) 

• L is the name of this generalized list.

• n is the length.

• Each x
i
(0≤ i ≤ n-1) is an element.

– either a single element, i.e. atom,

– or another generalized list, i.e. sublist.

• Depth : the number of brackets when all 

the elements are converted to atoms.
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L＝ (x
0
，x

1
，…，x

i
，…，x

n-1
) 

• head = x
0

• tail = (x
1
，…，x

n-1
) 

• smaller lists

• Easier to store and to implement.
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Different Types of Generalized Lits

• pure list

• There is only one path existing from root to 

each leaf.

• i.e. each element (atom, sublist) only appears 

once. (x1,  (y1 , (a1 ,a2)  , y3) , x3 , (z1 ,z2) ) 

x1

y1

a1 a2

y3 z1 z2

x3
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• Reentrant lists

• Its elements (atoms or 

sublists) might appear 

more than once.

• Corresponds to a DAG 

if no circles exists.

• Sublists and 

atoms are labeled.

(L1:  (a,b) ,  (L1, c ,L2: (d) ) ,   (L2, e,L3:  (f,g)  )  , L3)  

( ( (a, b) ) ,  ( (a,b) ,c,d) ,  (d, e, f, g)  ,  (f ,g) ) 

L1
L2

L3

a b
d

e
f g

c

e.g. cycle lists

Different Types of Generalized Lits
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• Circle lists

• contains circles.

• with infinite depth.

(L1: (L2: (L1, a) ) ,  (L2, L3: (b) ) ,  (L3, c) , L4: (d,L4) ) 

L1

L2
L3

a b

c

L4

d

Different Types of Generalized Lits
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A                B                 C                                   D

B       C          A

6 2

Linear Lists

’a’

5      3    ’x’

Pure Lists

6      2  ’a’

5      3    ’x’

E

B D

C A

6 2

’a’

5      3    ’x’

Reentrant Lists

F

4 Circle Lists

目录页

Chapter 12

Advanced Data 

Structure

12.2 Generalized list and Storage management



Ming Zhang “Data Structures and Algorithms”

• Graph  Reentrant List  Pure List(Tree)  Linear 

List

• Generaized lists are extensions of linear and tree 

structures.

• Circle lists are reentrant lists that have circles.

• Applications of generalized lists

• Relations between the invocation of the function

• Reference relations in memory space

• LISP

目录页

Chapter 12

Advanced Data 

Structure

12.2 Generalized list and Storage management



31Ming Zhang “Data Structures and Algorithms”

Storage of Generalized Lists

1

1

1

data0

head

D10

D20

finish

• Generalized link lists without head node

– Problems might occur when deleting nodes. 

– The list must be adjusted when deleting node 

'data'.
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-1 1

-1

1

data0

head (ref=0) 

D10head (ref=1) 1

-1

head (ref=2) 

D20

• Add the head node, and the deleting/inserting operation would 

be simplified.

• Reentrant lists, especially circle lists

– mark each node (because it is a graph)

Storage of Generalized Lists
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Circle Generalized Lists with Head Nodes
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Chapter 12 Advanced Data Structure

• 12.1 Multidimensional array

• 12.2 Generalized Lists

• 12.3 Storage management
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Allocation and Reclamation 

• Basic problems in storage management

• Allocate memory

• Reclaim "freed" memory

• Fragmentation problem

• The compression of storage

• Collection of useless units

• Useless units: memory that can be collected but has 

not been collected yet

• Memory leak   

• Programmers forget to delete pointers which will not be

used
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Freelist

• Consider the memory as an array of changeable 

number of blocks

• Some blocks has been allocated

• Link free blocks together, and form a freelist.

• Memory allocation and reclamation

• new p: allocate from available space

• delete p: return the block that p points to to the 

freelist.

