Ming Zhang “ Data Structures and Algorithms *

Data Structures
and Algorithms (3)

Instructor: Ming Zhang
Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao

Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook)
https://courses.edx.org/courses/PekingX/04830050x/2T2014/

https://courses.edx.org/courses/PekingX/04830050x/2T2014/
https://courses.edx.org/courses/PekingX/04830050x/2T2014/

_ Chapter 3

Stacks and
“““““““ Queues

Chapter 3 Stacks and Queues

. Stacks

. Applications of stacks

- Implementation of Recursion
using Stacks

- Queues

Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and
Queues

Linear lists with limited operation
- Stack

- Operation are permitted only on one
end

- Queue

- Operation are permitted only on two
ends

Ming Zhang “Data Structures and Algorithms”

B ChooterS

Stacksand | 3 1 Stacks
QUEUES | o

Definition of stack

.- Last In First Out
- A linear list with limited access port
- Maln operation pop push
- push, pop N
- Applications
. . Stack top — K.
- Expression evaluation

- Elimination of recursion k
- Depth-first search 1
Stack bottom—— kO

e 4 Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and 3.1 Stacks
“““““““ Queues

Abstract data type of stacks

template <class T>
class Stack {
public: // Operation set of stacks
void clear(); // Change into an empty stack
bool push(const T item);
// push item into the stack , return true if succeed, otherwise false
bool pop(T& item);
// pop item out of the stack , return true if succeed, otherwise false
bool top(T& item);
// read item at the top of the stack, return true if succeed, otherwise false
bool isEmpty(); // If the stack is empty return true
bool isFull(); // If the stack is full return true

Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacksand | 3 71 Stacks
QUEUES | o

Railway station problem

Judge whether the trains go out of the station in the
right order?

- http://poj.org/problem?id=1363

N trains numbered as 1,2,....,n go into the train in order
, given an arrangement , judge whether the trains go
out of the station in the right order?

5,4,3,2,1 1,2,3,4,5

Railway station

e s Ming Zhang “Data Structures and Algorithms”

http://poj.org/problem?id=1363
http://poj.org/problem?id=1363

3.1 Stacks

Use legal reconstruction to find conflicts

?HE 12

Ming Zhang “Data Structures and Algorithms”

I —

3.1 Stacks

Question

- If the order of the item pushed into the stack is
1,2,3,4, then what is the order of the item
popped out of the stack ?

- There is an original input sequence 1,2, ..., n
, you are required to get the output sequence of
P:. Py, ..., Py (They are a permutation of 1, 2
, ..., h)using a stack. If there exists subscript i
, j » k, which meet the condition that i<j<k and
P,<P <P, , then whether the output sequence is
legal or not ?

e s Ming Zhang “Data Structures and Algorithms”

I —

3.1 Stacks

Implementation of stacks

. Array-based Stack

- Implemented by using vectors , is a
simplified version of sequential list
- The size of the stack

- The key point is to make sure which end as
the stack top

- Overflow, underflow problem

- Linked Stack

- Use single linked list for storage , in which
the direction of the pointer is from stack

top down
9 Ming Zhang “Data Structures and Algorithms”

The class definition of Array-based Stack

template <class T> class arrStack : public Stack <T> {

private: // storage of Array-based Stack
int mSize; // the number of elements that the stack can have at most
int top; // stack top , should be small than mSize
T *st; // array to put stack element

public: // implementation of the operation of the Array-based Stack

arrStack(int size) {
// creates an instance of Array-based Stack with given size
mSize = size; top = -1; st = new T[mSize];

}

arrStack() {// creates an instance of Array-based Stack
top = -1;

}

~arrStack() { delete [] st; }

void clear() { top =-1;} // clear the stack

_ 10 Ming Zhang “Data Structures and Algorithms”

Array-based Stack

- The index of the last element pushed
into the stack is 4 , followed by 3,2,1 in

order

Stack top =—p
Stack bottom =%

I 1

=N WD

Ming Zhang “Data Structures and Algorithms”

Overflow of Array-based Stack

Overflow

- When you perform push operation on a
full stack (that already has
maxsize elements), overflow will occur.

Underflow

- When you perform pop operation on an
empty stack, underflow will occur.

Ming Zhang “Data Structures and Algorithms”

Push

bool arrStack<T>::push(const T item) {
if (top == mSize-1) {
// the stack has been full
cout << “Stack overflow" << endl;
return false;

} else { //push new element into the stack and
modify the pointer of the stack top

st[++top] = item;
return true;

Ming Zhang “Data Structures and Algorithms”

Pop

bool arrStack<T>::pop(T & item) { // pop
if (top == -1) { // the stack is empty
cout << " The stack is empty, you can’t
pop "<< endl;
return false;
} else {
// Get top value and decrease top by 1
item = st[top--];
return true;

Ming Zhang “Data Structures and Algorithms”

I —

3.1.2 Linked Stack

Definition of Linked Stack

- Use single linked list for storage

- The direction of the pointer is from stack top
down

Stack top —>‘Kn_1! l
‘Kn-Z! l

3.1.2 Linked Stack

Construction of Linked Stack

template <class T> class InkStack : public Stack <T> {
private: // storage for linked stack
Link<T>* top;
//Pointer which points to the stack top
int size; // the number of elements that the stack can
have at most
public:// implementation of the operation of the linked Stack
InkStack(int defSize) { // constructed function
top = NULL; size = 0O;
}

~InkStack() { // destructor function
clear();
}

_ 16 Ming Zhang “Data Structures and Algorithms”

______________ 3.1.2 Linked Stack

// implementation of push operation of linked stack
bool InksStack<T>:: push(const T item) {

Link<T>* tmp = new Link<T>(item, top);

top = tmp;

Size++;

return true;

§

Link(const T info, Link* nextValue) {
// constructed function with 2 parameters
data = info;
next = nextValue;

_ 17 Ming Zhang “Data Structures and Algorithms”

3.1.2 Linked Stack

Pop

// implementation of pop operation of linked stack
bool InkStack<T>:: pop(T& item) {
Link <T> *tmp;
if (size == 0) {
cout << " The stack is empty, you can’t pop'<< endl;
return false;
}
item = top->data;
tmp = top->next;
delete top;
top = tmp;
size--;
return true;

- Ming Zhang “Data Structures and Algorithms”

I —

3.1 Stacks

Comparison of Array-based Stack and Linked Stack

- Time efficiency
- All operations only take constant time

- Array-based Stack and Linked Stack have
almost the same time efficiency

. Space efficiency
- The length of an Array-based Stack is fixed

- The length of a Linked Stack is variable,
with extra structural cost

_ 19 Ming Zhang “Data Structures and Algorithms”

R I | I

3.1 Stacks

Comparison of Array-based Stack and Linked Stack

- In real applications , Array-based Stack is more

widely used than Linked Stack

- It is easy for Array-based Stack to perform relative
replacement according to the position of stack top,
quickly position and read the internal element

- The time taken for Array-based Stack to read
internal element is O(1). And the Linked stack has to
walk along the chain of pointers, and is slower than
Array-based Stack . It takes O(k) time to read the kth
element.

In general, the stack does not allow the

internal operation, can only operate in the

stack to
20 Ming Zhang “Data Structures and Algorithms”

I —

3.1 Stacks

Question : functions about stack in STL

. Top function gets the element of the stack top
and returns the result back to the user

- Pop function pops a element out of the stack
top (if the stack is not empty)

- Pop function is just an operation and doesn’t return
the result

- pointer = aStack.pop() ? Error!

- Why does STL divide these two operations ?
Why not provide ptop ?

_ 21 Ming Zhang “Data Structures and Algorithms”

I —

3.1 Stacks

Applications of stacks

.- Characteristic of stacks : last-in first-out
- Embodies the transparency between elements

- Commonly used to deal with data which
has recursive structure

- DFSevaluate the expression
- Subroutine / function call management
- Elimination of recursion

Ming Zhang “Data Structures and Algorithms”

I —

3.1 Stacks

Evaluate the expression

- Recursive definition of expressions

- The basic symbolset :{0,1,...,9,+,-,*%
/o C)

- Grammar set : {<expression> , <term> ,
<factor> , <constant> , <digit> }

- The infix expression 23+(34*45)/(5+6+7)
- Postfix expression 233445*56+7 +/ +

Ming Zhang “Data Structures and Algorithms”

3.1 Stacks

Infix expression

- Infix expression
4*x*(2*xX+a)-cC
- Operator in the middle

- Need brackets to change
the priority

I —

3.1 Stacks

Syntax formula for infix expression

<expression> ..= <term> <term> +
| <term> <term> -
| <term>
<term> ..= <factor> < factor > *
| < factor > < factor > /
| <factor >
< factor > ::= < constant >
< constant > .= <digit>
| <digit> <constant>
<digit> :=01|112|3[4|5]6]|7]18|9

_ 25 Ming Zhang “Data Structures and Algorithms”

3.1 Stacks

Graphical representation for expression recursion

expression

term i >

()—

—O—EHEEN—-0—

factor —— >

_ 26 Ming Zhang “Data Structures and Algorithms”

3.1 Stacks

Postfix expression
- Postfix expression

4 X * 2 X *a+ *cC-
- Operators behind
- No need for brackets

1 —
3.1 Stacks

Postfix expression

<expression> ..= <term> <term> +
| <term> <term> -
| <term>
<term> :..= <factor> < factor > *
| < factor > < factor > /
| <factor >
< factor > .= < constant >
< constant > .= <digit>
| <digit> <constant>
<digit> :=01|112|3[4|5]6]|7]18|9

_ 28 Ming Zhang “Data Structures and Algorithms”

I —

3.1 Stacks

Evaluating a postfix expression
233445*56+7+/+="7

Calculation characteristics ?

The main differences between infix

and postfix expression ?
23+34*45 /(5+6+7)=7

233445*56+7+/+=7
_ 29 Ming Zhang “Data Structures and Algorithms”

postfix expression to be handled :

23 3445 * 5 6 + 7 + [/ +

change of the]J&IHH)‘
stack state

calculation result

I —

3.1 Stacks

Evaluating a postfix expression

- Loop : read symbol sequences of expressions

(assume “=" as the end of the input sequence)
, and analyze one by one according to the
element symbol read
1. When an operand is met , push

2. When an operator is met, pop twice and get two
operands, calculate them using the operator. And
finally push the result into the stack.