• If there is not enough space, resort to failure policy.  
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avail                             avail 

（1）初始状态的可利用空间表 
（2）系统运行一段时间后 

的可利用空间表 

结点等长的可利用空间表 
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Function overloading of freelist

template <class Elem> class LinkNode{

private:

static LinkNode  avail; // head pointer

public:

Elem value;                     // value of each node

LinkNode   next;          // pointer pointing to next node

LinkNode (const Elem & val, LinkNode   p) ;

LinkNode (LinkNode   p = NULL) ; // construction function

void operator new (size_t) ;     // redefine new

void operator delete (void p) ;  // redefine delete

};
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//implementation of new

template <class Elem>

void LinkNode<Elem>::operator new (size_t) {

if (avail == NULL)    //if the list is empty

return ::new LinkNode; //allocate memory using new

LinkNode<Elem>   temp = avail;

//allocate from available space 
list

avail = avail->next;

return temp;

}
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//implementation of delete

template <class Elem>

void LinkNode<Elem>::operator delete (void p) {

( (LinkNode<Elem>  )  p) ->next = avail;

avail =  (LinkNode<Elem>  ) p;

}
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Free List: Stack in a Singly-Linked List

• new: deletion in the stack

• delete: insertion in the stack

• If the default new and delete operations

are needed, use “::new p” and “::delete p”.

• For example, when a program is finished, 

return the memory occupied by avail back to 

the system (free the memory completely)
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• When pmax is equal to or 

larger than S, no more 

memory can be allocated.
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Dynamic Memory Allocation and Reclamation 

Available blocks with variable lengths

•Allocation

• Find a block whose length is larger than the 

requested length.

• Truncate suitable length from it.

•Reclamation

• Consider whether the space deleted can be 

merged with adjacent nodes,

• So as to satisfy later request of large node.
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Data Structure of Free Blocks

 

标记位 标记位 块长度 

标记位 块长度 指针 

块长

度 标记位 

+ k   

+ k 

- k 

- 

（a）空闲块的结构 （b）已分配块的结构 
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Fragmentation Problem

• Internal fragment: space larger than the 

requested bytes

• External fragment: small free blocks

 

外部碎片 内部碎片 

外部碎片和内部碎片 

12.3 Storage Management目录页

Chapter 12

Advanced Data 

Structure



48Ming Zhang “Data Structures and Algorithms”

Sequential Fit

Allocation of free blocks

•Common sequential fit algorithms

• first fit

• best fit

• worst fit

12.3 Storage Management目录页

Chapter 12

Advanced Data 

Structure



49Ming Zhang “Data Structures and Algorithms”

Sequential Fit

• 3 Blocks 1200，1000，3000

request sequence: 600, 500, 900, 2200

• first fit：

1200 1000 3000

600 600500 100 900 100 2200 800
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Sequential Fit

•best fit

1200 1000 3000

600500 400 900 21007002200

5555

request sequence: 600, 500, 900, 2200

12.3 Storage Management目录页

Chapter 12

Advanced Data 

Structure



Ming Zhang “Data Structures and Algorithms”

Sequential Fit

• worst fit

1200 1000 3000

600 240019002200 500 900 1000

Why always me？……

request sequence: 600, 500, 900, 2200
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Reclamation: merge adjacent blocks

 

L M N 

+ k 

k + k - 

- 

把块 M 释放回可利用空间表 
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Fitting Strategy Selection

• Need to take the following user request into

account

• Importance of allocation and reclamation

efficiency.

• Variation range of the length of al located

memory

• Frequency of allocation and reclamation

• In practice, fist fit is the most commonly used.

• Quicker allocation and reclamation.

• Support random memory requests.

Hard to decide which one is the best in general.
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Failure Policy and Collection of Useless Units

• If a memory request cannot be satisfied

because of insufficient memory, the

memory manager has two options:

• do nothing, and return failure info;

• follow failure policy to satisfy requests.
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Compaction

• Collect all the fragments together

• Generate a larger free block.

• Used when there are a lot of fragments.

• Handler makes the address relative

• Secondary indirect reference to the 

storage location.

• Only have to change handlers to move 

blocks.

• No need to change applications.
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Two Types of Compaction

• Perform a compact once a block is freed.

• Perform a compact when there is not 

enough memory or when collecting useless 

units.

eg:

Befor

e

After
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Collecting Useless Units 

• Collecting useless units: the most 

complete failure policy.

• Search the whole memory, and label 

those nodes not belonging to any link.

• Collect them to the freelist.

• The collection and compaction

processes usually can perform at the 

same time.
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