. Continue the process above until the symbol “
=" is met, then the value of the stack top is
the value of the input expression

_ 31 Ming Zhang “Data Structures and Algorithms”

3.1 Stacks

The class definition of postfix calculator

class Calculator {
private:
Stack<double> s;//the stack is used for pushing and storing operands
// push two operands opd1 and opd?2 from the stack top
bool GetTwoOperands(double& opdl,double& opd?2);
// get two operands, and calculate according to op
void Compute(char op);
public:
Calculator(void){} ;
// creates calculator instance and construct a new stack
void Run(void); // read the postfix expression, ends when meet "="
void Clear(void); // clear the calculator to prepare for the next calculation

Ming Zhang “Data Structures and Algorithms”

3.1 Stacks

The class definition of postfix calculator

template <class ELEM>
bool Calculator<ELEM>::GetTwoOperands(ELEM& opnd1, ELEM& opnd?2) {
if (S.IsEmpty()) {
cerr << "Missing operand!" <<endl;
return false;
}
opndl = S.Pop(); // right operator
if (S.IsEmpty()) {
cerr << "Missing operand!" <<endl;
return false;
}
opnd?2 = S.Pop(); // left operator
return true;

_ 33 Ming Zhang “Data Structures and Algorithms”

3.1 Stacks

The class definition of postfix calculator

template <class ELEM> void Calculator<ELEM>::Compute(char op) {
bool result; ELEM operandl, operand?2;
result = GetTwoOperands(operandl, operand?);
if (result == true)
switch(op) {
case '+' : S.Push(operand?2 + operandl); break;
case '-': S.Push(operand? - operandl); break;
case "*': S.Push(operand?2 * operandl); break;
case '/':if (operandl == 0.0) {
cerr << "Divide by 0!" << end]l;
S.ClearStack();
} else S.Push(operand?2 / operandl);
break;

}
else S.ClearStack();

}
_ 34 Ming Zhang “Data Structures and Algorithms”

3.1 Stacks

The class definition of postfix calculator

template <class ELEM> void Calculator<ELEM>::Run(void) {
char ¢; ELEM newoperand,;
while (cin >> ¢, c !1="=") {
switch(c) {
case '+': case '-': case '*': case '/":
Compute(c);
break;
default:
cin.putback(c); cin >> newoperand;
Enter(newoperand);
break;

}

}
if ('S.IsEmpty())
cout << S.Pop() << endl; // print the final result

_ 35 Ming Zhang “Data Structures and Algorithms”

Question

. 1. Stack is usually implemented by
using single linked list. Can we use
doubly linked list? Which is better ?

. 2. Please summarize the properties
of prefix expression, as well as the
evaluation process.

_ 36 Ming Zhang “Data Structures and Algorithms”

Chapter 3 Stacks and Queues

- Stacks

- Application of stacks

- Implementation of Recursion using
Stacks

- Queues

Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and
“““““““ Queues

Transformation from recursion to non-recursion

- The principle of recursive function
- Transformation of recursion

- The non recursive function after

optimization

Ming Zhang “Data Structures and Algorithms”

e 3

Stacks and - . -
-------------- oueues |- The-principle of recursive function

Another study of recursion

. Factorial fm)= {n xf(n—1) n>1

n=20
. Exit of recursion

- End condition of recursion is when the
minimal problem is solved

- More than one exits are permitted
- Rule of recursion

(Recursive body + bounded function)

- Divide the original problem into sub
problems

- Ensure that the scale of recursion is more
and more closer to the end condition

_ 39 Ming Zhang “Data Structures and Algorithms”

__ QEECOCEN

Stacks and . : :
-------------- tgfleil';‘;‘ —The principle of recursive function———————
Non recursive implementation of recursive algorithm
nxf(n—1) n=1
TL —
VRSO, { 1 n=2~0

- Non recursive implementation of factorial

- Establish iteration
- Transformation from recursion to non-recursion

- How about the problem of Hanoi Tower ?

_ 40 Ming Zhang “Data Structures and Algorithms”

__EEclEay

Stacks and - . -
-------------- oueues |- The-principle of recursive function

Recursion program for Hanol tower problem

http://www.17yy.com/f/play/89425.html
- hanoi(n,X,Y,Z) ‘

A B C

- Move n disk
- Move the disk from pillar X to pillar Z

- X. Y. Z can be used to place disks temporarily
- Big disks cannot be put on small disks

- Such as hanoi(2, ‘B’, ‘C’, ‘A’)
- Move 2 disks from pillar B to pillar A
_ 41 Ming Zhang “Data Structures and Algorithms”

http://www.17yy.com/f/play/89425.html

_ Chapter 3

Stacks and 3.1.3 Transformation from recursion to non-recursion
______________ Queues '

void hanoi(int n, char X, char Y, char Z) {
if (n <=1)
move(X,Z);
else {
// don’ t move the largest disk on X and move the left n-1 diskto Y
hanoi(n-1,X,Z,Y);
move(X,Z); //move the largest disk on X to Z
hanoi(n-1,Y,X,Z); // move the n-1 diskonY to Z
}
}

void move(char X, charY)
// move the disk on the top of pillar x to pillar Y

{

cout << "move" << X << "to" <<Y << endl

}

_ 42 Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and 3.1.3 Transformation from recursion to non-recursion

“““““““ Queues
Operating diagram of Hanoi recursive subroutine
pop \ push
HHL%§ Ki+1
. Stack t K,
hanoi(n...) AR TOP T .
Kk,
Stack bottom—— ko

Execute the instructions of Hanoi program
Exchange information with subroutine via stack

_ 43 Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and 3.1.3 Transformation from recursion to non-recursion
Queues

Call subroutine

Call subroutine
mm) move(A,C)

recursivel

N —

Call subroutine rewrn move(A,B)

recurswely return Q 0 Call subroutine

[
mOVE(A,C) return ‘ mOVQ(C,B)

9 Call subroutine

—%) move(B,A)

\ return
‘ return \mOVQ(B,C)
\ 0 Call subroutine

return
‘ move(A,C)

Ming Zhang “Data Structures and Algorithms”

e Call subroutine G

recursively

Call subroutine

move(A,C)

Call subroutine

. Call subroutine
recursively

Return move(C,B)

move(A,C)

e Call subroutine

H
H , p oA ‘move(B,A)
B,A,C /T \n(Ixeo

Call subroutine

H move(A,C)
A,B,C

return

_ Chapter 3

Stacks and 3.1.3 Transformation from recursion to non-recursion
QUeUES |7

The status of stack when the recursion is executed

hanoi(1,A,B,C)
hanoi(1,B,C,A)
hanoi(2,B,A,C)
hanoi(1,C,A,B)
hanoizl,A,B,C;
hanoi(2,A,C,B
hanoi(3,A,B,C)

_ 46 Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and 3.1.3Transformation from recursion to non-recursion
___________ Queues

A recursive mathematical formula

fu(n) = <r

n+1l when n<?2

rulln/2)xrun/4)) n=2

Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and 3.1.3 Transformation from recursion to non-recursion

“““““““ Queues
Example for recursive function
int f(int n) {)

n+l when n<2

if (n<2) fu(n) = <
return n+1;)

else
return f(n/2) * f(n/4);

fu(_n / ZJ)*fLI(_H / 4J) n>2

Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and 3.1.3 Transformation from recursion to non-recursion
QuUeeU S | T

Example for recursive function(change a little)

void exmp(int n, int& f) {

Int ul, uz;
if (n<2) [+l when n<?

_ . fuln) =
f= n+1’ () % fu(l_n /ZJ)*fu(_n /4J) n>2
else {

exmp((int)(n/2), ul);
exmp((int)(n/4), u2);
f=ul*u2;

Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and 3.1.3 Transformation from recursion to non-recursion
QuUeeU S | T

Dynamic memory allocation when the function is executed

. Stack is used for data that match last-in
and first-out after allocated
- Such as call function

Code region

- Heap is used for data which | saic region

doesn’t match LIFO stack

- Such as the distribution of the v

space that the pointer points to Frei St
stack

Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and 3.1.3 Transformation
Queues |

Function call and the steps of retur

- Function recall
- Save call information (parameter ,
return address)
- Distribute data area (Local variable)
- Control transfers to the exit of the
function called

- Return
- Save return information
- Release data area

- Control transfers to a superior functioan'n proce

(the main call function)

fremrecursion to non-recursion
n

/ P

fun @ functtion
\\’
// °
fu nctlon]
——
\

_ 51 Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and

Queues

3.1.3 Transformation from recursion to non-recursion

n+1 when n<?2
Diagram for the process of executing function 7 u(n) = fu(tn / 2j)>x< fu(Ln /4J> n>9

Exmp(7,&f) f=ul*u2=

ul=f=2 u2=f=2
f=ul*u2=2 [Exmp(3,&f)| |Exmp(1,&f)| f=2
ul=f=2 u2=f=1
f=2 [Exmp(1,&f)] |Exmp(0,&f) | =1

_ 52 Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and 3.1.3 Transformation from recursion to non-recursion
QuUeeU S | T

Simulate the process of recursion call by stack

Last call , first return (LIFO) , so stack is used vo!dtex;np(zint n, int& f) {
int ul, u2;

if (n<2)f=n+1;

else {
exmp((int)(n/2), ul);
exmp((int)(n/4), u2);
f = ul*u2;

}

rd=3: n=7 f=? ul=2 u2=2

Ming Zhang “Data Structures and Algorithms”

Chapter 3 |

Stacks and
Queues

Question

- For following function , please draw

the recursive tree when n=4 case, and
use stack to simulate the process of
recursive calls with the stack

- The factorial function
f0=]., f1=]., fl’l = 1N fl’l-].

- 2 order Fibonacci function
fO=O, f1=]., fl’l - f1’1-1+ fl’l-2

_ 54 Ming Zhang “Data Structures and Algorithms”

Chapter 3 Stacks and Queues

- Stacks

- Applications of stacks

- Implementation of Recursion using
Stacks

- Queues

Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and
101 1= 0 1T

Transformation from recursion to non-recursion

- The principle of recursive

function
- Transformation of recursion
- The non recursive function after

optimization

_ 56 Ming Zhang “Data Structures and Algorithms”

. o N I

Stacks and (2) Transformation of recursion
QueuesS | e
n+1 when n<2

Method of transform recursion to non-recursion I U(H) =
fu(Ln / ZJ)*fu(Ln / 4J) n>2

Direct transformation method
1.Set a working stack to record the current

working record rd=2: n=0 f=? ul=? u2=?
2. Set t+2 statement label

3. Increase non recursive entrance rd=1: n=3 f=? ul=2 u2=?
4. Replace the i-th (i =1, ..., t)recursion rule

rd=3: n=7 f=? ul=? u2=>

5. Add statement : “goto label t+1" at all the
Recursive entrance

6. The format of the statement labeled t+1

7. Rewrite the recursion in circulation and nest
8. Optimization

_ 57 Ming Zhang “Data Structures and Algorithms”

B Chepers
Stacks and (2) Transformation of recursion
QuUeeU S |

1. Set a working stack to record the working record

All the parameters and local variables that occur in the function must

be replaced by the corresponding data members in the stack

- Return statement label domain (t+2 value)
- Parameter of the function(parameter value, reference type)

- Local variable

typedef struct elem { // ADT of stacks
int rd; // return the label of the statement
Datatypeofpl p1; // parameter of the function

Datatypeofpm pm;
Datatypeofql ql; // local variable

Datatypeofqgn gn;
} ELEM;

_ 58 Ming Zhang “Data Structures and Algorithms”

(2) Transformation of recursion

2. Set t+2 statement label

- label 0 : The first executable statement
- label t+1 : set at the end of the function body

- label i (1<=i<=t) : the ith return place of the

recursion

Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and (2) Transformation of recursion
___________ Queues

3. Increase non recursive entrance

// push
S.push(t+1, pl, ..., pm, ql, ...gn);

Ming Zhang “Data Structures and Algorithms”

. oo

Stacks and (2) Transformation of recursion
10 18 T 0 T B MRRROONS

] n n (ﬁ
4. Replace the ith 1 =1, ..., t)recursion rule ‘/

. Suppose the ith (i=1, ..., t) recursive call fundfion |fandtion
. [—
statement is : recf(al, a2, ...,am) ; —
. Then replace it with the following statement|: | +——
S.push(i, al am) ; // Push the actual parameter — fungtion
goto label O ;
label i : x = S.top() ; S.pop(); 'lfai" F‘)'rocess

/* pop , and assign some value of X to the working
record of stack top S.top()— It is equivalent to
send the value of reference

type parameter back to the local variable*/

_ 61 Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and (2) Transformation of recursion
___________ Queues

5. Add statement at all the Recursive entrance

. goto label t+1;

Ming Zhang “Data Structures and Algorithms”

B Chopter
Stacks and (2) Transformation of recursion
QuUeU S |7

6. The format of the statement labeled t+1

switch ((x=S.top ()).rd) {
case 0: goto label O;
break:

case 1: goto label 1;
break;

case t+1 : item = S.top(); S.pop(); // return
break;

default : break:

_ 63 Ming Zhang “Data Structures and Algorithms”

B Chopter
Stacks and (2) Transformation of recursion
QuUeU S |7

7. Rewrite the recursion in circulation and nest

For recursion in circulation , you can rewrite it into
circulation of goto type which is equivalent to it

For nested recursion call
For example , recf (... recf())
Change it into :
exmp, = recf ();
exmp, = recf (exmp,);

exmp, = recf (exmp,_,)
Then solve it use the rule 4

_ 64 Ming Zhang “Data Structures and Algorithms”

N Chooters
(

Stacks and 2) Transformation of recursion
QuUeU S |7

8. Optimization
- Further optimization

- Remove redundant push and pop

operation

- According to the flow chart to
find the
corresponding cyclic structure, there
by eliminating the goto statement

_ 65 Ming Zhang “Data Structures and Algorithms”

. o N ' I

Stacks and (2) Transformation of recursion
Queues

Definition of data structure 7u(n) = {

n+1 when n<2

fu(Ln / 2J)*fu(L17 / 4J) n>2

typedef struct elem {
int rd, pn, pf, ql, q2;

} ELEM; rd=2: n=0 f=? ul=? u2=?
class nonrec 1 rd=1: n=3 {=? ul=2 u2=?
private:
stack <ELEM> S; rd=3: n=7 f=? ul=? u2=?
public:

nonrec(void) { } // constructor
void replacel(int n, int&);

Ming Zhang “Data Structures and Algorithms”

B Choer s N [
(f=ul*u2=4

Stacks and 2) Transformation of recursion Exmp(7,&fF)

""""""" Queues u1=f=‘7V=f=2
Entrance of recursion, ...

Exmp(3,&f) Exmp(1,&f) =2

void nonrec:replacel(int n, int& f) { ul=f=2 u2=f=1
ELEM x, tmp

X.rd = 3; X.pn = n; f=2 |Exmp(1,&f) Exmp(0,&f) | f
S.push(x); // pushed into the stack bottom as lookout

labelO: if ((x = S.top()).pn < 2) {

S.pop();

x.pf = x.pn + 1;

S.push(x);

goto label3;

_ 67 Ming Zhang “Data Structures and Algorithms”

1

. Chet N I

Stacks and (2) Transformation of recursion

Queues

The first recursion statement., y _ {

x.rd = 1;: // the first recursion

x.pn = (int)(x.pn/2); T

S.push(x);

goto labelO; g
labell: tmp = S.top(); S.pop(); -

X = S.top(); S.pop(); =

x.dl = tmp.pf; // modify ul=pf

n+1 when n<?2

fu(_n / 2J)*fu(|_n / 4j) n>2

tion
\l
_—

fundtion

\

S.push(x);

_ 68 Ming Zhang “Data Structures and Algorithms”

R —————— .
Stacks and Exmp(7,&f) f=ul*u2=

""""""" Queues u1=f=2/w=f=2
The second recursion statemg.nt,

=ul*uZ2=2 |Exmp(3,&f) Exmp(1,&f)| f=2
X.pn = (int)(x.pn/4); u1=f7 &4:1
x.rd = 2;
S.DUSh(X); =2 |Exmp(1,&f) Exmp(0,&f) | f=1

goto labelO;

label2: tmp = S.top(); S.pop();
X = S.top(); S.pop();
x.g2 = tmp.pf;
x.pf = x.ql * x.q2;
S.push(x);

_ 69 Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

o o

Stacks and | (2) Transformation of recursion Exmp(7,&f)
""""""" Queues ul=f=2/¥f=f=2
label3: x = S.top();
switch(x.rd) { f=ul*u2=2 [Exmp(3,&f) Exmp(1,&f) | f=2
case 1 : goto labell; U1=f7 &fﬂ
break;
case 2 : goto label?; f=2 |Exmp(1,&f) Exmp(0,&f) | f=1
break;
case 3 : tmp = S.top(); S.pop();
f = tmp.pf; //finish calculating
break;
default : cerr << "error label number in stack”;
break;

Ming Zhang “Data Structures and Algorithms”

. Choer s N [
(3) The non recursive function after optimization f=ul*u2=4

Stacks and Exmp(7,&f)
""""""" Queues u1=f=‘7w=f=2
The non recursive function after optimization
f=ul*u2=2 [Exmp(3,&f) Exmp(1,&f)| f=2
void nonrec::replace2(int n, int& f) { ul=f=2 uz=f=1
ELEM x, tmp;
// information of the entrance f=2 |Exmp(1,&f) Exmp(0,&f) | =1
x.rd = 3; x.pn=n; S.push(x);
do {

// go into the stack along the left side
while ((x=S.top()).pn >= 2){

x.rd = 1;
x.pn = (int)(x.pn/2);
S.push(x);

_ 71 Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and (3) The non recursive function after optimization Exmp(7,&f) f=ul*u2=4
""""""" Queues u1=f=‘7V=f=2
f=ul*u2=2 |Exmp(3,&f) Exmp(1,&f)| =2
x = S.top(); S.pop(); // initial entrance , n <= 211=f=2 u2=f=1
x.pf = x.pn + 1; /
S.push(x); =2 [Exmp(1,&f) Exmp(0,&f) | f=1
// If it is returned from the second recursion
then rise

while ((x = S.top()).rd==2) {
tmp = S.top(); S.pop();
x = S.top(); S.pop();
x.pf = x.q * tmp.pf;
S.push(x);

}

_ 72 Ming Zhang “Data Structures and Algorithms”

. Choer s N [
(3) The non recursive function after optimization f=ul*u2=4

Stacks and Exmp(7,&f)
""""""" Queues u1=f=‘7V=f=2
f=ul*u2=2 |Exmp(3,&f) Exmp(1,&f)| =2
if ((x = S.topValue()).rd == 1) { ul=f=2 u2=f=1
tmp = S.top(); S.pop(); /
X = S.top(); S.pop(); f=2 [Exmp(1.&f) Exmp(0.&0) | =1

x.q = tmp.pf; S.push(x);
tmp.rd = 2; // enter the second recursion
tmp.pn = (int)(X.pn/4);
S.push(tmp);
}

} while ((x = S.top()).rd !'= 3);

x = S.top(); S.pop();

f = x.pf;

}

_ 73 Ming Zhang “Data Structures and Algorithms”

Chapter 3

Stacks and
Queues

from recursion to non recursive

Comparison of quicksort (unit ms)

N 10000 100000 | 1000000 | 10000000
Quicksort with recursion 4.5 29.8 268.7 2946.7
Quicksort with non recursive
P 1.6 23.3 251.7 2786.1
Quicksort with non recursive
O mothod 1.6 20.2 248.5 2721.9
Sort in STL 4.8 59.5 629.8 /664.1

Note : testing environment

Intel Core Duo CPU T2350
Memory 512MB

Operating system Windows XP SP2

Programming environment Visual C++ 6.0

I 74

Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and
Queues

_Performance experiment of transformation .
from recursion to non recursive

Scale of processing problems using recursion and non recursive method

« Evaluate f(x) by recursion:

int f(int x) {
if (x==0) return O;
return f(x-1)+1;

}
- Under the default settings, when x exceed 11,772 ,the

stack overflow may occur.

 Evaluate f(x) by non recursive method , the element in the

stack record the current x and the return value

— Under the default settings, when x exceed 32,375,567 ,

r
m 75 Ming Zhang “Data Structures and Algorithms”

_ Chapter 3

Stacks and
“““““““ Queues
Questions
. Use the direct transformation
for ...

- The factorial function

- 2-order Fibonacci function
- Hanoi Tower algorithm

Ming Zhang “Data Structures and Algorithms”

Chapter 3 Stacks and Queues

- Stacks
- Applications of Stacks

- Implementation of Recursion using
Stacks

- Queues

Ming Zhang “Data Structures and Algorithms”

I —

- 3.2 Queues

Definition of queues

- First In First Out

- Linear lists that limit accessing point
- Release elements according to the order of arrival

. All the insertions occur at one end of the list
and all the deletions occur at the other end

. Main elements
- front
— rear

Ming Zhang “Data Structures and Algorithms”

I —

3.2 Queues

Main operations of queues

- Insert an element into the queue (enQueue)

- Remove an element from the queue (deQueue)
- Get the element in the front (getFront)

- Judge whether the queue is empty (iIsEmpty)

Ming Zhang “Data Structures and Algorithms”

Abstract data type of queues

template <class T> class Queue {
public: // operation set of the queue

void clear(); // change into empty queue

bool enQueue(const T item); // insert item into the end of the queue, return true if
succeed, otherwise return false

bool deQueue(T & item) ;

// return the front element of the queue and remove it,return true if succeed

bool getFront(T & item);

// return the front element of the queue and do not remove it,return true if succeed

bool isEmpty(); // return true if the queue is empty
bool isFull(); // return true if the queue is full

Ming Zhang “Data Structures and Algorithms”

I —

3.2 Queues

Implementation of Queues

- Sequential queue

- The key point is how to prevent
false overflow

- LiInked queue

- Use single linked list to store, every
element in the queue corresponds to
a node in the linked list

Ming Zhang “Data Structures and Algorithms”

Queue : Ring(true pointers)

Q.front Q.rear Q.front

N

Empty queue Q.rear Q.rear

_ 82 Ming Zhang “Data Structures and Algorithms”

Class definition of sequential queues

class arrQueue: public Queue<T> {

private:

int mSize; // The size of array to store the queue

int front; // Subscript used to show the position of the front of the
queue

int rear; // Subscript used to show the position of the end of the
queue

T * qu; // Array used to put queue elements of type T
public: // operation set of the queue

arrQueue(int size); // create an instance of the queue

~arrQueue(); // delete the instance and release space
}

Ming Zhang “Data Structures and Algorithms”

The maintenance of sequential queue

- Rear refers to

fr(mlrﬂontl rearlrear[

R|8 D |D

The maintenance of sequential queue

- Front and rear are all true pointers

front rear
RN RN
20| 5 [12 |17
(a)
front rear
RN RN

Implementation code of sequential queues

template <class Elem> class Aqueue : public Queue<Elem> {

private:
int size; // The maximum capacity of queue
int front; // The pointer of the front element of the queue
int rear; // The pointer of the end element of the queue
Elem *listArray; // The array that store the elements

public:

AQueue(int sz=DefaultListSize) {
// Let the array for storage leave one more empty place
size = sz+1;// size is the length of the array , and the max length of queue sz
rear = 0; front = 1; // you may assign rear=-1; front=0
listArray = new Elem|[size];
}
~AQueue() { delete [] listArray; }
void clear() { front = rear+1; }

_ 86 Ming Zhang “Data Structures and Algorithms”

Implementation code of sequential queues

bool enqueue(const Elem& it) {
if (((rear+2) % size) == front) return false;

// There is only one empty place for the queue to be full
rear = (rear+1) % size; // It needs to be moved to the next empty place first
listArray[rear] = it;
return true;

}
bool dequeue(Elem& it) {
if (length() == 0) return false;
// the queue is empty
it = listArray[front]; // move out of the queue first and then move the front subscript
front = (front+1) % size; // Increase in the formula of ring
return true;

}

_ 87 Ming Zhang “Data Structures and Algorithms”

Implementation code of sequential queues

bool frontValue(Elem& it) const {
if (Iength() == 0)
return false; // the queue is empty
it = listArray[front]; return true;
}
int length() const {
return (size +(rear - front + 1)) % size;

§

Ming Zhang “Data Structures and Algorithms”

Questions

- 1. You are given a queue with the length of n,
you can just use the variable of front and rear,
what is the largest number of elements that
the queue can contain? Please give details
of the derivation.

. 2. If you don’t want to waste storage unit of
the queue, what kind of other methods can
you use ?

_ 89 Ming Zhang “Data Structures and Algorithms”

Representation of linked queues

. Singed linked list queue

- The direction of the linked pointer if from the
front of the queue to the end of the queue

f

r

{ k| T k] T k] B a E AN

Ming Zhang “Data Structures and Algorithms”

Class definition of linked queues

template <class T>
class InkQueue: public Queue<T> {

private:
int size; // the number of elements in the queue
Link<T>* front; // the pointer of the front element of the queue
Link<T>* rear; // the pointer of the end element of the queue
public: // operation set of the queue
InkQueue(int size) // create an instance of the queue
~InkQueue(); // delete the instance and release space

}

Ming Zhang “Data Structures and Algorithms”

Implementation code of linked queues

bool enQueue(const T item) {
// insert the element to the end of the queue
if (rear == NULL) { //if the queue is empty
front = rear = new Link<T> (item, NULL);
}
else { // add new elements
rear-> next = new Link<T> (item, NULL);
rear = rear ->next;
}
size++;
return true;

Ming Zhang “Data Structures and Algorithms”

Implementation code of linked queues

bool deQueue(T* item) {
// return the front element of the queue and remove it
Link<T> *tmp;
if (size == 0) {
// the queue is empty and no elements can be bring out of the
queue
cout << “The queue is empty" << endl;
return false;
}
*item = front->data;
tmp = front;
front = front -> next;
delete tmp;
if (front == NULL)
rear = NULL;
size--;
- return true; 93 Ming Zhang “Data Structures and Algorithms”
1

Comparison between sequential queue and linked queue

- Sequential queue
- Fixed storage space

- Linked queue

- Use in the cases when the maximum size
cannot be estimated

Both of them are not allowed to access
internal elements of the queue

_ 94 Ming Zhang “Data Structures and Algorithms”

] —
3.2 Queus

Applications for queues

All the applications that meet the characteristics of FIFO
can use queue as the way of data organization or

intermediate data structure
Scheduling or buffering
- Message buffer
- Mail buffer
- The communication between computer

hardware equipment also need queue as a data
buffer

- Resource management of operating system
BES

_ 95 Ming Zhang “Data Structures and Algorithms”

I —_

-- Q.front—-

Questions orear '
- Linked list are usually

\ k, kg
implemented by using linked list,
why not use doubly linked list? AN

- And, if we apply false-pointers to a
tail of a sequential queue, what is
the difference from the case of
true-pointers we have introduced?

_ 96 Ming Zhang “Data Structures and Algorithms”

Chapter 3 Stacks and Queues

- Stacks
- Applications of Stacks

- Queues
- Applications of Queues

Ming Zhang “Data Structures and Algorithms”

] —

Application of queues

Farmer across the river

Problem abstraction : FSWV boat across the river

- Only the farmer can row the boat
- There are only two positions on the boat include the farmer
- Wolf and sheep, sheep and vegetables can not stay along without

the farmer beside

Farmer is abbreviated as F
Sheep is abbreviated as S
Wolf is abbreviated as W
empty (succeed) Vegetable is abbreviated as V

Ming Zhang “Data Structures and Algorithms”

—

(FSWV) ES 5 (FSV)
WV WV S

(FWV) ﬂFSW)

e

(FSV) (FWV)
s V=" wv

— (FWV)

FS FSWV

0 1 0 1
Farmer Wolf Vegetable Sheep

C 1111 O | Empty (succeed)
99

Ming Zhang “Data Structures and Algorithms”

BES : (m states)

DES : (m states)

y

A |A; | Ag A ‘A“x Ay, Ay | Ag | Ap
9 O o A A
L A, —
A211
A,, XC.QQ
A, ‘

Data abstraction

- The state of each role is represented by their
positions
- Farmer, wolf, vegetable and sheep , each position is
represented by a bit (Their positions are supposed to be
in the order of FWVS) . If the target is in the original

bank, the bit will be zero. And the bit will be one if the
target is in the opposite bank

0 1 0 1

- E.g. 0101 represents that farmer and vegetable are in the
original bank , while wolf and sheep are in the opposite
bank (This state is unsafe)

_ 101 Ming Zhang “Data Structures and Algorithms”

Representation of data

Use status (integer) to represent the above four bit binary description
of the state

- The state 0x08 represents 1 0 0] 0]

- The state OxOF represents 1 1 1 1
How to get the position of each role from the status above?

- If function returns with value 1, it means the person or thing you
observe is in the original bank

- Or it means the person or thing you observe is in the opposite
bank

_ 102 Ming Zhang “Data Structures and Algorithms”

bool farmer(int status) F W \'
{ return ((status & 0x08) 1= 0); } 1 X X X

bool wolf(int status)
{ return ((status & 0x04) !=0); } X 1 X X

bool cabbage(int status)
{ return ((status & 0x02) '=0); } X X 1 X

bool goat(int status)
{ return ((status & 0x01) 1= 0); } X X X

_ 103 Ming Zhang “Data Structures and Algorithms”

Judge of safe state = © 1 0 1

//return true if safe , return false if unsafe
bool safe(int status) {
if ((goat(status) == cabbage(status)) &&
(goat(status) != farmer(status)))
return(false); // sheep eat vegetables
if ((goat(status) == wolf(status)) &&
(goat(status) != farmer(status)))
return(false); // wolf eats sheep
return(irue); // The state left are safe

_ 104 Ming Zhang “Data Structures and Algorithms”

Algorithm abstraction

- The problem changed into: from state
0000 (integer O) start, find state
sequence made up of all the safe states,
and takes the state 1111 as the final
target.

- Every state in the state sequence can be
reached from its prior state by the action of

farmer rowing across the river(one thing can
be taken with him)

- Repeated state can not appear in the
sequence

_ 105 Ming Zhang “Data Structures and Algorithms”

Algorithm design

- Define an integer queue moveTo , each element of it
represents an intermediate state that can be
reached safely

- You need to design another structure to record all
the state that has been visited , and the path that
has been find to be able to reach the current state

- Use the ith element of the sequential table route to record
whether state I has been visited

- If route[i] has been visited , then record a precursor state
value. And it represents unvisited if its value is -1

- The length of route is 16

_ 106 Ming Zhang “Data Structures and Algorithms”

Implementation of the algorithm

void solve() {
int movers, i, location, newlocation;
vector<int> route(END+1, -1);
// record the state path that has been considered
queue<int> moveTo;
// prepare the initial value

moveTo.push();
route[0]=0;

Ming Zhang “Data Structures and Algorithms”

__ FWVS
Implementation of the algorithm
while (ImoveTo.empty() && route[15] == 1) {
// get the current state

status = moveTo.front();

moveTo.pop();

for (movers = | ; movers <= “; movers <<=) {

// the farmer is moving all the time,

// and only things in the same side of bank can move with him

if (farmer(status) == (bool)(status & movers)) {
newstatus = status A (| movers);
// Ways that are safe and not considered before
if (safe(newstatus) && (route[newstatus] == 1)) {

route[newstatus] = status;
moveTo.push(newstatus); }

Ming Zhang “Data Structures and Algorithms”

Implementation of the algorithm

// print the path in the opposite direction
if (route[! 5] !=-1){
cout << "The reverse path is : “ << endl;
for (int status = | 5; status >= (); status = route[status]) {
cout << "The status is : “ << status << endl;
if (status == () break;

}
}
else
cout << "No solution.” << endl;
}
_ 109 Ming Zhang “Data Structures and Algorithms”

—

(FWVS) (FVS)
wv WV FS—= s

(FWV) ﬁFWS)

v w
(FVS) ‘/ES/FV_> (FWV)

S WV

FSV

(Fs) o (FWY)

empty TS~ FWVS

0 1 0 1
F W Vs

C 1111 O | Empty(succeed)

Ming Zhang “Data Structures and Algorithms”

Question : Another small game

Five people across the bridge with a lamp :

- There is a lamp that can be used for just
30seconds , they have to go across the
bridge before the lamp goes out

- The speed of these five people is different :
it takes the older brother 1 second , the
younger brother 3seconds , the father 6
seconds , the brother 8 seconds and the
grandmother 12 seconds to across the bridge

- Only two people can go across the bridge at
one time. And when they go across the
bridge, one of them must send the lamp
back to the original bank.

_ 111 Ming Zhang “Data Structures and Algorithms”

Score: 0 @ :

Lamp Life: 30 seconds

Ming Zhang “ Data Structures and Algorithms *

Data Structures
. and Algorithms -

Thanks

the National Elaborate Course (Only available for IPs in China)
http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/

Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)

